Organic \&

Biomolecular Chemistry

Synthesis of indoles, benzofurans, and related heterocycles via an acetylene-activated SNAr/intramolecular cyclization cascade sequence in water or DMSO

Journal:	Organic \& Biomolecular Chemistry
Manuscript ID:	OB-COM-12-2014-002549.R1
Article Type:	Paper
Date Submitted by the Author:	08-Jan-2015
Complete List of Authors:	Hudson, Reuben; Colby College, Chemistry Bizier, Nicholas; Daemen College, Chemistry Esdale, Kristin; Colby College, Chemistry Katz, Jeffrey; Colby College, Chemistry

SCHOLARONE ${ }^{\text {" }}$
Manuscripts

Cite this: DOI:
10.1039/x0xx00000x

Synthesis of indoles, benzofurans, and related heterocycles via an acetylene-activated $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ intramolecular cyclization cascade sequence in water or DMSO

Received 00th January 2012,
Accepted 00th January 2012
DOI: 10.1039/x0xx00000x
www.rsc.org/

R. Hudson, ${ }^{a}$ N. P. Bizier, ${ }^{b}$ K. N. Esdale ${ }^{a}$ and J. L. Katz ${ }^{a} *$

Abstract

The synthesis of 2 -substituted indoles and benzofurans was achieved by nucleophilic aromatic substitution, followed by subsequent 5 -endo-dig cyclization between the nucleophile and an ortho acetylene. The acetylene serves the dual role of the electron withdrawing group to activate the substrate for $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$, and the $\mathrm{C} 1-\mathrm{C} 2$ carbon scaffold for the newly formed 5 -membered heteroaromatic ring. This method allows for the bond forming sequence of Ar-X - N/O - C1 to proceed in a single synthetic step, furnishing indoles and benzofurans in moderate to high yields. Since the method is not transition metal mediated, brominated and chlorinated substrates are tolerated, and benzofuran formation can be conducted using water or water/DMSO mixtures as solvent.

Introduction

Indoles, benzofurans, and similar motifs are pervasive throughout nature, ${ }^{1}$ and represent common building blocks for the synthesis of pharmaceuticals ${ }^{2}$ or otherwise biologically relevant targets. The ubiquity of this type of scaffold and utility of products derived therefrom for transistors, ${ }^{3}$ light emitting diodes, ${ }^{4}$ photovoltaics, ${ }^{5}$ biosensors ${ }^{6}$ and other functional organic molecules ${ }^{7}$ continues to drive the pursuit of new synthetic methodologies, which have been extensively reviewed for both indole ${ }^{8}$ and benzofuran ${ }^{9}$ moieties.

Considering routes to indoles that begin with an intact benzene ring, the formation of new bonds can occur between $\mathrm{C} 1-\mathrm{C} 2,{ }^{10} \mathrm{Ar}-\mathrm{H}-$ $\mathrm{C} 2,{ }^{11} \mathrm{Ar}-\mathrm{X}-\mathrm{C} 2,{ }^{12} \mathrm{Ar}-\mathrm{H}-\mathrm{N},{ }^{13} \mathrm{Ar}-\mathrm{X}-\mathrm{N},{ }^{14}$ or $\mathrm{N}-\mathrm{C} 1{ }^{15,}{ }^{16}$ (scheme 1). Similarly, the formation of new bonds within a benzofuran motif can occur between $\mathrm{C} 1-\mathrm{C} 2,{ }^{17} \mathrm{Ar}-\mathrm{H}-\mathrm{C} 2,{ }^{18} \mathrm{Ar}-\mathrm{X}-\mathrm{C} 2,{ }^{19} \mathrm{Ar}-\mathrm{H}-$ $\mathrm{O},{ }^{20} \mathrm{Ar}-\mathrm{X}-\mathrm{O}^{21}$ or $\mathrm{O}-\mathrm{C} 1 .{ }^{16,22}$ The present work describes a procedure for the generation of indoles and benzofurans in which the Ar-F - N/O - C1 bonds are formed in a single synthetic step, achieved through the coupling of various N - and O - nucleophiles with 2-fluoro-arylacetylenes. This bond formation sequence is less common, but not without precedent. Indeed, indoles can be formed
from 2-halo-arylacetylenes and the desired N-coupling partner through $\mathrm{Pd},{ }^{23} \mathrm{Cu},{ }^{24}$ or Ni^{25} mediated processes. Similarly, benzofurans can be produced by Pd^{26} or Cu^{27} catalyzed hydroxylation of aryl halides, followed by subsequent intramolecular cyclization with an ortho acetylene. Even the analogous S (benzothiophene), ${ }^{28}$ and P-(benzophospholes) ${ }^{29}$ heterocycles have been synthesized by similar routes. However, the reliance on transition metal mediated processes precludes the use of aryl fluorides as the reactive halogen species. The present work instead utilizes alkyne-activated $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ for the $\mathrm{Ar}-\mathrm{X}-\mathrm{N} / \mathrm{O}$ bond formation, allowing the use of aryl fluorides. Selectivity of N - and O nucleophiles in an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ context for fluorine over alternative halogens also means that our method is able to furnish Cl - and $\mathrm{Br}-$ substituted indoles and benzofurans, which are difficult to access using metal-mediated $\mathrm{Ar}-\mathrm{X}-\mathrm{N} / \mathrm{O}-\mathrm{C} 1$ bond forming schemes. Since $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactivity benefits from significant polar interactions to stabilize the transition state, water can be used as a sustainable reaction solvent, ${ }^{30}$ or as a co-solvent along with DMSO, for the synthesis of benzofurans by this method.

Scheme 1. Strategies for the Synthesis of Indoles and Benzofurans

The use of alkynes as the sole electron-withdrawing group to promote $S_{N} A r$ reactions has been only sparingly covered in the literature. ${ }^{31}$ We recently probed the topic in detail, ${ }^{32}$ determining reaction rates for the substitution of 4-fluorophenylacetylenes wih p cresol, as well as examining other N - and O - nucleophiles. We found that 2-fluoroarylacetylenes, when reacted with p-toluidine would, after the initial substitution, further cyclize to form the corresponding 2 -substituted indole. Aside from examples in our initial report, analogous sequences have been limited to aromatics with multiple-alkynes for the synthesis of benzotrifurans and benzotripyrrols, ${ }^{33}$ or the use of highly reactive selenium ${ }^{34,35}$ or sulfur ${ }^{34,36}$ nucleophiles. In the present work, we further develop the scope of our method for 2 -substituted indole formation examining p toluidine and acetamide nucleophiles with various electrophiles. Additionally, we expand the substitution/cyclization ${ }^{37}$ cascade reactivity to hydroxide, which provides the corresponding benzofurans.

Results and Discussion

In order to probe the functional group tolerance of the electrophile and to determine the effects of these groups on $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ cyclization, the study compared yields for various 2-fluoro-arylacetylenes $\mathbf{1}$ in the reaction with p-toluidine under $\mathrm{KO} t \mathrm{Bu}$ conditions (Table 1) a mechanism for which is included in scheme 2 . As expected, the addition of a pyridine nitrogen ortho to the substituting fluorine further activated the substrates for $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}(\mathbf{1} \mathbf{j}-\mathbf{n})$, increasing the reaction yields relative to the benzene analogues. The nature of R pendant to the acetylene also significantly influenced reaction yields, generally following the trend for: aryl with EWG $(\mathbf{1 f}-\mathbf{h}, \mathbf{1 m}-\mathbf{n})>$ aryl $(\mathbf{1 a}, \mathbf{1 1})>\operatorname{aryl}$ with EDG $(\mathbf{1 b - e})>t$-butyl $(\mathbf{1 i} \mathbf{- j})>\mathrm{H}(\mathbf{1 k}) . t$-Butyl acetylene electrophile $1 \mathbf{i}$ required prolonged reaction times and increased temperatures, although such reduced reactivity could be mitigated by use of the pyridine analogue $\mathbf{1 j}$. Benzene electrophiles substituted with terminal acetylenes proved problematic due to competing alkyne addition side reactions. Selectivity for the desired $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ pathway could be restored by use of the pyridine analogue $\mathbf{1 k}$ at longer reaction time and lower temperature, although product yields remained modest.

Table 1. Reaction of p-toluidine with various 2-fluoro-arylacetylene electrophiles. ${ }^{\text {a }}$

1

${ }^{\text {a }}$ Conditions: $100^{\circ} \mathrm{C}, 18 \mathrm{~h} .{ }^{\mathrm{b}}$ Conditions: $150{ }^{\circ} \mathrm{C}, 72 \mathrm{~h}$. ${ }^{\mathrm{c}}$ Conditions: $80^{\circ} \mathrm{C}, 48 \mathrm{~h}$. 1a: $\mathrm{Z}=\mathrm{CH}, \mathrm{R}=\mathrm{Ph}, \mathbf{1 b}: \mathrm{Z}=\mathrm{CH}, \mathrm{R}=o-\mathrm{Tol}, \mathbf{1 c}: \mathrm{Z}=\mathrm{CH}, \mathrm{R}=m-\mathrm{Tol}, \mathbf{1 d}: \mathrm{Z}=\mathrm{CH}$, $\mathrm{R}=p-\mathrm{Tol}, \mathbf{1 e}: \mathrm{Z}=\mathrm{CH}, \mathrm{R}=4-t \mathrm{Bu}-\mathrm{Ph}, \mathbf{1 f}: \mathrm{Z}=\mathrm{CH}, \mathrm{R}=4-\mathrm{CF}_{3}-\mathrm{Ph}, \mathbf{1 g}: \mathrm{Z}=\mathrm{CH}, \mathrm{R}=3-$ Py, 1h: $\mathrm{Z}=\mathrm{CH}, \mathrm{R}=4-\mathrm{CN}-\mathrm{Ph}, \mathbf{1 i}: \mathrm{Z}=\mathrm{CH}, \mathrm{R}=t \mathrm{Bu}, \mathbf{1} \mathbf{j}: \mathrm{Z}=\mathrm{N}, \mathrm{R}=t \mathrm{Bu}, \mathbf{1 k}: \mathrm{Z}=\mathrm{N}$, $\mathrm{R}=\mathrm{H}, \mathbf{1 1}: \mathrm{Z}=\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathbf{1 m}: Z=\mathrm{N}, \mathrm{R}=4-\mathrm{CF}_{3}-\mathrm{Ph}, \mathbf{1 g}: Z=\mathrm{N}, \mathrm{R}=3-\mathrm{Py}$.

