Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Graphic Abstract

An efficient chiral squaramide-catalysed enantioselective Michael addition of pyrazolin-5-ones to 3-nitro-2*H*-chromenes afforded chiral heterocycles containing both chroman and pyrazolone derivatives in high to excellent yields (up to 98%) with high enantioselectivities (up to 96%) and excellent diastereoselectivities (up to 99:1) under very low catalyst loading (0.2 mol%).

PAPER

Cite this: DOI: 10.1039/c1ob00000x

www.rsc.org/obc

Enantioselective synthesis of chiral heterocycles containing both chroman and pyrazolone derivatives catalysed by an efficient chiral squaramide

45

Jun-Hua Li and Da-Ming Du*

s Received (in XXX, XXX) Xth XXXXXXXX 2014, Accepted Xth XXXXXXXX 2014 DOI: 10.1039/c1ob000000x

An efficient chiral squaramide-catalysed enantioselective Michael addition of pyrazolin-5-ones to 3nitro-2*H*-chromenes for the synthesis of chiral heterocyclic systems containing both chroman and pyrazolone derivatives has been developed. This reaction afforded the desired products in high to

¹⁰ excellent yields (up to 98%) with high enantioselectivities (up to 96%) and excellent diastereoselectivities (up to 99:1) under very low catalyst loading (0.2 mol%). This catalytic asymmetric reaction provides an efficient route toward the synthesis of chiral heterocyclic systems containing both chroman and pyrazolone derivatives, which possess potential pharmaceutical activities.

Introduction

- ¹⁵ Chroman derivatives are present in a number of natural and pharmaceutical products, possessing diverse biological activities.¹ For example, they have been identified as apoptosis-inducing agents, anti-HIV agents, modulators of the estrogen receptors, antibacterials, antioxidants and anticonvulsants.² (Fig. 1). In view
- 20 of their great significance, Chroman derivatives have become attractive synthetic targets, and many efficient approaches have been established,³ Particularly many significant chiral chroman derivatives have been synthesized use the chromenes as substrates.⁴ Likewise, pyrazolone skeletons are important
- ²⁵ structural units, many of the pyrazolone derivatives have approved antiinflammatory, antiviral, antitumor, and antibacterial properties,⁵ and the pyrazolone derivatives was also widely used in organic synthesis and pharmaceutical chemistry (Fig. 1).⁶ So the synthesis of chiral heterocyclic compounds containing both
- ³⁰ chroman and pyrazolone derivative should be significant work. However, we are not aware of any reports about the chiral heterocyclic compounds containing both chroman and pyrazolone derivative.

In the past few years, great progresses in asymmetric ³⁵ organocatalysis have been achieved. In this area, phosphoric acid

Fig. 1. Representative examples of biologically active chroman derivatives and pyrazolone derivatives.

catalysts⁷, proline or pyrrolidine catalysts⁸, bifunctional thiourea catalysts⁹ and squaramide catalysts¹⁰ all have been proved to be effective in asymmetric catalysis. In recent years the squaramide ⁵⁰ catalysts derived from (1*S*,2*S*)-cyclohexane-1,2-diamine has been synthesized by several groups.¹¹ Our group has devoted great efforts to this kind of squaramide catalysts and several highly efficient asymmetric reactions have been developed.^{10g,11c,11e,12} In all of the cases, less than 1 mol% catalyst loading was enough for

ss the asymmetric reactions. Most of the catalyst loading were 0.2 mol%, or 0.25 mol%. Through a series of experiments, we believe that the squaramide catalysts derived from (1S,2S)-cyclohexane-1,2-diamine is a kind of highly efficient organocatalysts, and we will proved it by our further work.

Herein, we would like to present an highly efficient squaramide catalysts derived from (1S,2S)-cyclohexane-1,2-diamine catalysed enantioselective Michael addition reaction

This journal is © The Royal Society of Chemistry 2014

Org. Biomol. Chem., 2014, 12, 00-00 | 1

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China. *Corresponding author, E-mail: <u>dudm@bit.edu.cn;</u> Tel: +86 10

⁴⁰ *68914985*.

Electronic Supplementary Information (ESI) available: [Copies of ¹H and ¹³C NMR spectra of new compounds, and HPLC chromatograms]. See DOI: 10.1039/b000000x/

50

between pyrazolones and 3-nitro-2*H*-chromenes for the first synthesis of chiral heterocyclic compounds containing both chromans and pyrazolone derivatives. The corresponding products can be obtained in high to excellent yields (up to 98%), s with high enantioselectivities (up to 96% ee) and excellent diastereoselectivity (up to 99:1).

Fig. 2 The structures of screened organocatalysts.

Results and discussion

- ¹⁰ To begin our initial investigation, quinine-derived squaramide **I** was firstly screened to promote the model reaction of 3-methyl-1-phenyl-2-pyrazolin-5-one (**1a**) with 3-nitro-2*H*-chromene (**2a**) in the presence of 5 mol% catalyst at room temperature in dichloromethane (Table 1, entry 1). Indeed, the model reaction ¹⁵ ran smoothly to give the corresponding conjugate addition
- product. However, the analysis of NMR spectroscopy indicated that the conjugate addition product was a mixture of tautomers. Fortunately, this mixture could be further acylated by the acetic anhydride to afford the desired product **3a** in excellent yield (97%)
- ²⁰ with high diastereoselectivity (97:3) and good enantioselectivity (88% ee). Then several other bifunctional squaramide organocatalysts (Fig. 2) were screened to evaluate their ability to promote the model reaction. The squaramide II gave the desired product **3a** in excellent yield (96%) with high diastereoselectivity ²⁵ (96:4 dr) and moderate enantioselectivity (62% ee). The
- ²⁵ (96.4 dr) and moderate enantioselectivity (62% ee). The squaramides **III** and **IV** derived from quinidine were utilized, the opposite enantiomers of **3a** were obtained with the same excellent stereoselectivities and yields, but lower enantioselectivities were obtained (85% ee and 50% ee). We then turned our attention to
- ³⁰ squaramide catalysts **VI**, **VII** and **VIII** derived from (1*S*,2*S*)cyclohexane-1,2-diamine (Table 1, entries 6 to 8). Satisfactorily, catalysts **VI** afforded the desired product in excellent yield (99% yield) and diastereostereoselectivity (97:3 dr) with high enantioselectivity (90% ee). C_2 -Symmetrical quinine-derived ³⁵ squaramide **IX** and one kind of thiourea catalyst **V** were also
- examined, but no better result were observed. Consequently squaramide **VI** derived from (1S,2S)-cyclohexane-1,2-diamine once again was proved to be the optimal catalyst and was used for further optimization.

⁴⁰ Table 1 Screening of organocatalysts for the asymmetric Michael addition of 3-methyl-1-phenyl-2-pyrazolin-5-one to 3-nitro-2*H*chromene^a

Entry	Catalyst	$\operatorname{Yield}^{b}(\%)$	$\mathrm{dr}^{c}(\%)$	ee ^c (%)
1	I	97	97:3	88
2	II	96	96:4	62
3^d	III	99	96:4	85
4^d	IV	98	96:4	50
5^d	\mathbf{V}	99	96:4	45
6	VI	99	97:3	90
7	VII	98	96:4	50
8	VIII	98	96:4	84
9	IX	98	96:4	54

⁴⁵ ^a Reactions were carried out with 3-methyl-1-phenyl-2-pyrazolin-5-one 1a (0.10 mmol) and 3-nitro-2*H*-chromene 2a (0.10 mmol) in CH₂Cl₂ (0.5 mL) at room temperature for 10 h. ^b Isolated yield after column chromatography purification. ^c Determined by chiral HPLC analysis. ^d The opposite enantiomer.

With squaramide VI as the best catalyst, we further screened the effect of solvents, catalyst loading, and temperature for the optimal reaction conditions. The results are shown in Table 2. After a variety of solvents were surveyed (Table 2, entries 1–7), 55 dichloromethane appeared to be the most suitable reaction media. Then the catalyst loading was screened, and we found that increasing the catalyst loading could lead to the decrease of the enantioselectivity (Table 2, entry 8), while the high enantioselectivities were still maintained with a reduced catalyst 60 loading from 2.5 to 0.2 mol%, and excellent yields were obtained at the same time (Table 2, entries 9-12). But slightly decrease in enantioselectivity (86% ee) and yield (87%) was appeared with 0.1 mol% catalyst loading (Table 2, entry 13). So the 0.2 mol% catalyst loading was selected for further optimization. Then, the $_{65}$ temperature was decreased from room temperature to -15 °C, the enantioseletivity was increased to 96% ee while the excellent yield was still maintained. The temperature was further decreased to -30 °C, and to avoid the reaction take too long time, 5 mol% catalyst loading was used, but only the similar result was 70 obtained. Furthermore, when the molecular sieves or anhydrous magnesium was used as additive, the excellent yields and diastereoselectivities were obtained, but the enantioselectivities were slightly lower. As a consequence the optimal condition for this Michael addition was obtained as using 0.2 mol% of catalyst ⁷⁵ VI in dichloromethane at -15 °C.

