This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Chemical control of photochromism and a multiresponsive molecular switch based on a diarylethene derivative containing naphthol

Wenju Liu†, Ziyong Li†, Fang Hu, Jun Yin*, Guang-Ao Yu, Sheng Hua Liu*

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China

† co-first author

* Corresponding author

ABSTRACT

A photochemically inactive diarylethene derivative with a naphthol group bridging through the imidazole unit (\textit{DIN}) was synthesized to characterize a multifunctional switch. Upon stimulation by radiation (UV and visible light), the target diarylethene derivative \textit{DIN} was not photochemically inactive but photo-active, it can be photo-converted to keto compound. And moreover, the photochromic reaction of \textit{DIN} was observed when it was stimulated by the addition of acid or methylation. Fluorescence quenching and the bathochromic effect occurred when \textit{DIN} was stimulated by the addition of copper ions and base, respectively. Its optical properties could be regulated by various chemical stimulus. Thus, it could potentially be utilized as a multiresponsive molecular switch.

1. Introduction

Photochromic diarylethene compounds have attracted much attention in recent years since the first report by Kellogg et al.1 and subsequent, extensive studies by Irie and coworkers2-6 on the photochromic properties of these systems. Several attempts to modulate the photochromic properties of diarylenes for practical applications have recently been reported.7-19 Recently, it was found that the photochromic properties of some organic molecules can be induced by an external stimulus such as chemicals,20-22 heat23 or oxidation/reduction.24 For instance, Irie20 reported that photochemically inactive diarylethene derivatives having a N-(O-hydroxyphenyl)
group underwent photochromic reaction when they were esterified by the addition of acetic anhydride. Yam21 found that photochromic reactivity is highly suppressed in dithienylethene derivatives appended with 3- or 5-dimesitylboryl-2, 20-bithiophene, while it can be restored after F- ion binding to the boron center. Such reactivity is indispensable to applications in display and memory technologies.

The imidazole and hydroxyl group account for the powerful coordination capacities of naphthol. The nitrogen atom in the imidazole ring is a good receptor for protonic acid, and the hydrogen atom in the hydroxyl group and the N–H groups in the imidazole ring are acidic. With these considerations in mind, we herein present an unprecedented example of a diarylethene derivative with a naphthol group bridged by an imidazole unit (\textbf{DIN}). In particular, we characterized multifunctional switches prepared from \textbf{DIN} and attempted to control the photochromic reaction by using specific chemical constituents.

2. Materials and methods

2.1. Experimental

General: All manipulations were carried out under an argon atmosphere by using standard schlenk techniques, unless otherwise stated. DMF was dried with magnesium sulfate then distilled under vacuum. 1,2-Bis(5-chloro-2-methylthiophen-3-yl)ethane-1,2-dione (1) was prepared by methods described in the literature.25 All other starting materials were obtained commercially as analytical-grade and used without further purification. The relative quantum yields were determined by comparing the reaction yield with the known yield of the compound 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene.26 1H and 13C NMR spectra were collected on American Varian Mercury Plus 400 spectrometer (400 MHz) or 600 MHz. 1H and 13C NMR chemical shifts were relative to TMS. UV-Vis spectra were obtained on U-3310 UV Spectrophotometer. Fluorescence spectra were recorded on a Hitachi-F-4500 fluorescence spectrophotometer. UV light was irradiated using ZF5UV lamp (302 nm), and visible light irradiation (λ > 402 nm) was carried out by using a LZG 220 V 500W tungsten lamp with cutoff filters.

2.2 Synthesis
Target compounds DIN and DIN-CH$_3$ were prepared according to the synthetic route presented in Scheme 1.

![Diagram showing the synthesis of DIN and its derivative DIN-CH$_3$.]

Scheme 1 Synthesis of DIN and its derivative DIN-CH$_3$.

