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Fungal spores have been known as a critical indoor allergen, and the indoor air purification techniques 

including titanium dioxide (TiO2) photocatalytic disinfection, ultraviolet germicidal irradiation (UVGI) 

and ozonation have been considerably investigated. However, most of the researches regarding 

photocatalytic disinfection focused on anti-bacterial efficacy of TiO2 nanoparticles (NPs). Furthermore, 10 

some researches even showed that the photocatalytic antifungal efficacy of TiO2 NPs may be not that 

significant. Thus, investigating reasons behind the non-significant antifungal efficacy of TiO2 

photocatalytic disinfection and enhancing antifungal efficacy are also indispensable. In this study, ozone 

was employed to improve the photocatalytic antifungal efficacy of the TiO2NPs and nano-metal 

supported by TiO2NPs. The commercial TiO2NPs (Defussa (Evonik) P25) served as a good support, and 15 

the incipient wetness impregnation was successfully exploited to prepare oxidized nano-metals (Ag, Cu 

and Ni) in this study. There were two surfaces (quartz and putty) in the inactivation experiments of 

Aspergillus niger spores which were manipulated under two conditions: exposed to ultraviolet light 

(UVC); exposed to UVC and ozone simultaneously. The SEM images demonstrated that spores were 

sheltered from the UVC light in the micro crave between TiO2 agglomerates. When irradiating with UVC, 20 

A. niger spores on the two testing surfaces without TiO2NPs was inactivated faster than those with 

TiO2NPs, implying a “sun block” effect of this material and a lower photocatalytic antifungal efficacy 

than UVGI. On both surfaces, the inactivation rate constants (k) of A. niger spores exposed to UVC and 

ozone simultaneously (on quartz: k = 2.09–6.94 h−1, on putty: k = 3.17–6.66 h−1 ) were better than those 

exposed to only UVC (on quartz: k  = 1.80–5.89 h−1; on putty: k  = 2.97–3.98 h−1), indicating ozone can 25 

enhance the UVGI antifungal efficacy. 

Introduction 

Mold spores can cause numerous adverse health effects including 

irritation, allergy, infection and respiratory diseases1-3. The 

moderation of indoor fungal quantity is crucial for people in the 30 

modern society spend 80-90% time of their daily life indoors 

where the fungal concentration is higher than outdoor 4, 5.  

In order to remediate microbial contaminations, the germicidal 

efficacy of some disinfection methods such as TiO2-mediated 

photocatalytic disinfection, nano-metals and ozonation have been 35 

extensively investigated6-25. However, most of the studies which 

aim to photocatalytic removal of microbial contamination 

focused on antibacterial efficacy of photocatalytic disinfection, 

especially Escherichia coli, which is uncommon in indoor air7, 12, 

14-17, 21, 22. In contrast to bacteria, the cell wall structures of fungal 40 

are more complex and make them tough and highly resistance to 

sterilizers18. Some studies on antifungal activities of 

photocatalytic disinfection mentioned the ultraviolet (UVA) light 

and TiO2 phtocatalyst is a potent fungicide combination and the 

sterilizing effect would vanish when the UVA was removed 6, 24. 45 

The result indicated that the antifungal ability may originate 

mostly from the UVA light, not the photocatalyst. Many studies 

have showed that there is only little difference between the 

antifungal effectiveness of UVC-illuminated surface with and 

without TiO2 
20, 25. Paschoalino et al23 even found that fungi 50 

survived better in UVC-illuminated-TiO2 photocatalysis (3.5 

CFU/plate) than in UVC photolysis (2.0 CFU/plate). Since lots of 

the photo energy that can be used to kill fungi directly lose during 

the photochemical conversion process, it is very possible that the 

antifungal efficacy of photocatalytic disinfection is not as 55 

powerful as ultraviolet germicidal irradiation (UVGI).  