 Table 2 Optimization of reaction conditions for the asymmetric Michael addition of 3-methyl-1-phenyl-2-pyrazolin-5-one to 3-nitro-2*H*-chromene^a

Entry	Solvent	$T(^{\circ}C)$	Loading (mol%)	<i>t</i> (h)	Yield ^b (%)	dr^{c} (%)	ee ^c (%)
1	$CH_2Cl_2 \\$	rt	5	10	99	97:3	90
2	CHCl ₃	rt	5	10	97	96:4	90
3	ClCH ₂ CH ₂ Cl	rt	5	10	99	96:4	90
4	Et ₂ O	rt	5	10	91	97:3	74
5	CH ₃ CN	rt	5	10	97	96:4	97
6	PhCH ₃	rt	5	10	99	96:4	86
7	THF	rt	5	10	94	97:3	86
8	CH_2Cl_2	rt	10	10	99	97:3	87
9	CH_2Cl_2	rt	2.5	10	97	97:3	90
10	CH_2Cl_2	rt	1	16	99	97:3	90
11	CH_2Cl_2	rt	0.5	24	98	96:4	91
12	CH_2Cl_2	rt	0.2	32	97	96:4	90
13	CH_2Cl_2	rt	0.1	48	87	96:4	86
14	CH_2Cl_2	-15	0.2	96	95	96:4	96
15	CH_2Cl_2	-30	5	14	86	96:4	95
16 ^d	CH_2Cl_2	-15	0.2	72	99	96:4	92
17^{e}	CH_2Cl_2	-15	0.2	96	99	97:3	93

^{*a*} Reactions were carried out with 3-methyl-1-phenyl-2-pyrazolin-5-one **1a** (0.10 mmol) and 3-nitro-2*H*-chromene **2a** (0.10 mmol) in solvent (0.5 mL). ^{*b*} Isolated yield after column chromatography purification. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} 20 mg molecular sieves were ¹⁰ added. ^{*e*} 12 mg anhydrous magnesium was added.

With the optimized reaction conditions established, the scope of the reaction was explored with respect to both the nucleophile and the electrophile and the representative results are listed in Table 3. The nucleophile substitutes on R^1 and R^2 groups 15 were first explored, and the good to excellent yields and enantioselectivities, and with excellent diastereoselectivities were obtained (Table 3, entries 1-6). The electon-withdrawing group (CF₃) in 3-position of pyrazolinone ring result in lower yield of corresponding product 3f. Then a variety of 3-nitro-2H-20 chromenes bearing different substituent on R³ group were surveyed (Table 3, entries 7-13). Generally, the products with substitutions on the phenyl ring of chromene were obtained in excellent vields and diastereoselectivities. As for enantioselectivities, the products with electron-withdrawing

25 groups (Table 3, entries 7-9 and 13), good to excellent enantioselectivities were obtained. On the other hand, the enantioselectivities of products with electron-donating substituents were slightly lower (Table 3, entries 10 and 11). A polycyclic 3-nitro-2H-chromene, 3-nitro-1,2-dihydro-30 phenanthrene was also used as a substrate, affording the desired product 31 in excellent yield and diastereoselectivity, and with good enantioselectivity (Table 3, entries 12). Moreover, when the oxygen atom of 3-nitro-2H-chromene was replaced by a methylene or a sulfur atom, the reactions using these two 35 substrates also proceeded smoothly, and affording the corresponding products 3n and 3o in good yield with excellent diastereoselectivity and good enantioselectivity (Table 3, entries 14 and 15). In addition to various 3-nitro-2H-chromenes, acyclic nitroalkene (\beta-methyl-\beta-nitrostyrene) was also used as the 40 substrate, and the reactivity of this substrate was lower, because no reaction was detected when 0.2 mol% catalyst loading was used. But this substrate could also be successfully employed in this transformation with 2.0 mol% catalyst loading and afforded the desired product 3p in 83% yield with 83:17 d.r. and 91% ee

45 (Table 3, entries 16).

65

To evaluate the synthetic potential of this catalytic system, the gram-scale preparation of product **3a** was also performed in the presence of 0.2 mol% of catalyst **VI**, and the reaction time was appropriately prolonged as shown in Scheme 1 to guarantee ⁵⁰ the complete of the reaction, and the corresponding product **3a**

(2.22 g) was obtained in 98.8% yield with 97:3 d.r. and 95% ee. In addition, the intermediate product 4a was also isolated in almost quantitative yield with excellent diastereoselectivity and enantioselectivity. Then intermediate 4a was acylated, and the ⁵⁵ corresponding product 3a was obtained in similar diastereoselectivity and enantioselectivity as compared with the one-pot sequential reaction, but the yield was slightly lower. The lower yield was mainly due to the addition intermediate 4a was a mixture of tautomers, which lead to the unstability of the ⁶⁰ intermediate 4a. The loss of yield was unavoidable even brief storage time before the acylated process.

Scheme 1. Gram-scale preparation of 3a.

This journal is © The Royal Society of Chemistry 2014

Scheme 2. The isolation of the addition intermediate product and its further acetylation.

5 Table 3 Scope of the asymmetric Michael addition of pyrazolin-5-ones to 3-nitro-2H-chromenes^a

Entry	\mathbb{R}^1	\mathbb{R}^2	R ³	Х	Product	$\operatorname{Yield}^{b}(\%)$	dr^{c} (%)	ee^d (%)
1	Ph	Me	Н	0	3a	95	96:4	96
2	$4-ClC_6H_4$	Me	Н	О	3b	98	96:4	96
3	$4-MeC_6H_4$	Me	Н	О	3c	98	96:4	95
4	Ph	Et	Н	О	3d	87	97:3	92
5	Ph	Ph	Н	О	3e	98	99:1	92
6	Ph	CF ₃	Н	О	3f	75	97:3	92
7	Ph	Me	6-Br	0	3g	97	97:3	93
8	Ph	Me	6-Cl	О	3h	96	97:3	93
9	Ph	Me	6-NO ₂	0	3i	96	>25:1	96
10	Ph	Me	8-OEt	О	3ј	98	97:3	72
11	Ph	Me	8-OMe	0	3k	92	97:3	84
12	Ph	Me	5,6-benzo	О	31	98	99:1	93
13	Ph	Me	6,8-Br ₂	0	3m	97	96:4	83
14	Ph	Me	Н	CH_2	3n	89	99:1	73
15	Ph	Me	Н	S	30	89	96:4	88
16^e	Ph	Me	Н	_	3p	83	83:17	91

^{*a*} Unless noted otherwise, reactions were carried out with pyrazolin-5-one **1** (0.1 mmol), 3-nitro-2*H*-chromene **2** (0.10 mmol) and catalyst **VI** (0.2 mol%) in CH₂Cl₂ (0.5 mL) at room temperature. ^{*b*} Isolated yield after column chromatography purification. ^{*c*} Determined by chiral HPLC analysis or NMR spectroscopy analysis ^{*d*} Determined by chiral HPLC analysis. ^{*e*} 2.0 mol% catalysts were used.

10

The absolute configuration of **3m** was unambiguously established to be (3*S*, 4*S*) by X-ray crystal structure analysis (Fig. 3), and those of other adducts were assigned by analogy.¹³ On the basis of the absolute configuration of **3a** and the theoretical study ¹⁵ on the mechanism of squaramide-catalysed Michael addition,¹⁴ a possible reaction mechanism is outlined in Figure 4. We envisioned that the chiral squaramide **VI** may acts as a bifunctional catalyst. The 3-nitro-2*H*-chromene is activated by the squaramide moiety through double hydrogen bonding ²⁰ between the NH groups and the nitro group. Meanwhile, the

pyrazolone substrate, in its enol form, interacts with the tertiary amine unit of the chiral catalyst through hydrogen bonding. The deprotonated pyrazolinone attacks the activated nitroalkene from the *Re*-face to afford the nitronate intermediate, and the final ²⁵ product **3a** with (3*S*, 4*S*)-configured stereocenter is formed after the following nitronate protonation, enolization and acylation reaction with anhydride, which is consistent with the observed results.Presumably under the reaction conditions the chiral centre next to the nitro group is epimerisable (by deprotonation/ ³⁰ reprotonation) and thus the origin of high levels of *anti* diastereoselectivity arise from thermodynamic control rather than

Organic & Biomolecular Chemistry Accepted Manusc

requiring kinetic control in the nitronate protonation step. It's worth noting that, in this catalytic system, each molecule of the squaramide catalyst can efficiently work for 500 cycles.