Synthesis of DIN: To a solution of ammonium acetate (1.2 g, 16 mmol) in refluxing glacial acetic acid (15 mL) was added 2-hydroxy-1-naphthaldehyde 2 (0.20 g, 2.0 mmol) under a argon atmosphere at 120 °C, and it was refluxed for 2 h. 1,2-Bis(5-chloro-2-methylthiophen-3-yl)ethane-1,2-dione 1 (0.64 g, 2.0 mmol) was added to the reaction solution above and continue to react further for overnight. The reaction mixture was allowed to cool to room temperature, and then transferred to ice water (200 mL), carefully neutralized with a 10% sodium carbonate solution to a pH of 6.5-7.0. The formed precipitate was collected and the crude product was washed with water, the dried solid was redissolved in DCM. Then dried over sodium sulfate, upon removed of solvent under reduced pressure and purified on a silica gel column using petroleum ether / ethyl acetate (4:1) as the eluent to obtain the target compound as a white powder in a yield of 68%. 1H NMR (400 MHz, CDCl$_3$): δ 2.15 (s, 3H, CH$_3$), 2.36 (s, 3H, CH$_3$), 6.79, 6.87 (s, 2H, thiophene-H), 7.31 (d, J = 8.8 Hz, 1H, Ar-H), 7.40 (t, J = 7.2 Hz, 1H, Ar-H), 7.58 (t, J = 7.2 Hz, 1H, Ar-H), 7.81 (d, J = 8.8 Hz, 1H, Ar-H), 7.87 (d, J = 8.4 Hz, 1H, Ar-H), 8.16 (d, J = 8.8 Hz, 1H, Ar-H), 9.50 (s, 1H, -OH), 13.03 (s, 1H, -NH). MS(m/z): 470 [M]+. Anal. Calcd for C$_{23}$H$_{16}$Cl$_2$N$_2$OS$_2$: C, 58.60; H, 3.42; N, 5.94. Found: C, 58.89; H, 3.29; N, 6.19.

Synthesis of DIN-CH$_3$: To a solution of DIN (0.20 g, 0.5 mmol) in N,N-dimethylformamide (10 mL) in the presence of potassium carbonate (0.28 g, 2.0 mmol) was added methyl iodide (0.12 mL, 2.0 mmol) under dark conditions for 12 h at room temperature. The reaction mixture was allowed to cool, transferred to about 100 mL of water. The formed precipitate was collected...
and the crude product was washed with water, the dried solid was redissolved in DCM. Then dried
over sodium sulfate, upon removed of solvent under reduced pressure and purified on a silica gel
column using petroleum ether / ethyl acetate (5:1) as the eluent to obtain the target compound as a
light yellow solid in a yield of 90%. 1H NMR (400 MHz, CDCl$_3$): δ 2.08 (s, 3H, CH$_3$), 2.32 (s, 3H,
CH$_3$), 3.22 (s, 3H, N-CH$_3$), 3.91 (s, 3H, O-CH$_3$), 6.73, 6.86 (s, 2H, thiophene-H), 7.33-7.58 (m,
4H, Ar-H), 7.82 (d, $J = 8.4$ Hz, 1H, Ar-H), 7.97 (d, $J = 10$ Hz, 1H, Ar-H). 13C NMR (100 MHz,
CDCl$_3$): δ 13.87 (s, CH$_3$), 14.40 (s, CH$_3$), 31.51 (s, N-CH$_3$), 56.50 (s, O-CH$_3$), 112.90, 123.34,
123.97, 124.53, 126.58, 127.37, 127.93, 128.95, 131.17, 131.68, 133.81, 134.34, 135.24,
138.09, 143.67, 156.01 (s, thiophene, ethene, naphthalene). MS (m/z): 498 [M]+. Anal. Calcd for
C$_{25}$H$_{20}$Cl$_2$N$_2$O$_2$: C, 60.12; H, 4.04; N, 5.61. Found: C, 59.95; H, 3.91; N, 5.71.

2.3 Crystallographic Details

Crystals suitable for X-ray diffraction were grown from a dichloromethane of solution
DIN layered with hexane. A crystal with approximate dimensions of $0.20 \times 0.10 \times 0.10$ mm3 for
DIN was mounted on a glass fiber for diffraction experiment. Intensity data were collected on a
Nonius Kappa CCD diffractometer with Mo Kα radiation (0.71073 Å) at 298 K. The structures
were solved by a combination of direct methods (SHELXS-97) and Fourier difference
techniques and refined by full-matrix least squares (SHELXL-97). All non-H atoms were
refined anisotropically. The hydrogen atoms were placed in the ideal positions and refined as
riding atoms. Crystallographic data for the structure in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplemental publication CCDC 979718. Copies of
the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK (fax: 544 0 1223 336 033 or e-mail: deposit@ccdc.cam.ac.uk).