Ozone is an effective germicide that has been widely used for 

sterilizing drinking water26-28. Being a powerful oxidizer that can 

inactivate germs, spores and viruses by oxidizing their cell walls 

and change the cell permeability which leads to cell death, ozone 60 

has also been applied in indoor air purification29, 30. In addition, 
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ozone has a higher electron affinity (2.1 eV) as compared with 

that of O2 (0.44 eV). Thus, it can capture the photocatalytic 

electron more efficiently than O2 and produce additional hydroxyl 

radicals, •O3
- and •O- radicals to inactivate microbes31. Besides, 

ozone can be photolyzed by the UVC radiation and can generate 5 

atomic oxygen, O(1D) ( D)O(OO 1

2

UV

3 +→ ), and then the O(1D) 

will react with water molecules to generate hydroxyl radicals 

( •→+ 2OHOHD)O( 2

1
). In these reactions, ozone is consumed and 

other reactive oxygen species (ROSs) generate.  

This study aims to verify the antifungal effect of TiO2 10 

nanoparticles (NPs) as a photocatalytic disinfectant and the 

influence on the antifungal ability of UVGI. Aspergillus niger 

spore was selected as the target spore because it is omnipresent in 

the indoor environments. We also investigated the enhancement 

effect of ozone on the UVC antifungal efficacy. 15 

 

Methodology 

Preparing and characterizing nano-metals supported by 
TiO2NPs (nano-metals/TiO2NPs) 

The incipient wetness impregnation (IWI) was exploited to 20 

prepare oxidized nano-metals supported by TiO2NPs (nano-

metals/TiO2NPs) in this study. Degussa (Evonik) P25 TiO2NPs, 

which is a mixed phase of 30% rutile and 70% anatase with a 

prime particle size of 30 nm, was used as the support, while silver 

nitrate (AgNO3 purity 99.99%, J.T Baker, USA), copper (II) 25 

nitrate 2.5 hydrate (Cu(NO3)2 ·2.5H2O, purity: 99.9%, J.T. Baker, 

USA), and nickel (II) nitrate hexahydrate (Ni(NO3)2 ·2.5H2O, 

purity: 99.9%, Lot No.: 10156297, Alfa Aesar, UK) were used as 

the nano-Ag, Cu, Ni precursors in IWI. 

In the initial stage, in order to provide appropriate amount of 30 

metal, the metal precursor was dissolved in deionized distilled 

water and the volume was the same volume as the pore volume of 

TiO2 powder (0.4 mL of water/per gram of P25 TiO2). Afterward, 

the metal-containing solution was dropped slowly into the TiO2 

support, and then the mixture was stirred for 2 hours to be well 35 

mixed. In the end, we dried the mixture at 120◦C overnight and 

ground into fine powder with an agate mortar. Each prepared 

nano-metals/TiO2NPs is denominated as Xwt%Y/P25, in which 

X is the weight percentage of nano-metals; Y is the species of 

metals. A JSM-7600F scanning electron microscope (SEM) was 40 

utilized to characterize the appearance of the TiO2 support 

agglomerate. UV-Visible absorbance spectra of the prepared 

samples were obtained on an UV-Visible/NIR spectrophotometer 

(Hitachi U-3310, Japan). 

 45 

Culturing of A. niger to yield spores 

In the study, the strain of A. niger from Bioresources Collection 

and Research Center (BCRC) in Taiwan (BCRC 30310) was 

shipped in freeze-dried form and it required activation following 

the description in the BCRC instruction and plated on male 50 

extract agar (MEA, DifcoTM) twice to ensure the purity of the 

strain before use. After that, the A. niger culture was apply to the 

MEA plate and incubated for more than one week for sporulation. 

The spores were harvested with autoclaved 0.05% TWEEN® 80 

(Sigma-Aldrich Co.) solution on a shaker with the shaking rate of 55 

around 80 rpm for ten minutes and then the suspension was 

collected. The average spores concentration of the suspension 

was about 107 CFU/ml. (CFU= colony forming unit) 

 

Inactivating A. niger spores by P25 TiO2NPs and nano-60 

metals/TiO2NPs 

The inactivation of spores was manipulated under three 

conditions: (1) exposure to UVC (254 nm, 750 µW/cm2); (2) 

exposure to UVC as well as 5 ppm of ozone (UVC+O3) (3) 

without UVC and ozone exposure (Control), and two surfaces: 65 

(1) quartz chip; (2) putty (a kind of building materials consisting 

of primarily calcium carbonate, some resins and preservatives). In 

order to provide the UVC source, a UVC lamp was assembled 

inside the chamber beforehand. Ozone was provided by an ozone 

generator and it took about 5 minutes for the experimental system 70 

to achieve the required level of 5-ppm ozone. 