⁵ Figure 3. X-ray crystal structure of 3m.

Conclusions

In summary, we have successfully developed a squaramidecatalysed diastereoselective and enantioselective Michael addition of pyrazolin-5-ones to 3-nitro-2*H*-chromenes. This transformation is catalyzed by an efficient chiral squaramide with very low catalyst loading (0.2 mol%). The corresponding Michael adducts were obtained in high to excellent yields (up to 98%) with high enantioselectivities (up to 96% ee) and excellent diastereoselectivities (up to 99:1 dr). This catalytic asymmetric reaction provides an easy access to chiral heterocyclic compounds containing both chroman and pyrazolone derivative motifs, which possess potential pharmaceutical activity. Further studies about chiral squaramide catalysed reactions are underway in our group to broaden their applications in asymmetric catalysis.

Figure 4. Proposed reaction mechanism

Experimental

25 General information

Commercially available compounds were used without further purification. Column chromatography was carried out using silica gel (200–300 mesh). Melting points were measured with a XT-4

melting point apparatus without correction. The ¹H NMR spectra ³⁰ were recorded with a Varian Mercury-plus 400 MHz or a Bruker Avance 400 MHz spectrometer, while ¹³C NMR spectra were recorded at 100 MHz. Infrared spectra were obtained with a Perkin Elmer Spectrum One FT-IR spectrometer. The high resolution ESI-MS spectra were obtained with Bruker APEX IV ³⁵ Fourier transform mass spectrometer. Optical rotations were

This journal is © The Royal Society of Chemistry 2014

measured with a Krüss P8000 polarimeter at the indicated concentration with unit g per 100 mL. The enantiomeric excesses of the products were determined by chiral HPLC using Agilent 1200 LC instrument on Daicel Chiralpak AD-H or IB columns.

5 Materials

The squaramide organocatalysts were prepared following the reported procedures. 10d,11a,11c The racemic products of **3** were obtained using Et_3N as catalyst.

¹⁰ General procedure for the enantioselective Michael addition reaction

Organocatalyst VI (2.0 mg) was added to dichloromethane to afford a solution of catalyst VI (10 mL). A mixture of 3-nitro-2*H*-chromene 2 (0.10 mmol) and 0.5 mL of the above catalyst VI

- ¹⁵ solution (0.0002 mmol) was stirred at -15 °C for 10 min, then pyrazolin-5-one (0.10 mmol) was added in one portion. After stirring for 96 h at -15 °C, the reaction mixture was warmed to room temperature. Then acetic anhydride (0.1 mmol) and triethylamine (0.03 mmol) were added successively. After stirring
- ²⁰ for another 30 min at room temperature, the reaction mixture was concentrated and directly purified by silica gel column chromatography (with ethyl acetate–petroleum ether as eluent) to afford the desired products **3**.

25 **3-Methyl-4-((3S,4S)-3-nitrochroman-4-yl)-1-phenyl-1***H*-

- **pyrazol-5-yl acetate (3a).** Compound **3a** was obtained according to the general procedure as a white solid (37.3 mg, 95% yield); m.p. 53–55 °C. HPLC (Daicel Chiralpak IB column, *n*-hexane–isopropanol 90:10, flow rate 1.0 mL/min, detection at
- ³⁰ 254 nm): major enantiomer $t_{\rm R} = 9.8$ min, minor enantiomer $t_{\rm R} = 11.3$ min, 96% ee; $[\alpha]_{\rm D}^{25} = +136.2$ (c = 1.67, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.38 (m, 4H, ArH), 7.33–7.28 (m, 1H, ArH), 7.19–7.15 (m, 1H, ArH), 7.12 (d, J = 7.6 Hz, 1H, ArH), 6.96–6.89 (m, 2H, ArH), 4.95–4.91 (m, 1H, CH), 4.84 (d, J = 6.0
- ³⁵ Hz, 1H, CH), 4.61–4.57 (m, 1H, CH), 4.52 (dd, $J_1 = 3.2$ Hz, $J_2 = 11.6$ Hz, 1H, CH), 2.11 (s, 3H, CH₃), 1.87 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 153.1, 147.0, 142.6, 137.5, 130.1, 129.2, 128.6, 127.6, 122.7, 122.1, 119.0, 116.7, 106.9, 82.7, 64.5, 34.4, 19.6, 13.2 ppm. IR (KBr): \tilde{v} 2925, 1790, 1596, 1584,
- ⁴⁰ 1553, 1506, 1489, 1370, 1263, 1227, 1167, 1046, 757, 694 cm⁻¹. HRMS (ESI): m/z calcd. for $C_{21}H_{20}N_3O_5$ [M + H]⁺ 394.13975, found 394.13973.

1-(4-Chlorophenyl)-3-methyl-4-((3S,4S)-3-nitrochroman-4-45 yl)-1H-pyrazol-5-yl acetate (3b). Compound 3b was obtained

- according to the general procedure as a white solid (42.0 mg, 98% yield); m.p. 45–48 °C. HPLC (Daicel Chiralpak AD-H column, *n*-hexane–isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R} = 11.9$ min, minor
- ⁵⁰ enantiomer $t_{\rm R} = 10.7$ min, 96% ee; $[\alpha]_{\rm D}^{25} = +137.9$ (c = 1.60, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.37 (m, 4H, ArH), 7.19 (t, J = 7.6 Hz, 1H, ArH), 7.10 (d, J = 7.6 Hz, 1H, ArH), 6.97–6.91 (m, 2H, ArH), 4.95–4.91 (m, 1H, CH), 4.84 (d, J = 6.4Hz, 1H, CH), 4.61–4.52 (m, 2H, CH₂), 2.11 (s, 3H, CH₃), 1.90 (s, ⁵⁵ 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 153.1,
- ⁵⁵ 3H, CH₃) ppm. ⁴²C NMR (100 MHz, CDCI₃): *a* 166.9, 153.1, 147.5, 142.7, 136.1, 133.3, 130.1, 129.4, 128.7, 123.9, 122.3, 119.0, 116.8, 107.3, 82.6, 64.6, 34.4, 19.7, 13.2 ppm. IR (KBr): \tilde{v} 2926, 1791, 1596, 1585, 1552, 1502, 1490, 1462, 1369, 1227, 1166, 1092, 1041, 1013, 892, 833, 757 cm⁻¹. HRMS (ESI): *m/z* ⁶⁰ calcd. for C₂₁H₁₉ClN₃O₅ [M + H]⁺ 428.10077, found 428.10144.

3-Methyl-4-((3S,4S)-3-nitrochroman-4-yl)-1-(p-tolyl)-1H-

6 | Org. Biomol. Chem., 2014, 12, 00–00

pyrazol-5-yl acetate (3c). Compound **3c** was obtained according to the general procedure as a white solid (40.0 mg, 98% yield); ⁶⁵ m.p. 57–60 °C. HPLC (Daicel Chiralpak IB column, *n*-hexane-isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R} = 9.5$ min, minor enantiomer $t_{\rm R} = 11.1$ min, 95% ee; $[\alpha]_{\rm D}^{25} = +140.7$ (*c* 1.23, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 8.4 Hz, 2H, ArH), 7.21–7.16 ⁷⁰ (m, 3H, ArH), 7.12 (d, J = 7.6 Hz, 1H, ArH), 6.96–6.89 (m, 2H, ArH), 4.94–4.91(m, 1H, CH), 4.83 (d, J = 6.0 Hz, 1H, CH), 4.60 (dd, $J_1 = 6.4$ Hz, $J_2 = 11.6$ Hz, 1H, CH), 4.53 (dd, $J_1 = 2.8$ Hz, J_2

= 11.4 Hz, 1H, CH), 2.36 (s, 3H, CH₃), 2.11 (s, 3H, CH₃), 1.87 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 153.2, 146.8, 142.6, 137.6, 135.1, 130.2, 129.8, 128.6, 122.8, 122.2, 119.1, 116.7, 106.7, 82.8, 64.5, 34.4, 21.0, 19.7, 13.2 ppm. IR (KBr): \tilde{v} 2925, 1789, 1584, 1551, 1518, 1489, 1452, 1386, 1369, 1265, 1227, 1168, 1043, 822, 757, 736, 503 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₂H₂₁N₃O₅ [M + H]⁺ 408.15540, found 408.15632. so calcd. for C₂₂H₂₁N₃NaO₅ [M + Na]⁺ 430.13734, found 430.13835.