The trends for electrophile reactivity observed with p-toluidine also held true for hydroxide and acetamide. Of the three nucleophiles, hydroxide reacted with the highest yield. The superior nucleophilicity of hydroxide was also evident through the formation of significant amounts of the corresponding benzofuran products in reactions with N - nucleophiles that were not rigorously dried prior to use. In a competition experiment reacting equimolar amounts of hydroxide and p-tolylamide with electrophile 1a, hydroxide reacted overwhelmingly to form the corresponding benzofuran product in a 95:5 ratio over the indole. Acetamide proved an effective nucleophile as well as ammonia surrogate, by directly providing the corresponding $N-\mathrm{H}$ indole via in situ acetate cleavage, obviating the need for an anhydrous ammonia source to produce this product outcome.

Scheme 2. Proposed $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ intramolecular cyclization cascade mechanism.

Table 2. Reaction of hydroxide, p-toluidine and acetamide with various 2-fluoro-arylacetylene electrophiles.

Electrophile	$\mathrm{NaOH}^{\text {a }}$	p-toluidine ${ }^{\text {b }}$	acetamide ${ }^{\text {c }}$
	 3a (92\%) ${ }^{\text {d }}$		 $4 a$ $(68 \%)^{\text {d }}$
 $1 i$	 3b (89\%)e		
			 4d $(67 \%)^{d}$
	 3 e $(61 \%)^{f}$		 4e $(52 \%)^{f}$

Table 3. Reaction of hydroxide with 2-fluoro-phenylacetylene electrophiles under aqueous conditions

1

$3 f$
$(96 \%)^{a}$

3 g
$(24 \%)^{\mathrm{a}}(97 \%)^{\mathrm{b}}$

3h
$(\text { trace })^{\mathrm{a}}(95 \%)^{\mathrm{b}}$

$(0 \%)^{a}(94 \%)^{b}$

$(6 \%)^{a}(95 \%)^{b}$

$(0 \%)^{a}(0 \%)^{b}$

${ }^{\text {a }}$ Reaction conditions: 0.5 mmol electrophile, 3 equiv $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$ (1 $\mathrm{mL}), 100^{\circ} \mathrm{C}, 18 \mathrm{~h}$, sealed tube. ${ }^{\text {b }}$ Reaction conditions: 0.5 mmol electrophile, 3 equiv $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}), 125^{\circ} \mathrm{C}, 48 \mathrm{~h}$, sealed tube. ${ }^{\mathrm{c}}$ reaction conditions: 0.5 mmol electrophile, 3 equiv NaOH ,
$\mathrm{H}_{2} \mathrm{O} /$ DMSO $1: 1 \mathrm{v} / \mathrm{v}(1 \mathrm{~mL}), 155^{\circ} \mathrm{C}, 48 \mathrm{~h}$, sealed tube.

Abstract

Given the enhanced reactivity of fluorine in $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions, our substitution/cyclization method leaves additional halogens intact (Table 4), providing a handle for further functionalization of the indole and benzofuran products. Such halogenated heterocycles are not readily accessible by metal-mediated hydroxylation ${ }^{26,27}$ or amination. ${ }^{23-25}$ The $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$-cyclization sequence was even found to tolerate the presence of multiple halogens on one substrate (scheme 3); the reaction between bromo- and chloro-substituted electrophile 1q and acetamide provided indole 4 I in a 59% yield.

${ }^{\mathrm{a}} 1.2$ equiv $\mathrm{NaOH}^{\mathrm{b}} 2.2$ equiv p-toluidine, 2.2 equiv $\mathrm{KO} t \mathrm{Bu}^{\mathrm{c}} 2.2$ equiv
acetamide, 2.2 equiv $\mathrm{KO} t \mathrm{Bu}{ }^{\mathrm{d}}$ Conditions: $100^{\circ} \mathrm{C}$, $18 \mathrm{~h} .{ }^{\circ} \mathrm{Conditions:} 150{ }^{\circ} \mathrm{C}$, $72 \mathrm{~h} .{ }^{\mathrm{f}}$ Conditions: $80^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

The excellent reactivity of hydroxide as a nucleophile for this transformation (Table 2) prompted us to investigate aqueous conditions for the synthesis of benzofurans (Table 3). Water could successfully be used as the exclusive reaction solvent for the more reactive $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ electrophiles possessing a pyridine nitrogen ortho to the substituting fluorine ($\mathbf{3 c} \mathbf{c}-\mathbf{d}$ and $\mathbf{3 f - h}$). For less electrophilic
substrates, DMSO/water mixtures were required for efficient the substituting fluorine ($\mathbf{3 c} \mathbf{c}-\mathbf{d}$ and $\mathbf{3 f - h}$). For less electrophilic
substrates, DMSO/water mixtures were required for efficient reactivity ($\mathbf{3 a}$ and $\mathbf{3 b}$). conditions for the synthesis of benzofurans (Table 3). Water could

Table 4. Reaction of hydroxide, p-toluidine and acetamide with various brominated and chlorinated 2-fluoro-phenylacetylene electrophiles. ${ }^{\text {a }}$

Electrophile acetamide $^{\text {d }}$
${ }^{\mathrm{a}}$ Conditions: $100{ }^{\circ} \mathrm{C}, 18 \mathrm{~h} .{ }^{\mathrm{b}} 1.2$ equiv $\mathrm{NaOH}^{\mathrm{c}} 2.2$ equiv p-toluidine, 2.2 equiv $\mathrm{KO} t \mathrm{Bu}{ }^{\mathrm{d}} 2.2$ equiv acetamide, 2.2 equiv $\mathrm{KO} t \mathrm{Bu}$

Scheme 3. Indolization of a multiply-halogenated electrophile

For the generation of both benzofurans and indoles, deuteration at C 2 was observed when $\mathrm{DMSO}-\mathrm{D}_{6}$ was used as the reaction solvent (Table 5), indicating transient deprotonation of the DMSO under both hydroxide (Entry 3) and t-butoxide conditions (Entries 1 and 2). Additionally, deuteration at C 1 was observed with the terminal acetylene electrophile in DMSO-D ${ }_{6}$ (Entries 2 and 3), most likely as a result of H / D exchange prior to cyclization. To test this assumption we reacted $\mathbf{1 r}$ (Entry 4), a substrate less active than the fluoro analogue $\mathbf{1 k}$ toward $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, but which should possess similar terminal alkyne acidity. The substrate was found to undergo deuteration at the terminal alkyne position, but did not proceed with the rest of the regular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ cyclization sequence

Table 5. Deuteration Experiments in DMSO-D 6.
Entry Electrophile Nucleophile
${ }^{a}$ Reaction conditions: 0.5 mmol electrophile, 2.2 equiv p toluidine, 2.2 equiv $\mathrm{KO} t \mathrm{Bu}, \mathrm{DMSO}_{-} \mathrm{D}_{6} 1 \mathrm{~mL}, 100^{\circ} \mathrm{C}, 18 \mathrm{~h} .{ }^{\mathrm{b}} 0.5$ mmol electrophile, 2.2 equiv p-toluidine, 2.2 equiv $\mathrm{KO} t \mathrm{Bu}$, DMSO-D ${ }_{6} 1 \mathrm{~mL}, 80^{\circ} \mathrm{C}, 72 \mathrm{~h} .{ }^{\mathrm{c}} 0.5 \mathrm{mmol}$ electrophile, 1.2 equiv NaOH, DMSO-D ${ }_{6} 1 \mathrm{~mL}, 80^{\circ} \mathrm{C}, 72 \mathrm{~h}$. ${ }^{\mathrm{d}}$ percent deuteration at each position determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be greater than 95%.

Conclusions

The $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ intramolecular cyclization cascade sequence presented herein allows for the formation of Ar-X - N/O - C1 bonds in a single synthetic step between 2-fluoro-arylacetylenes and various N - or O - nucleophiles for the generation of the corresponding indoles, 1ebenzofurans or related heterocycles. This type of bond forming sequence is rare for such heterocycles, and our $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$-based approach allows the formation of brominated and chlorinated products, as well as reactivity in aqueous systems.

Materials and Methods

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were collected on a Varian 500 MHz NMR. HRMS data were obtained from an Agilent Technologies 6230 TOF LC/MS with an Ion Sense DART 100 ionization interface. All IR spectra were recorded on a Perkin Elmer FT-IR Spectrum One instrument.

General procedure for 2-halo-arylacetylenes synthesis:

In a sealed tube were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.13 \mathrm{mmol})$ and CuI (0.25 mmol). The mixture was purged with Argon for 5 minutes, and then degassed 2-fluoro-1-iodoarene (8.75 mmol), degassed terminal alkyne (9.50 mmol), and triethylamine (12 mL) were added in that order. The mixture was stirred at room temperature for 18 hours and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 80 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product purified by silica gel flash column chromatography.

1-(o-fluorophenyl)-2-(o-tolyl)ethyne (1b) Column chromatography eluent: hexanes. Colorless oil (85%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.53$ (td, $J=7.8 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52-7.48 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.19$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.11(\mathrm{q}, 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta: 163.6,161.6,138.8,131.6,129.7$, 129.6, 129.1, 123.9 (d, $J=3.8 \mathrm{~Hz}$), 119.8, 115.6, 115.4, 94.6 (d, $J=3.3 \mathrm{~Hz}$), 82.0, 21.5. TLC: $\mathrm{R}_{f}=0.5$ (hexanes). IR (ATR): 3031 (m), 2920 (m), 2216 (m), 1931 (m), 1800 (w), 1700 (m), 1600 (w), 1569 (m), 1486 (s), 1319 (w), 1271 (m), 1265 (s), 1221 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FH}\right]^{+}$ 211.0918, measured 211.0921 .

1-(o-fluorophenyl)-2-(m-tolyl)ethyne (1c) Column chromatography eluent: hexanes. Yellow oil (88\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-56$ (td, $J=6.8 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48-7.43 (d, $J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.29$ (m, 2H), 7.25-7.21 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7,161.7,138.1,133.5$ (d, $J=$ $1.3 \mathrm{~Hz}), 132.3,129.9$ (d, $J=7.6 \mathrm{~Hz}$), 129.6, 128.6 (d, $J=65.5$ $\mathrm{Hz}), 124.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.8,115.6(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 112.1$ $(\mathrm{d}, J=16.4 \mathrm{~Hz}), 94.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 82.3,21.2 . \mathrm{TLC}: \mathrm{R}_{f}=0.5$ (hexanes). IR (ATR): 3038 (s), 2921 (s), 2212 (m), 1946 (w), 1793 (w), 1698 (w), 1598 (s), 1572 (s), 1495 (s), 1481 (s), 1380 (w), 1318 (w), 1264 (m), 1226 (s), 1205 (m), 1167 (w), 1155 (w), 1131 (w), 1098 (s), 1030 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FH}\right]^{+} 211.0918$, measured 211.0896 .