3. Results and discussion

3.1 X-ray structure of DIN

The molecular structure of DIN (Fig. 1) was determined through X-ray crystallography. Its
crystallographic details are given in Table S1. DIN crystallized with the approximate parallel
conformation in the crystalline phase, which could not undergo photocyclization in the crystalline
phase.27 The dihedral angle between the naphthalene ring and the imidazole ring in DIN was
26.10°. The intramolecular distance between the two reactive carbons was 4.641 Å, which was too long for the cyclization reaction to take place in the crystalline phase; photochromic activity usually appeared when the distance between the reactive carbon atoms was less than 4.2 Å. The distance between the hydrogen atom in the naphtholic hydroxy group and the nitrogen atom in an imidazole ring was found to be 1.875 Å, which was enough to form an intramolecular hydrogen bond.

3.2 Optical behaviors of DIN

The absorption spectrum of DIN in acetonitrile solution at room temperature is shown in Fig. 2A. Before irradiation with 302 nm UV light, the absorption maximum of DIN was at 239 nm ($\varepsilon = 3.92 \times 10^4$ L mol$^{-1}$ cm$^{-1}$) because of a $\pi-\pi^*$ transition. The other absorbance maximum of DIN appeared at 356 nm ($\varepsilon = 1.15 \times 10^4$ L mol$^{-1}$ cm$^{-1}$), which is characteristic of the absorbance of naphthalene derivatives. When it was irradiated with 302 nm UV light, a new absorption band between 363 and 500 nm emerged, and the absorbance intensity at 239 nm gradually weakened. No absorbance of the closed-ring isomer was observed. It indicated that DIN did not exhibit any photochromism by cyclization and cycloreversion in acetonitrile upon irradiation with 302 nm light. Hence, the photochromism by cyclization and cycloreversion was inhibited by intramolecular proton transfer, but the permanent tautomerization took place, as shown in Fig. 2. Formation of an intramolecular hydrogen bond in the ground state between the naphthol hydrogen and the imidazole ring nitrogen is confirmed by the X-ray structure of DIN. The fluorescence spectrum of DIN in acetonitrile solution at room temperature was investigated. Upon excitation at...
a wavelength of 356 nm, it exhibited emission at 458 nm (Fig. 2B). A small fluorescence quantum yield ($\phi_f = 0.047$) was detected by using quinoline sulfate ($\phi_f = 0.55$, in 0.1 M aqueous H$_2$SO$_4$) as a reference. The emission intensity of DIN rapidly decreased upon irradiation with 302 nm UV light. Such emission was mainly induced by intramolecular proton transfer from the naphthol hydrogen to the imidazole ring nitrogen, as shown in Fig. 2. Hydrogen bonding induced quenching of the excited state by proton transfer.15 To confirm further the intramolecular proton transfer, IR spectra of DIN before and after UV irradiation were obtained (Fig. S1). The characteristic absorption of the carbonyl group appeared at 1711 cm$^{-1}$ after UV irradiation. It was accompanied by the disappearance of the characteristic absorption of the hydroxyl group at 3243 cm$^{-1}$, which was observed before UV irradiation. This result agrees with the crystal structure and results of the UV experiment on DIN.

3.3 Effect of metal ions on the optical properties of DIN

Absorbance and fluorescence changes in DIN in acetonitrile at room temperature due to the presence of various metal ions were investigated. Cu$^{2+}$ had marked effects on the optical properties of DIN, but the binding of other metal ions (Ag$^+$, Ba$^{2+}$, Ca$^{2+}$, Cd$^{2+}$, Co$^{2+}$, Cu$^+$, Hg$^{2+}$, K$^+$, Mg$^{2+}$, Na$^+$, Ni$^{2+}$, Sn$^{2+}$, Sr$^{2+}$, Fe$^{3+}$, Zn$^{2+}$) caused only slight changes in absorbance and emission under the same conditions (Fig. S2). As shown in Fig. 3A, the absorption maximum (352 nm) of DIN
the open-ring isomer of DIN in the presence of Cu$^{2+}$ shows a hypsochromic shift ($\Delta\lambda = 4$ nm) relative to that of free DIN (356 nm) before irradiation with 302 nm UV light. This shift may be attributed to a change in the degree of conjugation of the diarylethene after binding Cu$^{2+}$. Meanwhile, the absorbance maximum of DIN in the presence of Cu$^{2+}$ after UV irradiation was nearly unchanged compared with that of DIN upon UV irradiation in the absence of Cu$^{2+}$ (Fig. S3). Thus, the photochromic property of DIN was not affected by the addition of Cu$^{2+}$. That is, DIN, which was photochemically inactive, did not exhibit photochromism in the presence of Cu$^{2+}$. As presented in Fig. 3B, the emission at 458 nm band decreased significantly upon addition of varying amounts of Cu$^{2+}$ (0–4 eq), and the fluorescence quantum yield decreased from 0.047 to 0.013 when the amount of Cu$^{2+}$ was varied from 0 to 4 eq. Fluorescence quenching of DIN upon addition of Cu$^{2+}$ might have resulted from ligand-to-metal charge transfer, in which the electronic charge is transferred from the ligand toward the coordinating metal.30 Thus, DIN is a potential molecular sensor for the detection of Cu$^{2+}$ by fluorescence recognition.