Before the inactivation experiment, the supporting surface 

(quartz and putty) of P25 TiO2NPs and nano-metals/TiO2NPs 

needed to be prepared. First we added 10 µL of the aqueous 

suspension which was comprised of 5% P25 TiO2NPs or nano-75 

metals/TiO2NPs and 0.005% dioctylsulfossuccinate sodium 

(DSS, purity: 99.9%, Sigma) on each 0.5 cm × 0.5 cm quartz chip 

with putty or without putty. Then these chips were baked on a hot 

plate to produce a uniform coating of P25 TiO2NPs and nano-

metals/TiO2NPs on the chips. The last step was to sterilize these 80 

chips in an autoclave. After preparing chips, 10 µL of suspension 

of A. niger spores (around 105 spores) was inoculated on each 

disinfected chip and then placed into a sterilized stainless steel 

test chamber which was connected to a zero air system as air 

supplier. The air supplier provided the chamber air at the 85 

circumstance of air change rate of 5 h-1 and 50% relative 

humidity. The experiments did not start until the chips with A. 

niger spores suspension were dry (It took about 1 hr). To harvest 

the spores at the time of 0, 1, 2, 3 and 4 hour in the condition of 

exposure to UVC and the condition of exposure to UVC as well 90 

as ozone, the chips with spores were put into a spiral tube 

containing 10 mL of autoclaved 0.05% TWEEN 80 solution and 

then oscillated with a vortex mixer for about 1 minute. The 

suspensions were serially diluted, and then cultured on MEA 

medium at 25◦C for 48 hrs. In the end, the CFU on the plates was 95 

counted in order to evaluate the viable spores at each time.  

We used the D-value to evaluate antifungal efficacy of the P25 

TiO2NPs and nano-metals/TiO2NPs exposure to UVC as well as 

ozone. The D-value refers to decimal reduction time and is the 

time required at a certain condition to kill 90% of A. niger spores. 100 

In most disinfection studies, the logarithm of the survival ratio 

(SR) of organism is nearly linear proportional to the dose, in 

which dose is the product of concentration and exposure time for 

chemical (O3 and nano-metal) or intensity and exposure time for 

UVC. Thus, the antifungal kinetics was obtained from the SR of 105 

culturable A. niger spores at different time points. This is 

expressed mathematically as: 

)exp(
)0(

)(
kt

N

tN
SR −==

                                                  (1) 

in which N(t) and N(0) are the concentrations of culturable A. 

niger spores harvested from chip at time t and at the beginning of 110 

the experiment, respectively; k is the inactivation rate constant, 

which is a function of UVC intensity (in the condition of UVC), 

ozone concentration, nano-metal loading level (in the condition 
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of Control) and all above (in the condition of UVC+O3). The 

total inactivation rates of A. niger spores were described in terms 

of log reduction after 4-hour exposure: 

)4(

)0(
loglog

hourN

N
reduction =

                                        (2) 

 The recovery efficiency (initial survival fraction (SFi)) of A. 5 

niger spores after applying on the surface was calculated as what 

follows: 

inoculatedN

N
SFi

)0(
=

                                                             (3) 

where, Ninoculated is the concentration of viable A. niger spores 

inoculated on the quartz chips. The SFi on different surface 10 

ranged from 0.099±0.019~0.117±0.01. 

 

Results and discussion 

Inactivation of the mold spores by P25 TiO2NPs and nano-
metals/TiO2NPs under UVC irradiation 15 

As shown in Figure 1 (a), no matter which metals/TiO2NPs were 

applied to the quartz chip, when exposed to UVC their antifungal 

efficacy were better than those without UVC exposure. The 

antifungal efficacy resulted from either UVGI or photocatalytic 

disinfection, or both of them. In UVGI, the UVC (254 nm) is 20 

effective in damaging the nucleic acids of these spores so that 

their DNA is disturbed, leaving them unable to carry out vital 

functions. In photocatalytic disinfection, the UV radiation with 

energy above the band-gap of TiO2 (wavelength < 385 nm) 

induces the formation of electron-hole pairs and generates 25 

hydroxyl radical further on the UV-illuminated TiO2 surface, and 

then the microbial inactivation is mediated by hydroxyl radicals 

that attacks microbes including bacteria, virus, yeast, even the 

cysts of protozoa12-22, 25, 32. 