1-(o-fluorophenyl)-2-(p-tolyl)ethyne (1d) Column chromatography eluent: hexanes. White solid (90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.25 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24-7.18 (m, 2H), 2.46 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta: 163.6,161.8,138.8,133.4$ (d, $J=1.5 \mathrm{~Hz}), 131.6,129.7(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.1,123.9(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}), 119.8,115.5(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 112.1$ (d, $J=15.6), 94.6$ (d, $J=3.5 \mathrm{~Hz}$), 21.5. TLC: $\mathrm{R}_{f}=0.5$ (hexanes). IR (ATR): 3027 (m), 2919 (m), 2219 (m), 1915 (m), 1805 (w), 1699 (m), 1662 (w), 1602 (w), 1566 (m), 1556 (m), 1542 (w), 1535 (w), 1509 (s), 1488 (s$), 1444$ (s), 1318 (w), 1276 (m), 1263 (s), 1219 (s), 1180 (m), 1139 (w), 1096 (m), 966 (w), 942 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FH}\right]^{+}$211.0918, measured 211.0918.

2-(o-fluorophenyl)-1-[p-(tert-butyl)phenyl]ethyne (1e) Column chromatography eluent: hexanes. White solid (87\%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.37(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.5,161.6,151.9$, $133.4,131.4,129.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 125.4,123.9(\mathrm{~d}, J=3.8$ $\mathrm{Hz}), 120.0,115.5(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 112.2(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 94.6$ (d, $J=3.4 \mathrm{~Hz}$), 34.8, 31.2. TLC: $\mathrm{R}_{f}=0.5$ (hexanes). IR (ATR): 2964 (s), 2860 (m), 2221 (w), 1918 (w), 1844 (w), 1733 (w), 1716 (w), 1698 (m), 1674 (w), 1616 (w), 1555 (m), 1567 (m), 1519 (m), 1502 (m), 1485 (s), 1450 (s), 1405 (w), 1362 (m), 1263 (s), 1213 (s), 1144 (w), 1094 (s), 1015 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FH}\right]^{+}$253.1387, measured 253.1417.

2-(o-fluorophenyl)-1-[p-(trifluoromethyl)phenyl]ethyne (1f) Column chromatography eluent: hexanes. White solid (80%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64-7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 7.57-7.53(\mathrm{td}, \mathrm{J}=7.4 \mathrm{~Hz}, 1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta: 163.7,161.7,133.5(\mathrm{~d}, J=0.9 \mathrm{~Hz}), 131.9$, $130.6(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 126.7,125.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.9,124.1$ (d, $J=3.8 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 111.2(\mathrm{~d}, J=15.8 \mathrm{~Hz})$, 92.8 (d, $J=3.2 \mathrm{~Hz}$), 85.0. TLC: $\mathrm{R}_{f}=0.5$ (hexanes). IR (ATR): 3060 (w), 2928 (w), 2225 (m), 1927 (w), 1806 (w), 1698 (w), 1675 (w), 1615 (m), 1604 (s), 1555 (m), 1542 (m), 1521 (w), 1489 (s), 1449 (s), 1405 (m), 1324 (s), 1265 (s), 1223 (s), 1156 (s), 1104 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{H}\right]^{+}$ 265.0635, measured 265.0661.

2-(o-fluorophenyl)-1-(2-pyridyl)ethyne (1g) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Brown oil (78\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.82(\mathrm{~s}, 1 \mathrm{H})$, $8.60(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{td}, J=$ $7.5 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6,161.6,152.2,149.7,138.5$, $133.4,130.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 123.2,115.6$ $(\mathrm{d}, J=21.4 \mathrm{~Hz}), 111.2(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 90.2(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, 86.0. TLC: $\mathrm{R}_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 3421 (w), 3033 (m), 2226 (w), 1917 (w), 1844 (w), 1795 (w), 1733 (w), 1716 (w), 1698 (w), 1662 (w), 1612 (w), 1572 (m), 1561 (s), 1542 (w), 1524 (w), 1492 (s), 1473 (m), 1452 (m), 1406 (s), 1329 (w), 1264 (s), 1221 (s), 1187 (m), 1159 (w), 1145 (w), 1120 (w), 1098 (s), 1022 (s), 943 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNH}\right]^{+}$198.0714, measured 198.0697.

2-(o-fluorophenyl)-1-(4-cyanophenyl)ethyne (1h) Column chromatography eluent: hexanes to EtOAc/hexanes, 1/9, step gradient. White solid (15%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.66-7.61 (m, 4H), 7.55-7.51 (td, $J=7.5 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-$ $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7,161.7,133.5,132.1(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=7.6$ $\mathrm{Hz}), 127.8,124.1(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 118.4,115.7(\mathrm{~d}, J=85.0$ $\mathrm{Hz}), 111.8,111.0$ (d, $J=17.6$), 92.5 (d, $J=3.4$), 87.0. TLC: R_{f} $=0.5$ (EtOAc/hexanes, 1/9). IR (ATR): 3030 (w), 2924 (m), 2880 (w), 2221 (s), 1931 (m), 1796 (w), 1716 (w), 1698 (w), 1676 (w), 1600 (s), 1574 (m), 1555 (m), 1542 (w), 1535 (w), 1504 (s), 1485 (s), 1442 (m), 1409 (m), 1320 (w), 1263 9s), 1216 (s), 1179 (m), 1155 (w), 1136 (w), 1108 (w), 1096 (s), 1029 (m), 1017 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{FNH}\right]^{+}$222.0714, measured 222.0695.

2-fluoro-3-(tert-butylethynyl)pyridine (1j) Column chromatography eluent: hexanes to EtOAc/hexanes, 1/9, step gradient. Brown oil (66%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ : 8.10-8.07 (ddd, $J=4.9 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79-7.74 (dd, $J=7.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta: 163.7,161.8$, 145.7 (d, $J=14.5 \mathrm{~Hz}$), 143.3 (d, $J=2.9 \mathrm{~Hz}), 120.8(\mathrm{~d}, J=4.5$ Hz), 105.7 (d, $J=1.9 \mathrm{~Hz}$), $71.0(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 30.7,28.2$. TLC: $\mathrm{R}_{f}=0.6$ (EtOAc/hexanes, 1/9). IR (ATR): 3056 (m), 2223 (m), 1955 (w), 1884 (w), 1748 (w), 1716 (w), 1698 (w), 1674 (w), 1593 (m), 1562 (m), 1491 (s), 1430 (s), 1391 (w), 1316 (w), 1291 (w), 1278 (w), 1252 (s), 1212 (m), 1178 (w), 1151 (m), 1069 (m), 1027 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FNH}\right]^{+}$178.1027, measured 178.1025.

3-ethynyl-2-fluoropyridine (1k) See SI for full synthesis details. TMS-acetylene coupled through general procedure described above, then cleaved with TBAF to afford terminal alkyne 1k. Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 19$. Yellow solid (81%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.22-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.2,162.2$, 147.3 (d, $J=14.5 \mathrm{~Hz}$), $144.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=3.8$ $\mathrm{Hz}), 106.3(\mathrm{~d}, J=31.5 \mathrm{~Hz}), 84.1(\mathrm{~d}, J=2.0 \mathrm{~Hz}) . \mathrm{TLC}: \mathrm{R}_{f}=0.8$ ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 19$). IR (ATR): 3243 (s), 3096 (m), 3054 (m), 2926 (m), 2172 (w), 2109 (s), 1971 (m), 1938 (m), 1906 (m), 1765 (m), 1599 (s), 1566 (s), 1552 (m), 1443 (s), 1421 (s), 1325 (m), 1291 (s), 1252 (s), 1172 (s), 1107 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FNH}\right]^{+}$122.0401, measured 122.0408.

2-fluoro-3-(phenylethynyl)pyridine (11) Column chromatography eluent: hexanes to EtOAc/hexanes, 1/9, step gradient. Brown solid (81%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.10-8.07 (dt, $J=5 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.53-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.4,161.5,146.5(\mathrm{~d}, J=13.8 \mathrm{~Hz})$, 143.3 (d, $J=2.5 \mathrm{~Hz}$), 131.7, 129.1, 128.5, 122.1, 121.1 (d, $J=$ $4.3 \mathrm{~Hz}), 107.4(\mathrm{~d}, J=31.5 \mathrm{~Hz}), 96.0(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 81.0(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}) . \mathrm{TLC}: \mathrm{R}_{f}=0.4$ (EtOAc/hexanes, 1/9). IR (ATR): 3057 (m), 2223 (m), 1955 (w), 1884 (w), 1748 (w), 1716 (w), 1698 (w), 1674 (w), 1593 (s), 1562 (s), 1491 (s), 1430 (s), 1391 (s), 1291 (w), 1278 (w), 1252 (s), 1212 (s), 1178 (w), 1151 (m), 1097 (s), 1069 (w), 1027 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNH}\right]^{+}$198.0714, measured 198.0714.

2-fluoro-3-((4-(trifluoromethyl)phenyl)ethynyl)pyridine
(1m) Column chromatography eluent: hexanes to EtOAc/hexanes, 1/9, step gradient. White solid (74\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22-8.19(\mathrm{dq}, J=5.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.96-7.91 (m, 1H), 7.69-7.60 (m, 4H), 7.24-7.20 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6,161.7,147.2(\mathrm{~d}, J=13.9$ $\mathrm{Hz}), 143.5(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 132.0,130.7(\mathrm{q}, J=32.8 \mathrm{~Hz}), 126.0$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}), 125.4(\mathrm{q}, J=3.8 \mathrm{~Hz}), 121.1(\mathrm{~d}, J=4.4 \mathrm{~Hz})$, 106.9 (d, $J=31.5$), 94.3 , 83.1 (d, $J=5.3 \mathrm{~Hz}$). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/hexanes, 1/9). IR (ATR): 3050 (w), 2890 (w), 1931 (w), 1748 (w), 1699 (w), 1675 (w), 1614 (w), 1595 (m), 1562 (m), 1524 (w), 1501 (w), 1456 (m), 1437 (s), 1403 (w), 1321 (s), 1255 (m), 1216 (w), 1184 (w), 1162 (s), 1125 (m), 1063 (s),

1013 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{FNH}\right]^{+}$ 266.0587, measured 266.0597.