Fig. 3 Optical response of DIN in acetonitrile upon the addition of Cu$^{2+}$ before irradiation with 302 nm and the corresponding changes of structure.

3.4 Photonic and pH control of the photochromic reactivity of DIN

Protonation of the open-ring isomer, DINo, by the addition of HCl in excess in acetonitrile ($c = 2 \times 10^{-5}$ mol$^{-1}$ L) afforded DINo\cdotH$^+$ (Fig. 4), as indicated by a bathochromic shift of $\Delta\lambda = 7$ nm ($\lambda_{\text{max}} = 356$ nm). This red shift was due to protonation-induced delocalization of the π system, 7.
which stabilizes the positive charge.31 A new absorption band centered at 590 nm ($\varepsilon = 1.32 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}$) appeared and the colorless solution turned blue when DINo•H$^+$ was irradiated with 302 nm UV light. These changes are due to a ring-closure reaction, which produces the closed-ring isomer, DINc•H$^+$. A well-defined isosbestic point at 257 nm was observed. Upon irradiation with visible light ($\lambda > 402$ nm), the colored DINc•H$^+$ underwent a cycloreversion reaction to the initial colorless DINo•H$^+$. The quantum yields of cyclization and cycloreversion for DIN•H$^+$ were 0.042 and 0.0013, respectively. Deprotonation of DINo•H$^+$ with Et$_3$N led to the formation of DINo. When DINc•H$^+$ was neutralized with Et$_3$N (1.5 eq vs. HCl) and subsequently irradiated with visible light ($\lambda > 402$ nm), DINo was also regained. However, the fluorescence spectrum of DIN in acetonitrile solution was scarcely affected by the addition of HCl (20 eq), as shown in Fig. S4. The photochemically inactive DIN underwent photochromic reaction when it was acidified by the addition of HCl. Thus, this system may be used a novel dual-control molecular switch by the regulation of photoradiation and pH.

![Absorption spectra of DIN in acetonitrile (c = 2 × 10^{-5} mol/L) upon protonation with HCl (20 eq) and deprotonation with TEA (30 eq) and/or irradiation with UV/Vis light.](image)

Fig. 4 Absorption spectra of DIN in acetonitrile (c = 2 × 10^{-5} mol/L) upon protonation with HCl (20 eq) and deprotonation with TEA (30 eq) and/or irradiation with UV/Vis light.

3.5 Effect of base on the optical properties of DIN
DIN solution in acetonitrile \((c = 2 \times 10^{-5} \text{ mol L}^{-1})\) formed \textbf{DIN}•2\textbf{Na} upon addition of excess alkali, as indicated by a bathochromic effect of \(\Delta \lambda = 24 \text{ nm} (\lambda_{\text{max}} = 356 \text{ nm}; \text{Fig. 5A}).\) This red shift is due to \(\pi\)-system delocalization induced by deprotonation, which stabilizes the negative charge. \textbf{DIN}•2\textbf{Na} could be protonated to form \textbf{DIN} by adding acid to its solution. However, upon irradiation with 302 nm light and the addition of alkali to its solution, \textbf{DIN} did not exhibit photochromism, as shown in Fig. S5. Deprotonation of imidazole and naphthol in \textbf{DIN} also caused a significant difference in the emission. The emission of \textbf{DIN} at 458 nm decreased greatly with the addition of alkali. This efficient fluorescence quenching was a result of the photoinduced electron transfer from the deprotonated imidazole and naphthol to the diarylethene group (as shown in Fig. 5B).32-33 The fluorescence quantum yield decreased from 0.047 to 0.021 when the amount of alkali was varied from 0 to 10 eq. Fluorescent quenching upon addition of alkali to diarylethene \textbf{DIN} provides a potential application in alkali sensors. However, triethylamine had no effect on the optical properties of \textbf{DIN} (Fig. S6).