3-Ethyl-4-((3S,4S)-3-nitrochroman-4-yl)-1-phenyl-1Hpyrazol-5-yl acetate (3d). Compound 3d was obtained according to the general procedure as a white solid (35.6 mg, 87% yield); 85 m.p. 41-44 °C. HPLC (Daicel Chiralpak IB column, nhexane-isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R}$ = 15.7 min, minor enantiomer $t_{\rm R}$ = 17.2 min, 92% ee; $[\alpha]_D^{25} = +132.1$ (c 1.64, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.44 (m, 2H, ArH), 7.42-7.38 (m, 2H, 90 ArH), 7.32-7.28 (m, 1H, ArH), 7.19-7.15 (m, 1H, ArH), 7.11 (d, *J* = 7.6 Hz, 2H, ArH), 6.95–6.89 (m, 2H, ArH), 4.96–4.93 (m, 1H, CH), 4.85 (d, J = 6.0 Hz, 1H, CH), 4.63–4.59 (m, 1H, CH), 4.56 $(dd, J_1 = 3.2 Hz, J_2 = 11.6 Hz, 1H, CH), 2.62-2.42 (m, 2H, CH_2),$ 1.82 (s, 3H, CH₃), 1.26 (t, J = 7.4 Hz, 3H, CH₃) ppm. ¹³C NMR 95 (100 MHz, CDCl₃): δ 166.8, 153.1, 152.1, 142.5, 137.8, 130.3, 129.2, 128.6, 127.6, 122.8, 122.2, 119.4, 116.7, 106.4, 83.0, 64.6, 34.3, 20.8, 19.6, 12.7 ppm. IR (KBr): v 2973, 2934, 1791, 1596, 1585, 1553, 1506, 1489, 1449, 1392, 1369, 1360, 1263, 1227, 1166, 1057, 887, 857, 757, 695 cm⁻¹. HRMS (ESI): *m/z* calcd. for

 $_{100} C_{22}H_{22}N_3O_5[M + H]^4 408.15540$, found 408.15631.

4-((3S,4S)-3-Nitrochroman-4-yl)-1,3-diphenyl-1*H*-pyrazol-

- **5-yl acetate (3e).** Compound **3e** was obtained according to the general procedure as a white solid (45.0 mg, 98% yield); m.p. 105 129–131°C. HPLC (Daicel Chiralpak IB column, *n*-hexane–isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R}$ = 9.7 min, minor enantiomer $t_{\rm R}$ = 9.0 min, 92% ee; $[\alpha]_{\rm D}^{25}$ = +149.7 (*c* = 1.91, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, *J* = 8.0 Hz, 4H, ArH), 7.45–7.40 ¹¹⁰ (m, 5H, ArH), 7.34 (t, *J* = 7.2 Hz, 1H, ArH), 7.22 (d, *J* = 8.4 Hz,
- 1H, ArH), 7.17 (d, J = 8.0 Hz, 1H, ArH), 6.96 (t, J = 7.2 Hz, 1H, ArH), 6.88 (d, J = 8.4 Hz, 1H, ArH), 5.16 (d, J = 5.2 Hz, 1H, CH), 4.86–4.83 (m, 1H, CH), 4.60 (d, $J_1 = 5.6$ Hz, $J_2 = 11.6$ Hz, 1H, CH), 4.47 (dd, $J_1 = 2.4$ Hz, $J_2 = 12.0$ Hz, 1H, CH), 1.75 (s, 3H,
- ¹¹⁵ CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 152.9, 150.1, 143.1, 137.5, 132.5, 130.7, 129.2, 128.8, 128.74, 128.71, 128.01, 127.96, 123.0, 122.1, 119.2, 116.7, 106.7, 82.0, 64.1, 34.2, 19.5 ppm. IR (KBr): \tilde{v} 3059, 1793, 1586, 1551, 1501, 1490, 1452, 1369, 1267, 1226, 1165, 1007, 880, 858, 758, 696, 508 cm⁻¹.
- ¹²⁰ HRMS (ESI): m/z calcd. for C₂₆H₂₂N₃O₅ [M + H]⁺ 456.15540, found 456.15581.

4-((35,45)-3-Nitrochroman-4-yl)-1-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-5-yl acetate (3f). Compound 3f

¹²⁵ was obtained according to the general procedure as a white solid

This journal is © The Royal Society of Chemistry 2014

(33.4 mg, 75% yield); m.p. 49–52 °C. HPLC (Daicel Chiralpak IB column, *n*-hexane–isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R} = 7.4$ min, minor enantiomer $t_{\rm R} = 6.7$ min, 92% ee; $[\alpha]_{\rm D}^{25} = +100.3$ (*c* 1.19,

- ⁵ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.39 (m, 5H, ArH), 7.20 (t, *J* = 7.6 Hz, 1H, ArH), 7.08 (d, *J* = 7.6 Hz, 1H, ArH), 6.95 (t, *J* = 7.4 Hz, 1H, ArH), 6.91 (d, *J* = 8.4 Hz, 1H, ArH), 5.12 (d, *J* = 4.4 Hz, 1H, CH), 5.00–4.98 (m, 1H, CH), 4.73 (dd, *J*₁ = 5.2 Hz, *J*₂ = 12.0 Hz, 1H, CH), 4.52 (dd, *J*₁ = 2.4 Hz, *J*₂ = 12.0 Hz, 1H,
- $J_2 = 12.0$ HZ, HI, CH), 4.32 (dd, $J_1 = 2.4$ HZ, $J_2 = 12.0$ HZ, HI, 10 CH), 1.70 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 153.0, 143.8, 139.5 (q, $J_{C-F} = 37.5$ Hz), 136.7, 130.5, 129.5, 129.1, 129.0, 123.5, 122.3, 119.6, 118.0, 116.8, 107.9, 82.5, 63.9, 33.2, 19.3 ppm. IR (KBr): \tilde{v} 2926, 1796, 1587, 1553, 1490, 1450, 1393, 1360, 1286, 1227, 1151, 1128, 1010, 858, 756, 697 cm⁻¹.
- ¹⁵ HRMS (ESI): m/z calcd. for $C_{21}H_{16}F_3N_3NaO_5$ [M + Na]⁺ 470.09343, found 470.09403.

4-((3S,4S)-6-Bromo-3-nitrochroman-4-yl)-3-methyl-1-

- **phenyl-1H-pyrazol-5-yl acetate (3g).** Compound **3g** was ²⁰ obtained according to the general procedure as a white solid (46 mg, 97% yield); m.p. 51–54 °C. HPLC (Daicel Chiralpak AD-H + IB column, *n*-hexane–isopropanol 80:20, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R} = 15.2$ min, minor enantiomer $t_{\rm R} = 15.9$ min, 93% ee; $[\alpha]_{\rm D}^{25} = +42.8$ (*c* 1.93,
- ²⁵ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.41 (m, 4H, ArH), 7.36–7.26 (m, 3H, ArH), 6.81 (d, J = 8.8 Hz, 1H, ArH), 4.92–4.88 (m, 1H, CH), 4.81 (d, J = 5.6 Hz, 1H, CH), 4.63 (dd, J_1 = 6.0 Hz, J_2 = 11.6 Hz, 1H, ArH), 4.50 (dd, J_1 = 2.6 Hz, J_2 = 11.8 Hz, 1H, CH), 2.14 (s, 3H, CH₃), 1.93 (s, 3H, CH₃) ppm. ¹³C
- ³⁰ NMR (100 MHz, CDCl₃): δ 167.0, 152.3, 146.9, 142.6, 137.4, 132.6, 131.7, 129.3, 127.8, 123.0, 121.2, 118.6, 114.3, 106.4, 82.2, 64.4, 34.0, 19.7, 13.3 ppm. IR (KBr): \tilde{v} 2925, 1791, 1597, 1551, 1505, 1481, 1437, 1370, 1262, 1229, 1166, 1050, 819, 759, 695 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₂₁H₁₉BrN₃O₅ [M + H]⁺ 35 472.05026, found 472.05092.