2-fluoro-3-(2-pyridylethynyl)pyridine (1n) Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 19$, step gradient. Yellow solid (72\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.73-8.69 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.53-8.50(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15-8.10(\mathrm{dq}, J=5.0 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 1 \mathrm{H})$, $7.78-7.75(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{ddd}, J=8.0$ $\mathrm{Hz}, 5.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.4,161.6,152.3,149.3,147.2(\mathrm{~d}, J=14.5$ $\mathrm{Hz}), 143.4(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 138.6,123.1,121.1(\mathrm{~d}, J=2.5 \mathrm{~Hz})$, $119.4,92.4$ (d, $J=1.9 \mathrm{~Hz}$), 84.1 ($\mathrm{d}, J=12.6 \mathrm{~Hz}$). TLC: $\mathrm{R}_{f}=0.2$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 3084 (w), 3028 (w), 2228 (w), 1907 (w), 1748 (w), 1716 (w), 1699 (w), 1675 (w), 1602 (m), 1563 (s), 1542 (m) 1501 (w), 1477 (s), 1433 (s), 1409 (m), 1318 (m), 1297 (w), 1250 (s), 1216 (m), 1188 (m), 1160 (w), 1118 (m), 1096 (s), 1033 (w), 1023 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{H}\right]^{+}$199.0666, measured 199.0664.

1-chloro-2-fluoro-3-(phenylethynyl)benzene (10) Column chromatography eluent: hexanes. Yellow solid (85\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.36(\mathrm{~m}$, $5 \mathrm{H}), 7.11-7.07(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.3,157.2,131.8,131.7,130.6,129.0$, $128.5,124.4(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 122.6,113.7(\mathrm{~d}, J=15.1), 95.7$ (d, $J=3.8 \mathrm{~Hz}$), 81.8. TLC: $\mathrm{R}_{f}=0.7$ (hexanes). IR (ATR): 3054 (m), 2197 (w), 1946 (w), 1869 (w), 1797 (w), 1747 (w), 1716 (w), 1698 (w), 1676 (w), 1603 (m), 1571 (m), 1556 (w), 1542 (w), 1524 (w), 1492 (s), 1464 (m), 1448 (s), 1314 (w), 1272 (w), 1239 (s), 1179 (w), 1156 (m), 1136 (m), 1061 (w), 1071 (m), 1027 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClFH}\right]^{+}$ 231.0371, measured 231.0377.

4-bromo-1-fluoro-2-(phenylethynyl)benzene (1p)

Column chromatography eluent: hexanes. Yellow oil (83\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.68$ (dd, $J=6.5 \mathrm{~Hz}, 2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.04-6.99(\mathrm{t}, J=$ $9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.8,160.8,135.8$, $132.8(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 131.9,129.0,128.5,122.5,117.2(\mathrm{~d}, J=$ $22.7 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 114.1(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 95.6(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}$), 81.4. TLC: $\mathrm{R}_{f}=0.7$ (hexanes). IR (ATR): 3061 (m), 2222 (m), 1947 (w), 1877 (w), 1748 (w), 1716 (w), 1697 (w), 1675 (w), 1605 (w), 1572 (w), 1555 (w), 1541 (w), 1495 (s), 1479 (s), 1442 (m), 1392 (s), 1276 (w), 1255 (s), 1222 (s), 1178 (w), 1158 (w), 1144 (w), 1107 (s), 1069 (s), 1025 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrFH}\right]^{+}$274.9866, measured 274.9852.

1-bromo-2-chloro-3-fluoro-4-(phenylethynyl)benzene
(1q) Column chromatography eluent: hexanes. Off-white solid (73%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.22(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.7, 157.7, $132.5,131.8,131.3(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=16.4 \mathrm{~Hz})$, $128.5(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 123.8,122.3,121.8,112.6(\mathrm{~d}, J=16.8)$, 95.6 (d, $J=3.8$), 81.4 (d, $J=63 \mathrm{~Hz}$). TLC: $\mathrm{R}_{f}=0.7$ (hexanes). IR (ATR): 3053 (m), 2538 (w), 2206 (m), 1951 (w), 1885 (w), 1795 (w), 1748 (w), 1716 (w), 1700 (w), 1670 (w), 1587 (m), 1571 (w), 1542 (w), 1525 (w), 1489 (s), 1458 (s), 1441 (m), 1411 (s), 1318 (w), 1260 (w), 1222 (m), 1182 (m), 1142 (w),

1157 (w), 1127 (w), 1069 (w), 1025 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{BrClFH}\right]^{+}$308.9476, measured 308.9473.

2-chloro-3-ethynylpyridine (1r) See SI for full synthesis details. Cleaved from commercially available 2-Chloro-3-trimethylsilanylethynyl-pyridine with TBAF. Column chromatography eluent: hexanes to EtOAc/hexanes, 3/7, step gradient. White solid (97\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.33-8.29 (m, 1H), 7.81-7.77 (m, 1H), 7.20-7.16 (m, 1H) 3.48 $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.5,148.8,142.1$, 121.8, 119.4, 85.0, 78.2. TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/hexanes, 1/9). IR (ATR): 3212 (s), 2106 (m), 1962 (w) 1926 (w), 1839 (w), 1748 (w), 1716 (w), 1698 (w), 1675 (w), 1646 (w), 1578 (m), 1556 (s), 1535 (m), 1501 (w), 1473 (w), 1440 (m), 1389 (s), 1275 (m), 1262 (m), 1125 (s), 1092 (w), 1077 (s), 1070 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNH}\right]^{+}$138.0105, measured 138.0107.

2-fluoro-3-((4-methoxyphenyl)ethynyl)pyridine (1s) Column chromatography eluent: hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad 1: 1$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Yellow solid (97\%). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-8.07(\mathrm{dq}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.80(\mathrm{ddd}, J$ $=9.3 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{ddd}$, $J=7.5 \mathrm{~Hz}, 5 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.4,161.4,160.2,146.2-146.0$ (d, $J=13.9 \mathrm{~Hz}) 143.1-143.0(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 133.3,121.1-121.0$ (d, $J=4.4 \mathrm{~Hz}), 114.1,108.0-107.3(\mathrm{~d}, J=125 \mathrm{~Hz}), 96.2(\mathrm{~d}, J=$ 1.9 Hz), $79.8(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 55.2$. TLC: $\mathrm{R}_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 3056 (w), 3006 (w), 2962 (m), 2936 (m), 2838 (m), 2539 (m), 2221 (s), 2192 (m), 2015 (w), 1889 (w), 1607 (s), 1596 (s), 1561 (s), 1508 (s), 1456 (s), 1431 (s), 1319 (s), 1288 (s), 1247 (s), 1212 (s), 1174 (s), 1146 (s), 1107 (s), 1096 (s), 1027 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FNOH}\right]^{+}$ 228.0819, measured 228.0820 .

General procedure for \mathbf{N}-tolyl indole synthesis:

In a reaction flask under Ar, 2-halo-arylacetylene (0.5 mmol), p-toluidine (1.1 mmol), and DMSO (1.0 mL) were added. The reaction was started with the addition of $\mathrm{KO} t \mathrm{Bu}(1.1 \mathrm{mmol})$. The reaction was stirred on an aluminum heating block at $100^{\circ} \mathrm{C}$ for 18 hr . The reaction was quenched by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and addition of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product purified by silica gel flash column chromatography.

2-(o-tolyl)-1-(p-tolyl)-1H-indole (2b) Column

 chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Colorless oil (83%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.74-7.69 $(\mathrm{m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}$, $3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.2$, 137.7, 137.6, 136.4, 135.5, 132.7, 131.5, 129.9, 129.5, 128.2, 128.1, 127.1, 125.2, 121.9, 120.4, 120.4, 110.6, 104.0, 21.1, 20.4. TLC: $\mathrm{R}_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 3015 (s), 2221 (m),2066 (w), 1634 (s), 1512 (s), 1488 (s), 1453 (s), 1262 (m), 1220 (m), 1097 (m), 1030 (w). HRMS (DART): calculated for $\left[_{22} \mathrm{H}_{19} \mathrm{NH}\right]^{+}$298.1590, measured 298.1581.

2-(m-tolyl)-1-(p-tolyl)- $\mathbf{H} \boldsymbol{H}$-indole (2c) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. White solid (72%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta: 7.78-7.74$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.07(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.0,139.2,137.8,137.0,136.0,132.6$, $129.9,129.7,128.3,128.1,128.0,127.9,126.1,122.2,120.6$, 120.5, 110.7, 103.4, 21.5, 21.2. TLC: $\mathrm{R}_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 3031 (m), 2920 (m), 2862 (w), 1880 (w), 1606 (s), 1510 (s), 1483 (w), 1452 (s), 1376 (m), 1352 (m), 1316 (m), 1274 (w), 1261 (w), 1211 (m), 1173 (w), 1147 (w), 1108 (w), 1095 (w), 1078 (w), 1039 (w), 1014 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NH}\right]^{+}$298.1590, measured 298.1598.

1,2-di-p-tolyl-1 \boldsymbol{H}-indole (2d) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes, $4 / 6$, step gradient. White solid (69%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.70(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.29 (m, 1H), 7.28-7.17 (m, 8H), 7.12-7.09 (d, $J=8 \mathrm{~Hz}$, $2 \mathrm{H}) 6.81(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.9,139.1,137.1,137.0,136.0$, $129.9,129.8,128.9,128.8,128.3,127.9,122.0,120.5,120.4$, 110.7, 103.0, 21.2, 21.2. TLC: $\mathrm{R}_{f}=0.2$ (hexanes). IR (ATR): 3029 (m), 2960 (m), 1844 (w), 1749 (w), 1716 (w), 1699 (w), 1674 (w), 1606 (w), 1555 (w), 1542 (m), 1513 (s), 1500 (m), 1455 (s), 1412 (w), 1380 (m), 1357 (m), 1320 (w), 1307 (m), 1255 (w), 1187 (w), 1174 (w), 1147 (w), 1113 (w), 1021 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NH}\right]^{+}$298.1590, measured 298.1573.