 30 
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Figure 1. The time profiles of the survival ratio of A. niger spores 

on the surfaces of P25 TiO2NPs (P25), nano-metals/TiO2NPs and 

quartz chip (bare chip) (a) without UVC (Control) and under the 

UVC irradiation (UVC); (b) exposed to 5-ppm ozone (O3) and 35 

exposed to UVC irradiation and 5-ppm ozone simultaneously 

(UVC+ O3) 

 

One interesting result found in our experiments was that A. 

niger spores on the quartz chips coated with P25 TiO2NPs and 40 

nano-metals/TiO2NPs showed a lower inactivation rate (a lower k 

and log reduction in Table 1 and Table 3, respectively, and a 

larger D-value in Table 2) than those on bare quartz chips. Since 

the inactivation rate of A. niger spores on bare quartz chips 

obtained in this study was consistent to the result of the previous 45 

study33, indicating our experimental result could be correct. Thus, 

we suspected that the TiO2 particles might act as the “sun block” 

that absorbed and scattered the UVC irradiation and protected A. 

niger spores from the damage caused by UVC, as shown in 

Figures 2(a) and 2(c).  50 

 

  
Figure 2. (a) TiO2 agglomerates can protect A. niger spores from 

the UVC irradiation and prevent the penetration of UVC 55 

irradiation and blocked the UVC irradiation reflected from the 

bottom of quartz chip. (b) Without TiO2 coating layer, the UVC 

irradiation can penetrate and then be reflected from the bottom of 

quartz chip and cause serious damages to A. niger spores; (c) 

SEM image demonstrates that the A. niger spores are surrounded 60 

by TiO2 agglomerates; (d) The UV-visible absorbance of P25 

TiO2NPs and nano-metals/TiO2NPs 

 

As demonstrated in Figure 2(d), P25 TiO2NPs can absorb UVC 

efficiently and the UV absorbance of the P25 TiO2NPs and nano-65 

metals/TiO2NPs is higher than 0.8, indicating less than 20% of 

the UVC radiation can be employed to inactivate A. niger spores 

directly. Notably, there were numerous micro-cracks on the 

coating of TiO2, and these crevices acted as the shelter and 

provided asylum for spores. Moreover, in our observation with 70 

SEM, some of the A. niger spores even sank into those deep and 

narrow chinks that barely exposed to UVC. Spores stayed in the 

shade of TiO2 could escape from the destruction of ultraviolet. 

Furthermore, the tailing-off inactivation curves of A. niger spores 

in Figure 1 could also be explained by the survival of a resistant 75 

subpopulation because of the protection by interfering substances 

(P25 TiO2NPs and nano-metals/TiO2NPs). In addition, the 

complex envelop of A. niger spores may mitigate the antifungal 

efficacy of TiO2-mediated photocatalytic disinfection, leading to 

the lower efficacy than UVGI. Consequently, the inactivation rate 80 

of A. niger spores on the bare quartz chips was higher than that 

on the surface of P25 TiO2NPs and nano-metals/TiO2NPs. A 

similar result was also reported by Paschoalino et al.23 using a 
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polyester supported TiO2 photo-reactor for indoor air 

disinfection. They found that the survival of fungi in UVC-

illuminated-TiO2 photocatalysis (3.5 CFU/plate) was better than 

in UVC photolysis (2.0 CFU/plate). Chen et al.25 discovered that 

TiO2 has only little effect on the inactivation of fungal spores on 5 

the wet wooden surface. Thus, in our experiments, the 

inactivation effectiveness on A. niger spores was primarily 

provoked by the strong germicidal effect of UVC and partially 

caused by photocatalytic disinfection. Additionally, loading nano-

metals on TiO2 would lead to the decrease of inactivation rate as 10 

shown in Figure 1(a) and Tables 1-3, and the more loading level 

of nano-metals, the lower the inactivation rate (inactivation rate 

of 5wt% Cu-P25 < 2wt% Cu-P25). Paschoalino et al.23 also 

reported a similar result that fungi survived better in UVC-

illuminated-TiO2/Ag photocatalysis (3.7 CFU/plate) than in UVC 15 

photolysis (1.3 CFU/plate) and a little better than in UVC-

illuminated-TiO2 photocatalysis (3.5 CFU/plate compared to 

UVC photolysis: 2.0 CFU/plate). This may be owing to that the 

nano-metals can improve the recombination of electron-hole pairs 

generated from the photocatalytic reaction and reduce the 20 

production of hydroxyl radicals that attack the microbes34, 35. 