4-((35,45)-6-Chloro-3-nitrochroman-4-yl)-3-methyl-1-

- **phenyl-1***H***-pyrazol-5-yl acetate (3h).** Compound **3h** was obtained according to the general procedure as a white solid (41 mg, 96% yield); m.p. 49–52 °C. HPLC (Daicel Chiralpak AD-H + IB column, *n*-hexane–isopropanol 80:20, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R} = 14.6$ min, minor enantiomer $t_{\rm R} = 15.3$ min, 93% ee; $[\alpha]_{\rm D}^{25} = +72.9$ (*c* 1.68, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.41 (m, 4H, ArH),
- ⁴⁵ 7.34 (t, J = 6.8 Hz, 1H, ArH), 7.17–7.12 (m, 2H, ArH), 6.86 (d, J = 8.4 Hz, 1H, ArH), 4.93–4.89 (m, 1H, CH), 4.80 (d, J = 5.6 Hz, 1H, CH), 4.62 (dd, $J_1 = 6.0$ Hz, $J_2 = 12.0$ Hz, 1H, CH), 4.51 (dd, $J_1 = 2.8$ Hz, $J_2 = 11.6$ Hz, 1H, CH), 2.13 (s, 3H, CH₃), 1.94 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 151.8, 146.9,
- ⁵⁰ 142.6, 137.4, 129.7, 129.2, 128.8, 127.8, 127.1, 122.9, 120.7, 118.2, 106.4, 82.2, 64.5, 34.1, 19.7, 13.3 ppm. IR (KBr): $\tilde{\nu}$ 2930, 1791, 1598, 1553, 1506, 1485, 1386, 1371, 1262, 1231, 1167, 1049, 821, 759, 696 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₂₁H₁₉. ClN₃O₅ [M + H]⁺ 428.10077, found 428.10143.
- ⁵⁵ **4-((3***S***,4***S***)-3,6-Dinitrochroman-4-yl)-3-methyl-1-phenyl-1***H***pyrazol-5-yl acetate (3i). Compound 3i was obtained according to the general procedure as a white solid (42.0 mg, 96% yield); m.p. 66–69 °C. HPLC (Daicel Chiralpak IB column,** *n***-⁶⁰ hexane–isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer t_{\rm R}= 29.2 min, minor enantiomer t_{\rm R}= 38.6 min, 96% ee; [\alpha]_{\rm D}^{25}= +50.5 (***c* **1.59, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.11–8.07 (m, 2H, ArH), 7.46–7.40 (m, 4H,**

ArH), 7.37–7.31 (m, 1H, ArH), 7.02 (d, J = 8.8 Hz, 1H, ArH), 65 4.97–4.94 (m, 1H, CH), 4.89 (d, J = 4.8 Hz, 1H, CH), 4.83–4.78 (m, 1H, CH), 4.59 (dd, $J_1 = 2.8$ Hz, $J_2 = 12.0$ Hz, 1H, CH), 2.15 (s, 3H, CH₃), 1.91 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 158.0, 146.6, 142.5, 142.4, 137.2, 129.3, 128.0, 126.6, 124.5, 123.1, 119.8, 117.6, 106.1, 81.4, 64.4, 33.9, 19.7, 70 13.3 ppm. IR (KBr): \tilde{v} 2926, 1790, 1587, 1555, 1522, 1505, 1371, 1342, 1260, 1238, 1165, 1092, 1049, 851, 761, 749, 738, 696 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₂₁H₁₉N₄O₇ [M + H]⁺ 439.12483, found 439.12515.

75 **4-((3S,4S)-8-Ethoxy-3-nitrochroman-4-yl)-3-methyl-1-**

- phenyl-1H-pyrazol-5-yl acetate (3j): Compound 3j was obtained according to the general procedure as a white solid (43.0 mg, 98% yield); m.p. 58-61 °C. HPLC (Daicel Chiralpak IB column, n-hexane-isopropanol 90:10, flow rate 1.0 mL/min, ⁸⁰ detection at 254 nm): major enantiomer $t_{\rm R} = 10.8$ min, minor enantiomer $t_{\rm R} = 15.2$ min, 72% ee; $[\alpha]_{\rm D}^{25} = +116.9$ (c 0.97, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.40 (m, 4H, ArH), 7.32 (t, J = 7.0 Hz, 1H, ArH), 6.88 (t, J = 7.8 Hz, 1H, ArH), 6.79 (d, J = 8.0 Hz, 1H, ArH), 6.71 (d, J = 7.6 Hz, 1H, ArH),85 4.98–4.94 (m, 1H, CH), 4.83 (d, J = 6.4 Hz, 1H, CH), 4.67–4.60 (m, 2H, CH₂), 4.10 (q, J = 7.2 Hz, 2H, CH₂), 2.07 (s, 3H, CH₃), 1.96 (s, 3H, CH₃), 1.48 (t, J = 7.2 Hz, 3H, CH₃) ppm.¹³C NMR (100 MHz, CDCl₃): δ 167.0, 147.4, 147.1, 143.0, 142.7, 137.5, 129.2, 127.6, 122.8, 121.8, 121.4, 120.2, 111.5, 106.8, 82.7, 65.2, 90 64.4, 34.5, 19.8, 14.7, 13.3 ppm. IR (KBr): v 2979, 2928, 1791, 1598, 1587, 1553, 1506, 1486, 1473, 1388, 1369, 1266, 1200, 1168, 1128, 1070, 1039, 856, 763, 696, 671 cm⁻¹. HRMS (ESI): m/z calcd. for C₂₃H₂₄N₃O₆[M + H]⁺ 438.16596, found 438.16660.
- 4-((3S,4S)-8-Methoxy-3-nitrochroman-4-yl)-3-methyl-1-95 phenyl-1H-pyrazol-5-yl acetate (3k): Compound 3k was obtained according to the general procedure as a white solid (38.9 mg, 92% yield); m.p. 58-62 °C. HPLC (Daicel Chiralpak AD-H column, n-hexane-isopropanol 90:10, flow rate 1.0 mL/min, ¹⁰⁰ detection at 254 nm): major enantiomer $t_{\rm R} = 17.8$ min, minor enantiomer $t_{\rm R} = 14.4$ min, 84% ee; $[\alpha]_{\rm D}^{25} = +123.8$ (c 1.48, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.39 (m, 4H, ArH), 7.34–7.29 (m, 1H, ArH), 6.90 (t, J = 8.0 Hz, 1H, ArH), 6.79 (d, J = 7.2 Hz, 1H, ArH), 6.73 (d, J = 7.6 Hz, 1H, ArH), 4.97–4.93 (m, 105 1H, CH), 4.83 (d, J = 6.4 Hz, 1H, CH), 4.68–4.61 (m, 2H, CH₂), 3.89 (s, 3H, OCH₃), 2.08 (s, 3H, CH₃), 1.95 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 148.1, 147.1, 142.8, 142.6, 137.6, 129.2, 127.6, 122.8, 121.9, 121.6, 120.1, 110.2, 106.8, 82.6, 65.0, 56.0, 34.4, 19.7, 13.3 ppm. IR (KBr): v 2934, 1791, 110 1596, 1588, 1551, 1506, 1487, 1439, 1387, 1370, 1266, 1220, 1168, 1129, 1075, 1037, 879, 763, 734, 695, 671, 502 $\rm cm^{-1}$ HRMS (ESI): m/z calcd. for C₂₂H₂₁N₃NaO₆ [M + Na]⁺ 446.13226, found 446.13260.

3-Methyl-4-((15,25)-2-nitro-2,3-dihydro-1Hbenzo[f]chromen-1-yl)-1-phenyl-1*H***-pyrazol-5-yl acetate (3l): Compound 3l was obtained according to the general procedure as a white solid (43.4 mg, 98% yield); m.p. 80–83 °C. HPLC (Daicel Chiralpak AD-H column,** *n***-hexane–isopropanol 90:10, 120 flow rate 1.0 mL/min, detection at 254 nm): major enantiomer t_R = 11.3 min, minor enantiomer t_R = 14.7 min, 93% ee; [\alpha]_D^{25} = +164.6 (***c* **= 1.67, CH₂Cl₂). ¹H NMR(400 MHz, CDCl₃): \delta 7.76 (d,** *J* **= 8.0 Hz, 1H, ArH), 7.71 (d,** *J* **= 9.2 Hz, 1H, ArH), 7.62 (d,** *J* **= 8.4 Hz, 1H, ArH), 7.45 (t,** *J* **= 7.6 Hz, 1H, ArH), 7.38–7.34 (m, 125 5H, ArH), 7.31–7.27 (m, 1H, ArH), 7.10 (d,** *J* **= 8.8 Hz, 1H, ArH), 5.35 (s, 1H, CH), 4.98 (d,** *J* **= 12.8 Hz, 1H, CH), 4.90 (s, 1H, CH),**

This journal is © The Royal Society of Chemistry 2014

Org. Biomol. Chem., 2014, 12, 00-00 | 7

4.51 (d, J = 12.4 Hz, 1H, CH), 2.24 (s, 3H, CH₃), 1.64 (3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 150.8, 146.7, 142.3, 137.3, 132.2, 129.7, 129.4, 129.2, 128.5, 127.7, 127.2, 124.1, 122.9, 122.1, 118.1, 109.0, 107.2, 81.6, 61.9, 30.6, 19.4, 13.3 ppm IR (KBr): \tilde{v} 2926 1789 1625 1598 1551 1504 1472

⁵ ppm. IR (KBr): $\tilde{\nu}$ 2926, 1789, 1625, 1598, 1551, 1504, 1472, 1435, 1369, 1265, 1238, 1226, 1165, 1095, 1050, 1002, 882, 815, 745, 695 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₅H₂₂N₃O₅ [M + H]⁺ 444.15540, found 444.15601.