2-(4-(tert-butyl)phenyl)-1-(p-tolyl)-1 H-indole

Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, $1 / 1$, step gradient. White solid (67%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.73-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.16(\mathrm{~m}$, $4 \mathrm{H}), 6.81(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.2,140.8,139.2,137.0,136.1$, $129.9,129.6,128.4,128.3,127.9 .2,125.0,122.0,120.5,120.3$, 110.7, 103.0, 34.5, 31.3, 21.2. TLC: $\mathrm{R}_{f}=0.2$ (hexanes). IR (ATR): 3031 (w), 2960 (m), 2864 (w), 1844 (w), 1734 (w), 1716 (w), 1699 (w), 1675 (w), 1606 (w), 1564 (w), 1555 (w), 1541 (w), 1535 (w), 1513 (s), 1503 (m), 1473 (w), 1409 (w), 1378 (m), 1360 (w), 1347 (m), 1321 (m), 1259 (m), 1200 (m), 1175 (w), 1113 (m), 1017 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NH}\right]^{+} 340.2060$, measured 340.2037.

1-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)-1H-indole (2f) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes $1 / 1$, step gradient. White solid (81%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.72-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-7.17 (m, 7H), 7.16-7.12 (dt, $J=8.5 \mathrm{~Hz}, 2 \mathrm{~Hz}, 2 \mathrm{H}) .6 .88$ (d, $J=0.7 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.5, 139.0, 137.5, 136.1, 135.5, 130.2, 128.8, 128.0, 127.7, $125.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.1,122.9,120.8(\mathrm{~d}, J=12.6 \mathrm{~Hz})$, 110.8, 104.7, 29.7, 21.1. TLC: $\mathrm{R}_{f}=0.3$ (hexanes). IR (ATR): 3034 (m), 2920 (m), 1617 (s), 1514 (s), 1474 (w), 1453 (s), 1412 (m), 1379 (m), 1320 (s), 1257 (w), 1212 (m), 1165 (s), 1123 (s), 1109 (s), 1079 (s), 1063 (s), 1016 (s). HRMS
(DART): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NH}\right]^{+}$352.1313, measured 352.1317.

2-(pyridin-3-yl)-1-(p-tolyl)- \mathbf{H}-indole (2g) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Brown solid (79\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.65-8.62 $(\mathrm{m}, 1 \mathrm{H}), 8.48-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.50(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.11(\mathrm{~m}, 8 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,148.1,139.7,137.6,137.2,135.6$, 135.5, 130.0, 128.9, 128.2, 122.7, 120.8, 120.7, 110.7, 104.4, 20.9. TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 3029 (m), $2920(\mathrm{~m})$, 1920 (w), 1771 (w), 1697 (w), 1661 (w), 1607 (m), 1571 (m), 1555 (w), 1541 (w), 1535 (w), 1510 (s), 1448 (s), 1421 (m), 1376 (m), 1364 (m), 1350 (m), 1324 (m), $1310(\mathrm{~m}), 1254(\mathrm{~m})$, 1208 (m), 1173 (m), 1143 (w), 1127 (w), 1108 (w), 1104 (m), 1038 (w), 1024 (m), 1016 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{H}\right]^{+}$285.1386, measured 285.1362.

4-(1-(p-tolyl)-1 H-indol-2-yl)benzonitrile (2h) Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 39$, step gradient. Off-white solid (80%). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.72-7.68$ (m, 3H), 7.38-7.34 (dt, $J=8.8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.9,139.5,137.4,136.3,135.6,131.6$, 130.1, 128.7, 128.0, 127.7, 127.7, 122.9, 120.8, 120.7, 110.8 , 104.5, 21.2. TLC: $\mathrm{R}_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 0.4\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, 1/39). IR (ATR): 3480 (m), 3365 (w), 3149 (s), 2922 (w), 1905 (w), 1793 (w), 1680 (s), 1663 (s), 1605 (s), 1563 (m), 1541 (w), 1535 (w), 1472 (w), 1453 (m), 1411 (w), 1380 (s), 1352 (m), 1321 (m), 1282 (m), 1259 (m), 1210 (m), 1139 (m), 1106 (m), 1017 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{H}\right]^{+}$ 309.1386, measured 309.1380.

2-(tert-butyl)-1-(p-tolyl)-1 \mathbf{H}-pyrrolo[2,3-b]pyridine (2j) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Brown solid (68%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.22-8.19 (dd, $J=4.7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86-7.83 (dd, $J=7.8$ $\mathrm{Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.04-7.00 (dd, $J=8 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (s, 1H), $2.46(\mathrm{~s}, 3 \mathrm{H})$, 1.29 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.6,151.2$, $142.8,138.7,136.2,130.5,129.7,127.3,119.5,116.0,96.9$, 33.5, 30.7, 21.4. TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 0.7\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, 1/19), $0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, 1/1). IR (ATR): 3041 (m), 2958 (s), 2924 (s), 2869 (s), 1593 (m), 1574 (m), 1525 (s), 1515 (s), 1470 (m), 14010 (s), 1393 (m), 1361 (s), 1311 (s), 1285 (s), 1246 (s), 1216 (m), 1199 (m), 1132 (w), 1107 (m), 1041 (w), 1023 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{H}\right]^{+}$ 265.1705, measured 265.1703.

1-(p-tolyl)-1H-pyrrolo[2,3-b]pyridine (2k) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $1 / 1$, step gradient. Brown solid (51%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.39-8.36 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.96(\mathrm{~d}, J=9 \mathrm{~Hz}), 7.64-7.61$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.11(\mathrm{ddd}, J=8.0 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.63-6.61 (dd, $3.8 \mathrm{~Hz}, 0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.5,136.2,135.9,129.9,128.0,124.0$, $116.5,108.2,107.7,101.2,21.0$. TLC: $\mathrm{R}_{f}=0.8\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 0.4$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, 1/1). IR (ATR): 2923 (s), 1594 (s), 1530 (s),

1476 (m), 1424 (s), 1359 (m), 1323 (s), 1269 (m), 1235 (m), 1210 (w), 1147 (w), 1110 (m), 1039 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{H}\right]^{+}$209.1079, measured 209.1083.

2-phenyl-1-(p-tolyl)-1 \boldsymbol{H}-pyrrolo[2,3-b]pyridine Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Yellow solid (78\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.36-8.33 (dd, $J=4.5 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.96(\mathrm{dd}, J=8.0$ $\mathrm{Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.15-$ $7.12(\mathrm{dd}, 8.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.0,143.7,141.1,137.1,134.3$, 132.2, 129.7, 128.8, 128.3, 128.2, 128.1, 127.7, 120.8, 116.9, 101.1, 21.2. TLC: $\mathrm{R}_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 0.4(\mathrm{EtOAc} /$ hexanes, $1 / 9)$. IR (ATR): 3058 (w), 3034 (w), 2917 (w), 1920 (w), 1884 (w), 1845 (w), 1734 (w), 1699 (w), 1675 (w), 1604 (w), 1589 (m), 1567 (m), 1541 (m), 1512 (s), 1489 (w), 1473 (m), 1447 (w), 1417 (s ,, 1371 (s), 1315 (m), 1297 (m), 1277 (m), 1241 (m), 1211 (w), 1195 (w), 1183 (m), 1108 (m), 1073 (w), 1028 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{H}\right]^{+}$285.1386, measured 285.1396.

1-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3blpyridine (2m) Column chromatography eluent: hexanes to EtOAc/hexanes, 1/9, step gradient. Brown solid (84%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39-8.36(\mathrm{dd}, J=4.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02-7.98(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23-7.19(\mathrm{dt}, J=9.0 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.14$ (dd, J $=7.5 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.3,144.3,139.3,137.7,135.7,134.0$, 130.0, 129.6, 129.4, 128.9, 128.8, 128.1, 125.2 (q, $J=3.8 \mathrm{~Hz}$), 120.6, 117.2, 102.4, 21.2. TLC: $\mathrm{R}_{f}=0.8\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 0.4$ (EtOAc/hexanes, 1/9). IR (ATR): 3006 (w), 2990 (w), 1844 (w), 1738 (w), 1716 (w), 1699 (w), 1674 (w), 1617 (w), 1555 (w), 1542 (w), 1513 (w), 1501 (w), 1473 (w), 1456 (w), 1403 (w), 1325 (s), 1275 (s), 1260 (s), 1160 (s), 1122 (s), 1109 (s), $1084(\mathrm{~m}), 1063(\mathrm{~m}), 1018(\mathrm{~m})$. HRMS (DART): calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NH}\right]^{+} 353.1260$, measured 353.1239.

2-(pyridin-3-yl)-1-(p-tolyl)-1 H-pyrrolo[2,3-b]pyridine (2n) Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 9$, step gradient. Brown solid (88%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.37-$ $8.35(\mathrm{dd}, J=4.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.98(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.53-7.49 (dt, $J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26-7.23 (d, J $=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17$ (m, 3H), 7.17-7.14 (dd, $J=7.8 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{~s}, 1 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.2,149.5$, 148.7, 144.3, 137.8, 137.4, 135.8, 133.8, 130.0, 128.7 128.1, $123.0,120.5,117.2,109.8,101.9,21.2 . \mathrm{TLC}: \mathrm{R}_{f}=0.1$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 0.2\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 19\right)$. IR (ATR): 3037 (m), 2923 (m), 2855 (m), 1897 (w), 1693 (m), 1592 (m), 1567 (m), 1512 (s), 1462 (m), 1430 (s), 1403 (s), 1371 (m), 1316 (s), 1294 (s), 1247 (m), 1211 (w), 1178 (m), 1110 (m), 1023 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{H}\right]^{+}$286.1344, measured 286.1344.

7-chloro-2-phenyl-1-(p-tolyl)-1 \boldsymbol{H}-indole (2o) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, $1 / 4$, step gradient. White solid (73%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
7.65-7.62 (dd, $J=7.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.25-$ 7.21 (dt, $J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.19$ (dd, $J=7.7 \mathrm{~Hz}, 1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.8$ $(\mathrm{s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.3$, 138.1, 136.2, 134.0, 132.4, 130.9, 130.3, 129.5, 128.7, 128.0, 127.6, 124.0, 120.8, 119.3, 117.4, 103.5, 21.3. TLC: $\mathrm{R}_{f}=0.6$ (hexanes). IR (ATR): 3064 (w), 3038 (w), 2924 (m), 2853 (w), 1897 (w), 1785 (w), 1609 (m), 1581 (m), 1513 (w), 1491 (m), 1470 (s), 1456 (m), 1443 (m), 1422 (s), 1377 (w), 1351 (w), 1322 (w), 1289 (s), 1272 (w), 1256 (w), 1236 (m), 1206 (w), 1192 (m), 1169 (m), 1143 (s), 1107 (w), 1097 (w), 1071 (w), 1050 (w), 1038 (m), 1020 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClNH}\right]^{+}$318.1044, measured 318.1045.