![Fig. 5 Optical response of diarylethene DIN in acetonitrile \((c = 2 \times 10^{-5} \text{ mol/L})\) upon the addition of NaOH (10 eq) and HCl (15 eq) and irradiation with UV light.](image)

\textbf{3.6 Effect of methylation of NH and OH groups on the optical properties of DIN}

According to the experiments above, the photochromic reactivity of \textbf{DIN} was strongly suppressed by intramolecular proton transfer. Therefore, the methylation of NH and OH groups
was utilized to disturb the hydrogen bonding between the naphthol hydrogen and the imidazole ring nitrogen. As shown in Fig. 6, the absorption maxima of DIN•CH$_3$ showed a hypsochromic shift of $\Delta \lambda = 23$ nm ($\lambda_{\text{max}} = 356$ nm) relative to that of DIN. This shift may be attributed to a reduction in the degree of conjugation after N-methylation of the imidazole ring and naphthol group. The synthesized derivative DIN•CH$_3$ had the same absorbance spectrum as that of the DIN solution when methyl iodide was added, confirming the methylation. A new absorption band centered at 563 nm ($\varepsilon = 2.18 \times 10^3$ L mol$^{-1}$ cm$^{-1}$) appeared, and the colorless solution turned purple during irradiation with 302 nm UV light. These changes resulted from a ring-closure reaction that produces the closed-ring isomer, DINc•CH$_3$. Upon irradiation with visible light ($\lambda > 402$ nm), the colored DINc•CH$_3$ underwent a cycloreversion reaction to the colorless open-ring isomer, DINo•CH$_3$. The quantum yields of cyclization and cycloreversion of DIN•CH$_3$ were 0.12 and 0.0034, respectively. The properties of the open-form of diarylethene derivatives, especially for the photochromic cyclization reaction, is strongly dependent on the conformation of the open-isomer, such as the antiparallel (AP) or the parallel (P) forms. In the 1H NMR spectrum of DIN•CH$_3$, the methyl signal of AP conformer was observed at 2.08 ppm, while that of P conformer at 2.32 ppm. The intensity ratio of the two signals indicates that the relative population of AP and P conformers is 1:1. The result is in accord with that of DFT calculations. DFT calculations showed the parallel and anti-parallel energy for DIN•CH$_3$ was -2866.1883 and -2866.1898, respectively. The difference of their energy is small.

The methylation of imidazole and naphthol groups in DIN also had a great effect on the fluorescence spectrum. As shown in Fig. S7, the emission band of DINo•CH$_3$ is significantly blueshifted ($\Delta \lambda = 25$ nm) relative to that of DINo. This shift is also attributed to a reduction in the degree of conjugation after N-methylation of the imidazole ring and naphthol group. The fluorescence intensity gradually decreased and combined with a bathochromic shift ($\Delta \lambda = 31$ nm) upon irradiation with 302 nm UV light because of the generation of DINc•CH$_3$ (Fig. S8). And the fluorescence quantum yield of open and closed form were ϕ_f (DINo•CH$_3$) = 0.032 and ϕ_f (DINc•CH$_3$) = 0.014, respectively. Irradiation with visible light ($\lambda > 402$ nm) restored the original emission spectrum.
4. Conclusions

It was demonstrated that the photochromic reaction of the photochemically inactive diarylethene DIN could be controlled by the addition of acid and by the methylation of NH and OH groups. The addition of copper ions and alkali had a significant effect on the optical properties of DIN. Its photochromism reaction and optical properties could be easily regulated by various chemical constituents. Such chemically responsive systems have potential utility as multiresponsive molecular switches in display materials, memory media, as well as molecular logic gates.

Acknowledgment: The authors acknowledge financial support from National Natural Science Foundation of China (Nos. 21272088, 21472059, 21402057), the Program for Academic Leader in Wuhan Municipality (No.201271130441) and Financially supported by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE(No. CCNU14F01003).

Supporting information available: IR spectrum, fluorescence responses to various ions, optical response to the addition of Cu$^{2+}$ after irradiation, fluorescence response to HCl, absorbance responses and fluorescence responses to the addition of NaOH and NEt$_3$, fluorescence changes of diarylethenes DIN and DIN-CH$_3$ before irradiation with UV light,
crystal data and structure refinement parameters.

References

H. H. Liu and Y. Chen, The Photochromism and fluorescence of diarylethenes with a imidazole bridge unit: A strategy for the design of turn-on fluorescent diarylethene system, J.