¹⁰ **4-((3S,4S)-6,8-Dibromo-3-nitrochroman-4-yl)-3-methyl-1phenyl-1***H***-pyrazol-5-yl acetate (3m)**: Compound **3m** was obtained according to the general procedure as a white solid (53.0 mg, 97 % yield); m.p. 68–71 °C. HPLC (Daicel Chiralpak IB column, *n*-hexane–isopropanol 90:10, flow rate 1.0 mL/min, ¹⁵ detection at 254 nm): major enantiomer $t_{\rm R}$ = 13.5 min, minor enantiomer $t_{\rm R}$ = 19.1 min, 83% ee; $[\alpha]_{\rm D}^{25}$ = +93.5 (*c* = 2.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H, ArH), 7.44–7.41 (m, 4H, ArH), 7.38–7.33 (m, 1H, ArH), 7.24 (s, 1H, ArH), 4.92–4.88 (m, 1H, CH), 4.82 (d, *J* = 5.2 Hz, 1H, CH), 4.77 ²⁰ (dd, J_1 = 5.6 Hz, J_2 = 12.0 Hz, 1H, CH), 4.60 (dd, J_1 = 2.4 Hz, J_2

- = 12.0 Hz, 1H, CH), 2.16 (s, 3H, CH₃), 1.95 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 149.1, 146.6, 142.6, 137.3, 134.6, 132.0, 129.3, 127.9, 122.9, 122.3, 114.2, 111.6, 106.2, 81.7, 64.9, 34.1, 19.7, 13.3 ppm. IR (KBr): \tilde{v} 2926, 1790, 1597, 1555, 1506
- $_{25}$ 1506, 1465, 1444, 1384, 1369, 1240, 1169, 1049, 854, 759, 736, 695, 679, cm $^{-1}$. HRMS (ESI): m/z calcd. for $C_{21}H_{18}Br_2N_3O_5\,[M+H]^+$ 549.96077, found 549.95991.

4-((15,2R)-2-Nitro-1,2,3,4-tetrahydronaphthalen-1-yl)-3-

³⁰ **methyl-1-phenyl-1H-pyrazol-5-yl acetate (3n)**: Compound **3n** was obtained according to the general procedure as a white solid (34.8 mg, 89% yield); m.p. 48–51 °C. HPLC (Daicel Chiralpak AD-H column, *n*-hexane–isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_R = 9.7$ min, ³⁵ minor enantiomer $t_R = 8.7$ min, 73% ee; $[\alpha]_D^{25} = +82.2$ (c = 1.53, CH₂Cl₂). ¹H NMR(400 MHz, CDCl₃): δ 7.49–7.46 (m, 2H, ArH), 7.42–7.38 (m, 2H, ArH), 7.32–7.25 (m, 1H, ArH), 7.19–7.11 (m,

4H, ArH), 4.96–4.90 (m, 1H, CH), 4.71 (d, J = 9.2 Hz, 1H, CH), 3.04 (dd, J₁ = 5.2 Hz, J₂ = 8.0 Hz, 2H, CH₂), 2.55–2.40 (m, 2H, 40 CH₂), 2.00 (s, 3H, CH₃), 1.99 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 147.3, 142.7, 137.8, 134.1, 133.8, 129.3,

- 129.1, 128.3, 127.4, 127.0, 126.9, 122.7, 108.0, 87.6, 38.3, 28.0, 27.4, 19.9, 13.3 ppm. IR (KBr): $\tilde{\nu}$ 2924, 2848, 1789, 1597, 1546, 1504, 1434, 1369, 1164, 1073, 1046, 879, 750, 694, 670, 575, 45 501 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₂₂H₂₂N₃O₄ [M + H]⁺
- ⁴⁵ S01 cm⁻¹. HRMS (ES1): m/z calcd. for $C_{22}H_{22}N_3O_4$ [M + H] 392.16048, found 392.16097; m/z calcd. for $C_{22}H_{21}N_3NaO_4$ [M + Na]⁺ 414.14243, found 414.14177.

4-((3S,4R)-3-Nitrothiochroman-4-yl)-3-methyl-1-phenyl-

- ⁵⁰ **1H-pyrazol-5-yl acetate** (**3o**): Compound **3o** was obtained according to the general procedure as a white solid (36.6 mg, 89 % yield); m.p. 138–141 °C. HPLC (Daicel Chiralpak AD-H column, *n*-hexane–isopropanol 90:10, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R} = 12.8$ min, minor ⁵⁵ enantiomer $t_{\rm R} = 10.9$ min, 88% ee; $[\alpha]_{\rm D}^{25} = +148.9$ (c = 1.14, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.39 (m, 4H, ArH), 7.33–7.29 (m, 1H, ArH), 7.18–7.04 (m, 4H, ArH), 5.18–5.13 (m, 1H, CH), 4.79 (d, J = 8.4 Hz, 1H, CH), 3.58 (dd, $J_1 = 9.2$ Hz, $J_2 =$ 12.8 Hz, 1H, CH), 3.40 (dd, $J_1 = 3.0$ Hz, $J_2 = 12.8$ Hz, 1H, CH) 60 2.07 (s, 3H, CH₃), 2.04 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz,
- ⁵⁰ 2.07 (s, 3H, CH₃), 2.04 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 147.2, 142.7, 137.7, 131.9, 131.1, 130.6, 129.2, 127.6, 127.3, 126.4, 125.8, 122.8, 107.8, 85.4, 37.8, 29.3, 19.9, 13.1 ppm. IR (KBr): $\tilde{\nu}$ 2917, 1787, 1724, 1596, 1538, 1504,

1422, 1366, 1164, 1071, 1049, 1003, 880, 801, 756, 699, 589, 65 484 cm⁻¹. HRMS (ESI): *m/z* calcd. for $C_{21}H_{20}N_3O_4S$ [M + H]⁺ 410.11690, found 410.11752; *m/z* calcd. for $C_{21}H_{19}N_3NaO_4S$ [M + Na]⁺ 432.09885, found 432.09944; *m/z* calcd. for $C_{21}H_{19}KN_3O_4S$ [M + K]⁺ 448.07279, found 448.07361.

- ⁷⁰ **4-((15,2***R***)-2-Nitro-1-phenylpropyl)-3-methyl-1-phenyl-1Hpyrazol-5-yl acetate (3p)**: Compound **3p** was obtained according to the general procedure as a white solid (31.3 mg, 83 % yield); m.p. 39–41 °C. HPLC (Daicel Chiralpak OJ-H column, *n*hexane–isopropanol 60:40, flow rate 1.0 mL/min, detection at ⁷⁵ 254 nm): major enantiomer $t_R = 36.8$ min, minor enantiomer $t_R =$ 19.2 min, 91% ee; $[\alpha]_D^{25} = -50.2$ (c = 1.22, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.38 (m, 3H, ArH), 7.32 (d, J = 7.2Hz, 2H, ArH), 7.29–7.24 (m, 5H, ArH), 5.41–5.28 (m, 1H, CH), 4.37 (d, J = 11.6 Hz, 1H, CH), 2.23 (s, 3H, CH₃), 2.20 (s, 3H,
- ⁸⁰ CH₃), 1.51 (d, J = 6.8 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 147.5, 141.2, 138.0, 137.9, 129.1, 129.0, 128.3, 127.6, 127.4, 123.0, 107.2, 84.6, 45.9, 20.4, 19.7, 13.4 ppm. IR (KBr): \tilde{v} 2923, 1790, 1596, 1549, 1504, 1435, 1368, 1161, 1040, 868, 756, 695, 670, 497 cm⁻¹. HRMS (ESI): m/z calcd. for ⁸⁵ C₂₁H₂₁N₃NaO₄ [M + Na]⁺ 402.14243, found 402.14179; m/z calcd. for C₂₁H₂₁KN₃O₄ [M + Na]⁺ 418.11636, found 418.11494.