5-bromo-2-phenyl-1-(\boldsymbol{p}-tolyl)- $\mathbf{1 H}$-indole (2p) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, $1 / 4$, step gradient. White solid (76\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.83-7.81 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.11(\mathrm{~m}$, $3 \mathrm{H}), 6.74(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.9,137.5,135.4,132.1,130.0,129.8$, 128.9, 128.2, 127.7, 127.6, 124.9, 122.8, 113.6, 112.2, 102.6, 21.2. TLC: $\mathrm{R}_{f}=0.4$ (hexanes). IR (ATR): 3033 (m), 2923 (s), 2855 (m), 1902 (w), 1602 (m), 1514 (s), 1486 (m), 1456 (s), 1441 (s), 1378 (s), 1324 (m), 1302 (w), 1285 (w), 1255 (w), 1204 (m), 1170 (m), 1109 (w), 1077 (w), 1052 (m), 1029 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrNH}\right]^{+}$362.0539, measured 362.0538 .

General procedure for benzofuran synthesis:

In a reaction flask 2-halo-arylacetylene (0.5 mmol), and DMSO $(1.0 \mathrm{~mL})$ were added. The reaction was started with the addition of $\mathrm{NaOH}(0.6 \mathrm{mmol})$. The reaction was stirred on an aluminum heating block at $100^{\circ} \mathrm{C}$ for 18 hr . The reaction was quenched by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and addition of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 mL). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ $(80 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product purified by silica gel flash column chromatography.

2-phenylbenzofuran (3a) Column chromatography eluent: hexanes. White solid (92\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.94-7.91$ (m, 2H), $7.65-7.62$ (ddd, $J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60-7.57(\mathrm{dq}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.38(\mathrm{tt}, J=7.4 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.06(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.9,154.9,130.5,129.2,128.8,128.6$, $124.9,124.3,123.0,120.9,111.2,101.2 . \mathrm{TLC}: \mathrm{R}_{f}=0.5$ (hexanes). IR (ATR): 3034 (m), 1896 (w), 1673 (w), 1604 (w), 1587 (w), 1561 (m), 1490 (m), 1470 (m), 1455 (s), 1440 (s), 1350 (w), 1333 (w), 1321 (w), 1304 (w), 1295 (w), 1272 (w), 1257 (m), 1207 (m), 1168 (m), 1105 (m), 1073 (m), 1038 (m), 1019 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{OH}\right]^{+}$ 195.0804, measured 195.0776.

2-(tert-butyl)benzofuran (3b) Column chromatography eluent: hexanes. White solid (89%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}$, $2 \mathrm{H}), 6.37-6.36(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.4,154.6,128.9,123.0,122.2,120.3$, 110.8, 98.9, 33.0, 28.9. TLC: $\mathrm{R}_{f}=0.7$ (hexanes). IR (ATR): 2924 (s), 2854 (m), 1844 (w), 1734 (m), 1716 (m), 1699 (s), 1674 (m), 1647 (w), 1555 (m), 1523 (s), 1498 (m), 1456 (m), 1260 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{OH}\right]^{+}$ 175.1117, measured 175.1115.

2-phenylfuro[2,3-b]pyridine (3c) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Brown solid (93\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33-8.30(\mathrm{dd}, J=5 \mathrm{~Hz}, 1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{tt}, J=$ $7.5 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9,155.7$, $143.9,129.7,129.5,129.3,128.9,128.5,125.2,119.5,100.0$. TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 3056 (w), 2974 (m), 2927 (w), 1952 (w), 1888 (w), 1734 (w), 1688 (m), 1657 (m), 1596 (m), 1585 (m), 1562 (m), 1542 (w), 1535 (w), 1491 (m), 1471 (w), 1446 (m), 1431 (m), 1416 (w), 1401 (s), 1363 (m), 1334 (m), 1305 (w), 1297 (m), 1277 (w), 1243 (s), 1170 (s), 1112 (m), 1071 (w), 1037 (w), 1045 (w), 1020 (s), 1000 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NOH}\right]^{+}$196.0757, measured 196.0732.

2-(tert-butyl)furo[2,3-b]pyridine (3d) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, $1 / 1$, step gradient. Brown oil (90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.26-8.20 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.79(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18-7.15$ (dd, $J=7.5 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 1.41$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,161.8,142.7$, 128.9, 121.1, 118.9, 98.1, 33.1, 28.6. TLC: $\mathrm{R}_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, $0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, 1/1). IR (ATR): 2926 (s), 1580 (s), 1460 (m), 1403 (s), 1364 (m), 1341 (m), 1286 (s), 1252 (s), 1224 (m), 1203 (s , 1166 (m), 1115 (m), 1086 (s$).$ HRMS (DART): calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NOH}\right]^{+}$176.1075, measured 176.1075.
furo[2,3-b]pyridine (3e) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, step gradient. Yellow solid (61%). ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.37-8.34$ (dd, $J=5.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.98-7.95(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.23$ (dd, $J=8.0 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.79(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.0,144.7$, 144.2, 130.1, 119.2, 106.0, 103.8. TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{IR}$ (ATR): 2923 (s), 2880 (m), 1288 (s), 1135 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NOH}\right]^{+}$176.1070, measured 176.1070.

7-chloro-2-phenylbenzofuran (3j) Column

 chromatography eluent: hexanes. Yellow solid (80\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.43-7.38(\mathrm{tt}, J=7.5 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{dd}, J=7.8 \mathrm{~Hz}$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.8,150.6,130.8,129.8,129.0$, $128.8,125.1,124.4,123.8,119.4,116.6,101.7 . \mathrm{TLC}: \mathrm{R}_{f}=0.5$ (hexanes). IR (ATR): 3063 (w), 1609 (m), 1580 (m), 1491 (m), 1470 (s), 1447 (w), 1422 (s), 1351 (w), 1322 (w), 1288 (s), 1236 (s), 1192 (m), 1170 (s), 1143 (s), 1097 (w), 1071 (w), 1050 (w), 1038 (m), 1020 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClOH}\right]^{+}$229.0420, measured 229.0428.5-bromo-2-phenylbenzofuran (3k) Column chromatography eluent: hexanes. Yellow solid (82\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 2 \mathrm{H})$, 7.51-7.46 (m, 2H), 7.45-7.37 (m, 3H), $6.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.2,153.6,131.2,129.9,129.0,128.8$, 127.1, 125.1, 123.5, 112.6, 100.7. TLC: $\mathrm{R}_{f}=0.3$ (hexanes). IR (ATR): 3091 (w), 3060 (w), 3030 (w), 2926 (w), 2601 (w), 2545 (w), 2237 (w), 2079 (w), 1959 (w), 1889 (w), 1871 (w), 1831 (w), 1740 (w), 1684 (w), 1604 (m), 1577 (s), 1490 (m), 1449 (s), 1437 (s), 1428 (s), 1326 9m), 1275 (m), 1260 (s), 1206 (m), 1156 (m), 1116 (m), 1072 (m), 1050 (s), 1037 (s), 1020 (m), 1001 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrOH}\right]^{+}$272.9910, measured 272.9921 .

General procedure for aqueous benzofuran synthesis:

In a reaction flask 2-halo-arylacetylene (0.5 mmol), and $\mathrm{H}_{2} \mathrm{O}(1$ mL) were added. The reaction was started with the addition of $\mathrm{NaOH}(1.5 \mathrm{mmol})$. The reaction was stirred on an aluminum heating block at $125^{\circ} \mathrm{C}$ for 48 hr . The reaction was quenched by dilution with ethyl acetate and addition of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product purified by silica gel flash column chromatography.

2-(4-(trifluoromethyl)phenyl)furo[2,3-b]pyridine (3g) Column chromatography eluent: hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yellow oil (97\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.37-8.35(\mathrm{dd}, J=5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162,0,153.9,144.7,130.1,126.0-125.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.3$, 121.1, 119.8, 102.0, 29.7. TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 2924 (m), 2852 (m), 1930 (w), 1732 (m), 1615 (m), 1596 (s), 1562 (s), 1511 (w), 1456 (m), 1438 (s), 1415 (w), 1403 (m), 1324 (s), 1295 (s), 1255 (s), 1216 (s), 1186 (m), 1162 (s), 1128 (m), 1120 (s), 1067 (s), 1031 (w), 1014 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NOH}\right]^{+}$264.0631, measured 264.0631.

2-(4-methoxyphenyl)furo[2,3-b]pyridine (3h) Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yellow oil (95\%). ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28-8.25$ (dd, $J=4.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89-7.84 (m, 3H), 7.3-7.19 (dd, $J=7 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02-6.99 $(\mathrm{m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 160.5,155.8,143.2,141.2,129.0,126.7,121.2$, $119.4,110.0,98.3,55.4 . \mathrm{TLC}: \mathrm{R}_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): 2920 (s), 2855 (s), 1735 (s), 1615 (s), 1598 (s), 1507 (s), 1256 (s), 1037 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{H}\right]^{+}$ 226.0863, measured 226.0864.

General procedure for $\mathbf{N}-\mathbf{H}$ indole synthesis:

In a reaction flask under Ar 2-halo-arylacetylene (0.5 mmol), acetamide (1.1 mmol), and DMSO (1.0 mL) were added. The reaction was started with the addition of $\mathrm{KO} t \mathrm{Bu}(1.1 \mathrm{mmol})$.

The reaction was stirred on an aluminum heating block at $100^{\circ} \mathrm{C}$ for 18 hr . The reaction was quenched by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and addition of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product purified by silica gel flash column chromatography.