We also tested the antifungal effectiveness of P25 TiO2NPs 

and nano-metals/TiO2NPs on the putty surface. As shown in 

Figure 3 (a) and Tables 1-3, when exposed to UVC radiation, the 

inactivation rates of A. niger spores on the putty surface was 25 

lower than those on the quartz chips, signifying that the putty 

may also has the “sun block” effect on the UVC irradiation. And 

this “sun block” effect was enhanced when putty and P25 

TiO2NPs was applied simultaneously. On the other hand, owing 

to the antifungal effect of nano-metals, the inactivation rates of A. 30 

niger spores on the surface of nano-metals/TiO2NPs were higher 

than those on the surface of TiO2NPs. 
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Figure 3. The antifungal kinetics of P25 TiO2NPs (P25) and 35 

nano-metals/TiO2NPs against A. niger spores when applied on 

the putty (a) without UVC (Control) and under the UVC 

irradiation (UVC); (b) exposed to 5-ppm ozone (O3) and exposed 

to UVC irradiation and 5-ppm ozone simultaneously (UVC+ O3) 

 40 

Inactivation of mold spores by P25 TiO2NPs and nano-
metals/TiO2NPs exposed to UVC and ozone simultaneously 

In order to verify whether ozone has a promotional effect on 

photocatalytic disinfection and UVGI, these three techniques (O3; 

photocatalytic disinfection; UVGI) were exploited together in this 45 

study. In our experimental system, the ozone concentration 

decreased from 5 to 3.5 ppm during the reactions and transformed 

to other ROSs (including •OH, •O3
- and •O- radicals) and all of 

these ROSs could cause damages to A. niger spores and therefore 

led to inactivation. 50 

 

Table 1. The inactivation rate constant, k, (unit: h-1) of A. niger 

spores under various conditions 

Condition Control** UVC O3** UVC+O3 

Bare chip - 5.89  0.304  6.94 

P25 TiO2 0.005  2.92  0.072 2.95 

0.5wt% Ag-P25 0.268  2.03  0.475 3.75 

2wt% Cu-P25 0.093  2.12  0.966 2.65 

5wt% Cu-P25 0.173  0.605 0.929 3.83 

5wt% Ni-P25 0.01  1.80  0.77 2.09 

Putty 0.044  3.98  0.150 6.66 

P25 TiO2 on putty 0.009  3.40  0.085 3.82 

0.5wt% Ag-P25 on putty 0.162  3.22  0.182 3.64 

2wt% Cu-P25 on putty 0.076  2.97 0.156 3.17 

5wt% Ni-P25 on putty 0.051  3.3  0.214 3.38 

**The data of these two conditions were adopted from our 

previous publication for comparison6  55 

 

Table 2. The D-value (hour) of A. niger spores at various 

conditions 

Condition Control UVC O3 UVC+O3 

Bare chip 
 

0.39 7.57# 0.33 
P25 TiO2 >100# 0.79 8.00 0.78 

0.5wt% Ag-P25 8.59# 1.13 4.85 0.61 

2wt% Cu-P25 24.8# 1.09 2.38 0.87 

5wt% Cu-P25 13.3# 3.81 2.48 0.60 

5wt% Ni-P25 >100# 1.28 2.99 1.10 

Putty >30# 0.58 15.4# 0.35 

P25 TiO2 on putty >100# 0.68 7.50 0.60 

0.5wt% Ag-P25 on putty 14.2# 0.72 12.7# 0.63 

2wt% Cu-P25 on putty >30# 0.78 14.8# 0.73 

5wt% Ni-P25 on putty >30# 0.70 10.8# 0.68 
# The D-values larger than the time of experiment were estimated 

by the inactivation rate constant (D-value = ln10/k)  60 

 