The isolation of the addition intermediate product 4a and its further acetylation.

⁹⁰ Organocatalyst **VI** (2.0 mg) was added to dichloromethane to afford a solution of catalyst **VI** (10 mL). A mixture of 3-nitro-2*H*chromene **2a** (0.10 mmol) and 0.5 mL of the above catalyst **VI** solution (0.0002 mmol) was stirred at -15 °C for 10 min, then pyrazolin-5-one **1a** (0.10 mmol) was added in one portion. After ⁹⁵ stirring for 96 h at -15 °C, the reaction mixture was concentrated and directly purified by silica gel column chromatography (ethyl acetate-petroleum ether 1:2) to afford the intermediate product **4a** (35.0 mg, 99% yield, 96% ee, 95:5 dr). m.p. 93–97 °C. HPLC (Daicel Chiralpak AS-H column, *n*-hexane-isopropanol 80:20, flow rate 1.0 mL/min, detection at 254 nm): major enantiomer $t_{\rm R}$ = 12.2 min, minor enantiomer $t_{\rm R} = 22.0$ min, 96% ee; $[\alpha]_{\rm D}^{25} =$ +135.6 ($\alpha = 1.08$ CH Cl.). The product **4a** was a mirture of action of the state of

- +135.6 (c = 1.08, CH₂Cl₂). The product **4a** was a mixture of tautomers, and the NMR spectroscopy was a complex of mess. IR (KBr): \tilde{v} 2797, 1614, 1574, 1545, 1488, 1409, 1352, 1309, 1279, 1220, 1062, 800, 746, 717, 682, 582, 500 am⁻¹ JIDMS (FSI): rr/r
- 105 1229, 1063, 809, 746, 717, 688, 582, 500 cm $^{-1}$. HRMS (ESI): m/z calcd. for $C_{19}H_{18}N_3O_4~[M~+~H]^+$ 352.12918, found 352.12944; m/z calcd. for $C_{19}H_{17}N_3NaO_4~[M~+~Na]^+$ 374.11113, found 374.11159; m/z calcd. for $C_{19}H_{17}KN_3O_4~[M~+~K]^+$ 390.08506, found 390.08553. **4a** was dissolved in 0.5 mL dichloromethane,
- ¹¹⁰ then acetic anhydride (0.1 mmol) and triethylamine (0.03 mmol) were added successively. After stirring for 30 min at room temperature, the reaction mixture was concentrated and directly purified by silica gel column chromatography (ethyl acetate-petroleum ether 1:5) to afford the desired products **3a** ¹¹⁵ (33.1 mg, 84% yield, 95% ee, 97:3 dr).

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (grant No 21272024).

120 Notes and references

1 (a) R. G. Schmidt, E. K. Bayburt, S. P. Latshaw, J. R. Koenig, J. F. Daanen, H. A. McDonald, B. R. Bianchi, C. Zhong, S. Joshi, P.

8 | Org. Biomol. Chem., 2014, **12**, 00–00

Honore, K. C. Marsh, C. H. Lee, C. R. Faltynek and A. Gomtsyan, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 1338; (b) C. Conti, L. P. Monaco and N. Desideri, *Bioorg. Med. Chem.*, 2011, **19**, 7357; (c) G. P. Ellis, *Chemistry of Heterocyclic Compounds*, Wiley, New York, 1997, Vol. 31.

- (a) W. Kemnitzer, S. Kasibhatla, S. Jiang, H. Zhang, J. Zhao, S. Jia, L. Xu, C. Crogan-Grundy, R. Denis, N. Barriault, L. Vaillancourt, S. Charron, J. Dodd, G. Attardo, D. Labrecque, S. Lamothe, H. Gourdeau, B. Tseng, J. Drewe and S. X. Cai, *Bioorg. Med. Chem.*
- Lett., 2005, 15, 4745; (b) A. Afantitis, G. Melagraki, H. Sarimveis, P. A. Koutentis, J. Markopoulos and O. Igglessi-Markopoulou, Bioorg. Med. Chem., 2006, 14, 6686; (c) T. A. Engler, K. O. LaTessa, R. Iyengar, W. Y. Chai and K. Agrios, Bioorg. Med. Chem., 1996, 4, 1755; (d) Y. Kashiwada, K. Yamazaki, Y. Ikeshiro,
- T. Yamagishi, T. Fujioka, K. Mihashi, K. Mizuki, L. M. Cosentino, K. Fowke, S. L. Morris-Natschke and K. H. Lee, *Tetrahedron*, 2001, **57**, 1559; (e) M. Kidwai, S. Saxena, M. K. R. Khan and S. S. Thukral, *Bioorg. Med. Chem. Lett.*, 2005, **15**, 4295; (f) M. M. Khafagy, A. H. F. Abd El- Wahab, F. A. Eid and A. M. El-Agrody,
- Farmaco, 2002, 57, 715; (g) J. H. Kwak, H. E. Kang, J. K. Jung, H. Kim, J. Cho and H. Lee, *Arch. Pharm. Res.*, 2006, 29, 728; (j) S. Emami, A. Kebriaeezadeh, M. J. Zamani and A. Shafiee, *Bioorg. Med. Chem. Lett.*, 2006, 16, 1803.
- 3 (a) M. Jinno, Y. Kitano, M. Tada and K. Chiba, Org. Lett., 1999, 1,
 435; (b) V. T. H. Nguyen, B. Appel and P. Langer, Tetrahedron,
 2006, 62, 7674; (c) S. Balalaie, M. Sheikh-Ahmadi and M. Bararjanian, Catal. Commun., 2007, 8, 1724; (d) P. T. Kaye and X. W. Nocanda, J. Chem. Soc., Perkin Trans. 1, 2002, 1318; (e) M. Cervera, M. Moreno-Manas and R. Pleixats, Tetrahedron, 1990, 46,
- 7885; (f) R. S. Kenny, U. C. Mashelkar, D. M. Rane and D. K. Bezawada, *Tetrahedron*, 2006, 62, 9280; (g) S. Nakamura, M. Uchiyama and T. Ohwada, *J. Am. Chem. Soc.*, 2003, 125, 5282; (h) R. S. Varma and R. Dahiya, *J. Org. Chem.*, 1998, 63, 8038; (i) W. A. L. Van Otterlo, E. L. Ngidi, S. Kuzvidza, G. L. Morgans, S. S.
- Moleele and C. B. de Koning, *Tetrahedron*, 2005, **61**, 9996; (*j*) M. Jinno, Y. Kitano, M. Tada and K. Chiba, *Org. Lett.*, 1999, **1**, 435.
- 4 For selected examples, see: (a) W.-Y. Chen, L. Ouyang, R.-Y. Chen and X.-S. Li, *Tetrahedron Lett.*, 2010, **51**, 3972; (b) S.-Z. Nie, Z.-P. Hu, Y.-N. Xuan, J.-J. Wang, X.-M. Li and M. Yan. *Tetrahedron:*
- Asymmetry, 2010, 21, 2055; (c) W.-Y. Chen, P. Li, J.-W. Xie and X.-S. Li, *Catal. Commun.*, 2011, 12 502; (d) F. Tan, L.-Q. Lu, Q.-Q. Yang, W. Guo, Q. Bian, J.-R. Chen, and W.-J. Xiao, *Chem. Eur. J.* 2014, 20, 3415; (e) F. Tan, C. Xiao, H.-G. Cheng, W. Wu, K.-R. Ding and W.-J. Xiao, *Asian J. Chem.*, 2012, 7, 493; (f) Y. Jia, W.
 Yang and D.-M. Du, *Org. Biomol. Chem.*, 2012, 10, 4739.
- 2008, **51**, 2606;. (d) A. Kimata, H. Nakagawa, R. Ohyama, T. Fukuuchi, S. Ohta, T. Suzuki and N. Miyata, J. Med. Chem., 2007, **50**, 5053; (e) Y. L. Janin, *Bioorg. Med. Chem.*, 2007, **15**, 2479; (f) C. Pegurier, P. Collart, P. Danhaive, S. Defays, M. Gillard, F. Gilson, T. Kogej, P. Pasau, N. Van Houtvin, M. Van Thuyne and B. Van
- 55 Keulen, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 4228; (g) S. Bondock, R. Rabie, H. A. Etman and A. A. Fadda, *Eur. J. Med. Chem.*, 2008, **43**, 2122; (h) M. T. Gutierrez-Lugo and C. J. Bewley, *J. Med. Chem.*, 2008, **51**, 2606; (i) E. Akbas and I. Berber, *Eur. J. Med. Chem.*, 2005, **40**, 401; (j) S. A. F. Rostom, M. A. Shalaby and M. A. El-Demellawy,
- 60 Eur. J. Med. Chem. 2003, 38, 959; (k) D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev. 2003, 103, 893.
- 6 For selected review, see: (a) Wafaa S. Hamama, Hamada G. El-Gohary, Nikolai Kuhnert and Hanafi H. Zoorob, *Curr. Org. Chem.*, 2012, **16**, 373; For selected examples, see: (b) R. K. Boeckman, Jr., J.
- E. Reed and P. Ge, Org. Lett., 2001, 3, 3651; (c) M. Abass and B. B. Mostafa, Bioorg. Med. Chem., 2005, 13, 6133; (d) R. Ma, J. Zhu, J. Liu, L. Chen, X. Shen, H. Jiang and J. Li, Molecules, 2010, 15, 3593; (e) S. Gogoi and C.-G. Zhao, Tetrahedron Lett., 2009, 50, 2252; (f) S. Gogoi, C.-G. Zhao and D. Ding, Org. Lett., 2009, 11, 2249; (g) Z.
- Wang, Z. Yang, D. Chen, X. Liu, L. Lin and X. Feng, Angew. Chem.