2-phenyl- \mathbf{H}-indole (4a) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes, $1 / 1$, step gradient. Yellow solid (68%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.63$ $(\mathrm{m}, 3 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.32(\mathrm{tt}, J=7.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.85(\mathrm{dd}, J=$ $2.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.9$, 136.8, 132.4, 129.3, 129.0, 127.7, 125.1, 122.3, 120.7, 120.3, 101.8, 100.0. TLC: $\mathrm{R}_{f}=0.9\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 0.5(\mathrm{EtOAc} /$ hexanes, 1/9). IR (ATR): 3445 (s), 3050 (m), 2924 (m), 2853 (m), 1891 (w), 1686 (m), 1616 (m), 1542 (w), 1481 (m), 1457 (s), 1447 (s), 1403 (m), 1352 (m), 1339 (w), 1299 (s), 1241 (w), 1189 (w), 1148 (w), 1114 (w), 1074 (w), 1050 (w), 1028 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NH}\right]^{+}$194.0964, measured 194.0965.

2-(tert-butyl)- $\mathbf{1 H}$-indole (4b) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, $1 / 1$, step gradient. White solid (61%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.57-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 6.29-6.27(\mathrm{dd}, J=2.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 148.7, 135.7, 128.5, 121.1, $120.0,119.6,110.3,97.0,31.8,30.3$. TLC: $\mathrm{R}_{f}=0.9\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, 0.6 (EtOAc/hexanes, 1/9). IR (ATR): 3406 (s), 2957 (s), 2925 (s), 2863 (m), 1702 (w), 1612 (w), 1582 (w), 1542 (m), 1488 (w), 1458 (s), 1407 (s), 1394 (m), 1365 (s), 1348 (s), 1290 (s), 1246 (w), 1231 (w), 1202 (w), 1189 (w), 1148 (w), 1116 (w), 1012 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NH}\right]^{+}$ 174.1277, measured 174.1277.

2-phenyl-1 H -pyrrolo[2,3-b]pyridine (4c) Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 39$, step gradient. Pale yellow solid (69%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.31(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.97(\mathrm{dd}, J$ $=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.40(\mathrm{tt}, J=7.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-7.10 (dd, $J=8.0$ $\mathrm{Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $150.0,142.0,139.5,132.4,129.0,128.7,128.2,125.9,122.4$, 116.1, 97.4. TLC: $\mathrm{R}_{f}=0.8\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 19\right), 0.4$ ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 39$). IR (ATR): 3160 (s), 3032 (s), 2972 (m), 2787 (m), 1904 (w), 1870 (w), 1833 (w), 1716 (w), 1698 (w), 1675 (w), 1588 (m), 1541 (m), 1486 (m), 1456 (m), 1431 (m), 1410 (m), 1363 (m), 1330 (m), 1280 (s), 1223 (w), 1195 (m), 1111 (m), 1074 (w), 1045 (w), 1029 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{H}\right]^{+}$195.0917, measured 195.0895.

2-(tert-butyl)-1H-pyrrolo[2,3-b]pyridine (4d) Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 / 23$, step gradient. Yellow solid (67%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $10.76(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.26(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.83$ (ddd, $J=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07-7.03 (dd, $J=7.5$
$\mathrm{Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.21(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.2,149.1,141.4,127.9$, 127.7, 121.2, 94.7, 32.2, 30.1. TLC: $\mathrm{R}_{f}=0.1\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $1 / 19), 0.5\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 / 23\right)$. IR (ATR): 3157 (m), 3088 (m), 2964 (s), 2869 (m), 1647 (m), 1605 (m), 1588 (s), 1540 (m), 1494 (w), 1417 (s), 1363 (s), 1326 (m), 1276 (s), 1226 (w), 1173 (s), 1109 (w), 1027 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{H}\right]^{+} 175.1235$, measured 175.1236.

1H-pyrrolo[2,3-b]pyridine (4e) Column chromatography eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 / 23$, step gradient. Yellow solid (52%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.49$ (s, 1H), 8.36$8.30(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.95(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.36-7.33 (dd, $J=3.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.09$ (dd, $J=8.0 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.52(\mathrm{dd}, J=3.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.5,143.0,129.0,124.8$, 120.1, 116.0, 101.0. TLC: $\mathrm{R}_{f}=0.4\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 / 23\right) . \mathrm{IR}$ (ATR): 3070 (m), 3061 (m), 2922 (s), 1584 (s), 1421 (s), 1279 (s). HRMS (DART): calculated for $\left[\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{H}\right]^{+}$119.0609, measured 119.0614 .

7-chloro-2-phenyl-1H-indole (4f) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes, $1 / 1$, step gradient. Yellow solid (67%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.74-$ $7.71(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47$ (m, 2H), 7.41-7.37 (m, 1H), 7.24-7.21 (dd, $J=8.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12-7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 138.7, 134.0, 131.8, 130.6, 129.1, 128.2, 125.3, 121.6, 121.0, 119.2, 116.3, 100.8. TLC: $\mathrm{R}_{f}=0.1$ (hexanes), $0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, $\left.1 / 1\right)$. IR (ATR): 3854 (w), 3748 (w), 3673 (w), 3650 (w), 3438 (s), 3067 (w), 3038 (w), 1957 (w), 1879 (w), 1834 (w), 1771 (w), 1685 (w), 1617 (w), 1602 (m), 1568 (m), 1542 (w), 1485 (s), 1451 (s), 1431 (s), 1391 (s), 1352 (s), 1324 (s), 1299 (s), 1244 (s), 1195 (s), 1163 (w), 1141 (m), 1097 (w), 1073 (w), 1050 (w), 1028 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNH}\right]^{+}$228.0580, measured 228.0589.

5-bromo-2-phenyl-1 H -indole (4g) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, $1 / 1$, step gradient. Yellow solid (62%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.39(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.76(\mathrm{q}, J=1.0 \mathrm{~Hz}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ 7.45 (tt, $J=7.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40-7.35 ($\mathrm{tt}, J=7.0 \mathrm{~Hz}, 1.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.30-7.28 (d, $J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.77$ (d, $J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.1,135.4,131.8$, 131.0, 129.1, 128.2, 125.3, 125.1, 123.1, 113.4, 112.3, 99.5. TLC: $\mathrm{R}_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, 1/1). IR (ATR): 3436 (s), 3082 (w), 3060 (w), 3037 (w), 2923 (w), 2853 (w), 1570 (w), 1488 (m), 1453 (s), 1393 (m), 1310 (m), 1282 (m), 1180 (w), 1128 (w), 1053 (m). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNH}\right]^{+}$ 272.0075, measured 272.0083.

6-bromo-7-chloro-2-phenyl- \mathbf{H}-indole (4h) Column chromatography eluent: hexanes to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, $1 / 1$, step gradient. Yellow solid (59\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.51(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37$ (m, 2H), 7.36-7.33 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.3, 134.9, 131.4, 129.3, 129.2, 128.4, 125.3, 125.0, 120.0, 116.6, 115.0, 100.9. TLC: $\mathrm{R}_{f}=0.1$ (hexanes), $0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, $\left.1 / 1\right)$. IR (ATR):

3426 (s), 3080 (m), 3057 (m), 3036 (m), 2924 (m), 2854 (m), 1939 (w), 1866 (w), 1735 (w), 1604 (m), 1567 (m), 1488 (s), 1473 (s), 1450 (s), 1432 (s), 1375 (s), 1338 (s), 1309 (m), 1296 (m), 1273 (w), 1227 (s), 1182 (w), 1153 (s), 1119 (w), 1097 (w), 1050 (w), 1029 (w), 1000 (w). HRMS (DART): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrClNH}\right]^{+}$305.9685, measured 305.9697.

Acknowledgements

This work is supported by the National Science Foundation (CHE1147787, 1062944), the Camille and Henry Dreyfus Foundation, and Colby College.

Notes and references

${ }^{a}$ Department of Chemistry, Colby College, 5754 Mayflower Hill Drive, Waterville, Maine, 04901, United States.
${ }^{b}$ Division of Natural Sciences, Daemen College, 4380 Main St, Amherst, New York, 14226, United States
Electronic Supplementary Information (ESI) available: detailed experimental procedures and spectroscopic data. See DOI: 10.1039/c000000x/

1 K. Baba, K. Takeuchi, F. Hamasaki and M. Kozawa, Chem. Pharm. Bull., 1985, 33, 416; G. Dölen, A. Darvishzadeh, K. W. Huang and R. C. Malenka, Nature, 2013, 501, 179; S. B. Jones, B. Simmons, A. Mastracchio and D. W. MacMillan, Nature, 2011, 475, 183.
2 B. Pete, I. Bitter, C. Szántay, I. n. Schőn and L. Tőke, Heterocycles, 1998, 48, 1139; C. Wang, Y. Jiang, J. Ma, H. Wu, D. Wacker, V. Katritch, G. W. Han, W. Liu, X.-P. Huang and E. Vardy, Science, 2013, 340, 610; S. C. Williams, Nature Medicine, 2012, 18, 1444; B. L. Flynn, G. S. Gill, D. W. Grobelny, J. H. Chaplin, D. Paul, A. F. Leske, T. C. Lavranos, D. K. Chalmers, S. A. Charman, E. Kostewicz, D. M. Shackleford, J. Morizzi, E. Hamel, M. K. Jung and G. Kremmidiotis, J. Med. Chem., 2011, 54, 6014; I. N. Gaisina, F. Gallier, A. V. Ougolkov, K. H. Kim, T. Kurome, S. Guo, D. Holzle, D. N. Luchini, S. Y. Blond, D. D. Billadeau and A. P. Kozikowski, J. Med. Chem., 2009, 52, 1853; D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev., 2003, 103, 893.

3 C. Mitsui, J. Soeda, K. Miwa, H. Tsuji, J. Takeya and E. Nakamura, J. Am. Chem. Soc., 2012, 134, 5448; S. Shinamura, I. Osaka, E. Miyazaki, A. Nakao, M. Yamagishi, J. Takeya and K. Takimiya, J. Am. Chem. Soc., 2011, 133, 5024; H. Tsuji, C. Mitsui, L. Ilies, Y. Sato and E. Nakamura, J. Am. Chem. Soc., 2007, 129, 11902.
4 H. Tsuji, C. Mitsui, Y. Sato and E. Nakamura, Adv. Mater., 2009, 21, 3776.

5 Z. R. Owczarczyk, W. A. Braunecker, A. Garcia, R. Larsen, A. M. Nardes, N. Kopidakis, D. S. Ginley and D. C. Olson, Macromolecules, 2013, 46, 1350.
6 G. Nie, Z. Bai, W. Yu and L. Zhang, J. Polym. Sci, Part A: Polym. Chem., 2013, 51, 2385.
7 M. Manickam, P. Iqbal, M. Belloni, S. Kumar and J. A. Preece, Isr. J. Chem., 2012, 52, 917.
8 S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873; Chem. Rev., 2011, 111, 215; G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106, 2875; M. Inman and C. J. Moody, Chem. Sci., 2013, 4, 29; M. Platon, R. Amardeil, L. Djakovitch and J.-C. Hierso, Chem. Soc. Rev., 2012, 41, 3929; D. F. Taber and P. K. Tirunahari, Tetrahedron, 2011, 67, 7195.