Table 3. The log reduction of A. niger spores after 4-hour 

exposure  

Condition Control UVC O3 UVC+O3 

Bare chip 0 4.5 0.5 ∞ 

P25 TiO2 0 1.8 0 1.8 

0.5wt% Ag-P25 0.5 1.9 1.0 2.2 

2wt% Cu-P25 0.2 2.0 1.7 2.3 

5wt% Cu-P25 0.2 1.1 1.2 2.2 

5wt% Ni-P25 0 1.5 1.4 1.6 

Putty 0.1 2.5 0.1 4.1 

P25 TiO2 on putty 0 2.2 0.2 2.0 

0.5wt% Ag-P25 on putty 0.4 2.3 0.3 2.3 

2wt% Cu-P25 on putty 0.2 1.7 0.3 1.6 

5wt% Ni-P25 on putty 0.1 2.0 0.4 1.9 
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As shown in Tables 1-3, the inactivation rates of A. niger spores 

exposed to the UVC irradiation and ozone simultaneously 

(UVC+O3) were larger than those only exposed to the ultraviolet 

irradiation (UVC) or only exposed to ozone (O3). Thus, ozone 5 

has a promotional effect on the inactivation of A. niger spores by 

photocatalytic disinfection and UVGI. Furthermore, the nano-

metal oxide could considerably improve the antifungal efficacy of 

ozone via generating hydroxyl radical (OH·) 6: 

O3+◎ →◎·O− +O2                                                           (4) 10 

◎·O−+H2O→2OH·                                                          (5) 

where ◎ is the active site of nano-metals oxide. 

However, similar to the results observed in the condition of 

UVC, the inactivation rate of A. niger spores in the condition of 

UVC+O3 would become lower in the presence of P25 TiO2NPs 15 

or nano-metals/TiO2NPs. This might be owing to the protection 

provided by the agglomerates of P25 TiO2NPs and nano-

metals/TiO2NPs for A. niger spores against the UVC irradiation. 

Again, the obvious tailing-off inactivation curves implied the 

survival of a resistant subpopulation of A. niger spores owing to 20 

the protection by interfering substances (P25 TiO2 and nano-

metals/TiO2NPs), clumping, or generally conferred resistant36. 

Owing to the tailing-off curve, some of the inactivation rates 

evaluated by log reduction (Table 3) were not consistent with 

those estimated by inactivation rate constant and D-value (Tables 25 

1 and 2). 

The antifungal experiments were also conducted on the putty 

surface. Owing to the “sun block” effect of putty against the UVC 

radiation, the inactivation rates of A. niger spores on the putty 

surface was lower than those on the quartz chips when exposed to 30 

UVC and ozone the simultaneously, as shown in Figure 3 (b), 

Tables 1-3. Moreover, when putty and P25 TiO2NPs were applied 

simultaneously, this protection effect was enhanced. 

Additionally, because the nano-metals can enhance the 

recombination of electron-hole pairs and decrease the production 35 

of oxidative hydroxyl radicals for the photocatalytic disinfection 
34, 35, the inactivation rates of A. niger spores on the surface of 

nano-metals/TiO2NPs were lower than that on the surface of P25 

TiO2NPs. 

Limitations 40 

TiO2 concentration (relate to TiO2 distribution on surface) and 

UV wavelength (UVA or UVC) and intensity might affect the 

antifungal effectiveness and might alter the “sun block” effect. 

However, these two effects were not considered in the present 

study and could be a work of future study. 45 

Conclusions 

TiO2NPs and nano-metals/TiO2NPs may function as the “sun 

block” in UVGI experiment and the photocatalytic antifungal 

efficacy is not as powerful as UVGI, so that the disinfection 

effectiveness is abated. Furthermore, the nano-metals can 50 

enhance the recombination of photocatalytic generated electron-

hole pairs and reduce the production of hydroxyl radicals, leading 

to the decrease of inactivation rates of A. niger spores. On the 

contrary, ozone can improve the antifungal efficacy of nano-

metal, TiO2 photocatalyst and UVGI via the production of 55 

additional reactive radicals. 
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(a) TiO2 agglomerates can protect A. niger spores from UVC irradiation and prevent 

the UVC penetration (b) Without TiO2 protection, UVC irradiation can cause serious 

damages to A. niger spores 
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