Int. Ed., 2011, **50**, 4928; (*h*) R. K. Boeckman, Jr., J. E. Reed and P. Ge, *Org. Lett.*, 2001, **3**, 3651.

- For selected reviews, see: (a) M. Terada, Chem. Commun., 2008, 4097;
 (b) S. J. Connon, Angew. Chem. Int. Ed., 2006, 45, 3909; (c) D.
- Parmar, E. Sugiono, S. Raja and M. Rueping, *Chem. Rev.*, 2014, **114**, 9047. For selected examples, see: (d) T. Akiyama, J. Itoh, K. Yokota and K. Fuchibe, *Angew. Chem. Int. Ed.*, 2004, **43**, 1566; (e) Q.-X. Guo, H. Liu, C. Gao, S.-W. Luo, Y. Gu and L.-Z. Gong, *J. Am. Chem. Soc.*, 2007, **129**, 3790; (f) J. Seayad, A. M. Seayad and B. List, *J. Am.*
- 80 Chem. Soc., 2006, **128**, 1086; (g) S. Hoffmann, A. M. Swayad and B. List, Angew. Chem. Int. Ed., 2005, **44**, 7424; (h) M. Terada and K. Sorimachi, J. Am. Chem. Soc., 2007, **129**, 292; (i) X.-H. Chen, X.-Y. Xu, H. Liu, L.-F. Can and L.-Z. Gong, J. Am. Chem. Soc., 2006, 128, 14802.
- ⁸⁵ 8 For selected reviews, see: (a) B. List, *Tetrahedron*, 2002, **58**, 5573;
 (b)W. Notz, F. Tanaka and C. F. Barbas III, *Acc. Chem. Res.*, 2004, **37**, 580; (c) K. Jensen, G. Dickmeiss, H. Jing, L. Albrecht and K. A. Jørgensen, *Acc. Chem Res.*, 2012, **45**, 248. For selected examples, see: (d) T. Kano, F. Shirozu and K. Maruoka, *Org. Lett.*, 2014, **16**, 1530;
- (e) T. Kano, H. Mii and K. Maruoka, J. Am. Chem. Soc., 2009, 131, 3450, (f) B.-C. Hong, P. Kotame and J.-H. Liao, Org. Biomol. Chem., 2011, 9, 382; (g) X.-F. Huang, Z.-M. Liu, Z.-C. Geng, S.-Y. Zhang, Y. Wang and X.-W. Wang, Org. Biomol. Chem., 2012, 10, 8794; (h) S. Anwar, S.-M. Li and K. Chen, Org. Lett., 2014, 16, 2993.
- ⁹⁵ 9 For selected reviews, see: (a) O. V. Serdyuk, C. M. Heckel, S. B. Tsogoeva, Org. Biomol. Chem., 2013, 11, 7051; (b) M. Tsakos, C. G. Kokotos, Tetrahedron, 2013, 69, 10199; (c) X. Hou, Z. Ma, J. Wang and H. Liu, Chin. J. Org. Chem., 2014, 34, 1509. For selected examples, see: (a) T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672; (b) K. Liu, H.-F. Cui, J. Nie, K.-Y. Dong, X.-J. Li and J.-A. Ma, Org. Lett., 2007, 9, 923; (c) W. M. Zhou, H. Liu and D.-M. Du, Org. Lett., 2008, 10, 2817; (d) C.-J. Wang, Z.-H.Zhang, X.-Q. Dong and X.-J. Wu, Chem. Commun.
- 2008, 1431; (e) H. Uehara and C. F. Barbas III, Angew. Chem., 2009, 121,10032; Angew. Chem. Int. Ed., 2009, 48, 9848; (f) C. Yu, Y. Zhang, A. Song, Y. Ji and W. Wang, Chem. –Eur. J., 2011, 17, 770. (g)S. Zhao, J.-B. Lin, Y.-Y. Zhao, Y.-M. Liang and P.-F. Xu, Org. Lett., 2014, 16, 1802; (h) X.-M. Shi, W.-P. Dong, L.-P. Zhu, X.-X. Jiang and R. Wang, Adv. Synth. Catal., 2013, 355, 3119.
- 10 For selected reviews, see: (a) J. Alemán, A. Parra, H. Jiang and K. A. Jørgensen, *Chem.-Eur. J.*, **2011**, *17*, 6890; (b) R. I. Storer, C. Aciro and L. H. Jones, *Chem. Soc. Rev.*, 2011, **40**, 2330; (c) P. Chauhan, S. Mahajan, U. Kaya, D. Hack, D. Enders, *Adv. Synth. Catal.*, 2015, **357**, 253. For selected examples, see: (d) H. Konishi, T. Y. Lam, J. P. Malerich and V. H. Rawal, *Org. Lett.*, 2010, **12**, 2028; (e) C. Min, X.
- Materich and V. H. Rawai, Org. Lett., 2010, 12, 2028, (e) C. Mill, X. Han; Z. Q. Liao, X. F. Wu, H.-B. Zhou and C. Dong, Adv. Synth. Catal., 2011, 353, 2715; (f) M.-X. Zhao, H.-L. Bi, R.-H. Jiang, X.-W. Xu and M. Shi, Org. Lett., 2014, 16, 4566; (g) W. Yang and D.-M. Du, Org. Lett., 2010, 12, 5450; (h) W. Yang, H.-X. He, Y. Gao and
- D.-M. Du, Adv. Synth. Catal., 2013, 355, 3670; (i) W. Yang and D.-M. Du, Chem. Commun., 2013, 49, 8842; (j) W. Yang, Y. Yang and D.-M. Du, Org. Lett., 2013, 15, 1190; (k) H.-X. He, W. Yang and D.-M. Du, Adv. Synth. Catal., 2013, 355, 1137; (l) J.-H. Li and D.-M. Du, Asian J. Chem., 2014, 9, 3278; (m) J.-H. Li and D.-M. Du, RSC Adv., 2014, 4, 14538.
- (a) Y. Zhu, J. P. Malerich and V. H. Rawal, Angew. Chem. 2010, 122, 157; Angew. Chem. Int. Ed. 2010, 49, 153; (b) Y. Qian, G. Ma, A. Lv, H.-L. Zhu, J. Zhao and V. H. Rawal, Chem. Commun., 2010, 46, 3004; (c) W. Yang and D.-M. Du, Adv. Synth. Catal., 2011, 353, 1241; (d) P. Kasaplar, P. Riente, C. Hartmann and M. A. Pericás, Adv. Synth. Catal., 2012, 354, 2905; (e) W. Yang and D.-M. Du, Org. Biomol. Chem., 2012, 10, 6876.
 - 12 J.-H. Li and D.-M. Du, Org. Biomol. Chem., 2013, 11, 6215.
- 13 Crystallographic data for **3m** has been provided as CIF file in ESI[†].
- ¹³⁵ 14 (a) B. Kótai, G. Kardos, A. Hamza, V. Farkas, I. Pápai and T. Soós, *Chem. Eur. J.*, 2014, **20**, 5631; (b) J. I. Martínez, L. Villar, U. Uria, L. Carrillo, E. Reyes and J. L. Vicarioa, *Adv. Synth. Catal.*, 2014, **356**, 3627.

This journal is © The Royal Society of Chemistry 2014

Org. Biomol. Chem., 2014, 12, 00-00 | 9