9 M. Kadieva and E. Oganesyan, Chem. Heterocycl. Compd., 1997, 33, 1245.

10 J. Jadhav, S. Khanapaure, R. Kurane, R. Salunkhe and G. Rashinkar, 2013, 54, 6858; M. Shen, B. E. Leslie and T. G. Driver, Angew. Chem., Int. Ed., 2008, 47, 5056; P. N. Wyrembak and A. D. Hamilton, J. Am. Chem. Soc., 2009, 131, 4566; P. Zhang, T. Xiao, S. Xiong, X. Dong and L. Zhou, Org. Lett., 2014; L. Zhou and M. P. Doyle, J. Org. Chem., 2009, 74, 9222.

11 G. Bartoli, R. Dalpozzo and M. Nardi, Chem. Soc. Rev., 2014, 43, 4728; G. Bartoli, G. Palmieri, M. Bosco and R. Dalpozzo, Tetrahedron Lett., 1989, 30, 2129; J. Chae and S. L. Buchwald, J. Org. Chem., 2004, 69, 3336; R. Dalpozzo and G. Bartoli, Curr. Org. Chem., 2005, 9, 163; J. J. Neumann, S. Rakshit, T. Dröge, S. Würtz and F. Glorius, Chem. Euro. J., 2011, 17, 7298.
12 C. D. Gilmore, K. M. Allan and B. M. Stoltz, J. Am. Chem. Soc., 2008, 130, 1558; T. Jensen, H. Pedersen, B. Bang-Andersen, R. Madsen and M. Jørgensen, Angew. Chem., Int. Ed., 2008, 47, 888; M. Mori, K. Chiba and Y. Ban, Tetrahedron Lett., 1977, 18, 1037; D. Solé and O. Serrano, J. Org. Chem., 2008, 73, 2476.

13 W. L. Heaner Iv, C. S. Gelbaum, L. Gelbaum, P. Pollet, K. W. Richman, W. DuBay, J. D. Butler, G. Wells and C. L. Liotta, R. Soc. Chem. Adv., 2013, 3, 13232; F. Lehmann, M. Holm and S. Laufer, Tetrahedron Lett., 2009, 50, 1708; B. J. Stokes, H. Dong, B. E. Leslie, A. L. Pumphrey and T. G. Driver, J. Am. Chem. Soc., 2007, 129, 7500; D. F. Taber and W. Tian, J. Am. Chem. Soc., 2006, 128, 1058.
14 K. Aoki, A. J. Peat and S. L. Buchwald, J. Am. Chem. Soc., 1998, 120, 3068; J. Barluenga, A. Jiménez-Aquino, C. Valdés and F. Aznar, Angew. Chem., Int. Ed., 2007, 46, 1529.
15 Y.-Q. Fang and M. Lautens, J. Org. Chem., 2007, 73, 538; L. Fra, A. Millán, J. A. Souto and K. Muñiz, Angew. Chem., Int. Ed., 2014, 28, 7349; J. L. Rutherford, M. P. Rainka and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 15168; R. J. Sundberg, L.-S. Lin and D. E. Blackburn, J. Heterocycl. Chem., 1969, 6, 441; R. J. Sundberg and T. Yamazaki, J. Org. Chem., 1967, 32, 290.
16 L. Zhou, Y. Shi, Q. Xiao, Y. Liu, F. Ye, Y. Zhang and J. Wang, Org. Lett., 2011, 13, 968.
17 S. Ghosh and J. Das, Tetrahedron Lett., 2011, 52, 1112; P. V. Podea, M. I. Toşa, C. Paizs and F. D. Irimie, Tetrahedron: Asymmetry, 2008, 19, 500.

18 K. Murakami, H. Yorimitsu and A. Osuka, Angew. Chem., Int. Ed. , 2014, 29, 7510; S. Wang, P. Li, L. Yu and L. Wang, Org. Lett., 2011, 13, 5968; W. Zeng, W. Wu, H. Jiang, L. Huang, Y. Sun, Z. Chen and X. Li, Chem. Comтип., 2013, 49, 6611.
19 H. Zhang, E. M. Ferreira and B. M. Stoltz, Angew. Chem., Int. Ed., 2004, 43, 6144.
20 X.-F. Cheng, Y. Li, Y.-M. Su, F. Yin, J.-Y. Wang, J. Sheng, H. U. Vora, X.-S. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2013, 135, 1236.

21 M. Carril, R. SanMartin, I. Tellitu and E. Domínguez, Org. Lett., 2006, 8, 1467; A. C. Tadd, M. R. Fielding and M. C. Willis, Tettrahedron Lett., 2007, 48, 7578.
22 L. Guo, F. Zhang, W. Hu, L. Li and Y. Jia, Chem. Commun., 2014, 50, 3299; U. Sharma, T. Naveen, A. Maji, S. Manna and D. Maiti, Angew. Chem., Int. Ed., 2013, 52, 12669.
23 L. Ackermann, Org. Lett., 2005, 7, 439; L. Ackermann, R. Sandmann, M. Schinkel and M. V. Kondrashov, Tetrahedron, 2009, 65, 8930; P. G. Alsabeh, R. J. Lundgren, L. E. Longobardi and M. Stradiotto, Chem. Commun., 2011, 47, 6936; N. Halland, M. Nazare, J. Alonso, O. R'Kyek and A. Lindenschmidt, Chem. Commun., 2011, 47, 1042; C. B. Lavery, R. McDonald and M. Stradiotto, Chem. Commun., 2012, 48, 7277;
K.-S. Masters, M. Wallesch and S. Bräse, J. Org. Chem., 2011, 76, 9060; A. Prakash, M. Dibakar, K. Selvakumar, K. Ruckmani and M. Sivakumar, Tetrahedron Lett., 2011, 52, 5625; Z.-Y. Tang and Q.-S. Hu, Adv. Synth. Catal., 2006, 348, 846; P.-Y. Yao, Y. Zhang, R. P. Hsung and K. Zhao, Org. Lett., 2008, 10, 4275.
24 L. Ackermann, S. Barfüßer and H. K. Potukuchi, Adv. Synth. Catal., 2009, 351, 1064; Q. Cai, Z. Li, J. Wei, C. Ha, D. Pei and K. Ding, Chem. Commun., 2009, 7581; H. Wang, Y. Li, L. Jiang, R. Zhang, K. Jin, D. Zhao and C. Duan, Org. Biomol. Chem., 2011, 9, 4983.
25 L. Ackermann, W. Song and R. Sandmann, J. Organomet. Chem., 2011, 696, 195.
26 K. W. Anderson, T. Ikawa, R. E. Tundel and S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 10694; C. B. Lavery, N. L. Rotta-Loria, R. McDonald and M. Stradiotto, Adv. Synth. Catal., 2013, 355, 981.

27 D. Zhao, N. Wu, S. Zhang, P. Xi, X. Su, J. Lan and J. You, Angew. Chem., Int. Ed., 2009, 48, 8729.
28 L.-L. Sun, C.-L. Deng, R.-Y. Tang and X.-G. Zhang, J. Org. Chem., 2011, 76, 7546.
29 A. Fukazawa, Y. Ichihashi, Y. Kosaka and S. Yamaguchi, Chem. Asian J., 2009, 4, 1729.

30 G. Hamasaka, T. Muto and Y. Uozumi, Angew. Chem. Int. Ed., 2011, 50, 4876; R. Hudson, G. Hamasaka, T. Osako, Y. M. Yamada, C.-J. Li, Y.

Uozumi and A. Moores, Green Chem., 2013, 15, 2141; R. Hudson, C.-J. Li and A. Moores, Green Chem., 2012, 14, 622; C.-J. Li, Chem. Rev., 2005, 105, 3095; C.-J. Li and T.-H. Chan, Comprehensive organic reactions in aqueous media, John Wiley \& Sons, 2007; C.-J. Li and L. Chen, Chem. Soc. Rev., 2006, 35, 68; C. J. Li, Chem. Rev., 1993, 93, 2023; S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb and K. B. Sharpless, 2005, 44, 3275.

31 G. Hennrich and A. M. Echavarren, Tetrahedron Lett., 2004, 45, 1147; M. Paventi and A. S. Hay, Tetrahedron Lett., 1993, 34, 999; M. Strukelj, M. Paventi and A. S. Hay, Macromolecules, 1993, 26, 1777; J. W. Wackerly, M. Zhang, S. T. Nodder, S. M. Carlin and J. L. Katz, Org. Lett., 2014, 16, 2920.
32 N. P. Bizier, J. W. Wackerly, E. D. Braunstein, M. Zhang, S. T. Nodder, S. M. Carlin and J. L. Katz, J. Org. Chem., 2013, 78, 5987.

33 H. Tsuji, G. Cantagrel, Y. Ueda, T. Chen, L.-J. Wan and E. Nakamura, Chem. Asian J., 2013, 8, 2377.
34 C.-H. Lee, Y.-Y. Lai, S.-W. Cheng and Y.-J. Cheng, Org. Lett., 2014, 16, 936; S. Shinamura, E. Miyazaki and K. Takimiya, J. Org. Chem., 2010, 75, 1228.
35 M. Nakano, H. Mori, S. Shinamura and K. Takimiya, Chem. Mater., 2011, 24, 190.
36 T. Kashiki, S. Shinamura, M. Kohara, E. Miyazaki, K. Takimiya, M. Ikeda and H. Kuwabara, Org. Lett., 2009, 11, 2473; T. Sakamoto, Y. Kondo, R. Y. O. Watanabe and H. Yamanaka, chem. Pharm. Bull., 1986, 34, 2719; Q. Xiao, T. Sakurai, T. Fukino, K. Akaike, Y. Honsho, A. Saeki, S. Seki, K. Kato, M. Takata and T. Aida, J. Am. Chem. Soc., 2013, 135, 18268; X. Zhang, W. Zeng, Y. Yang, H. Huang and Y. Liang, Synlett, 2013, 24, 1687.
37 For related cyclizations, see: F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev. , 2004, 104, 3079; W.-M. Dai, D.-S. Guo and L.-P. Sun, tetrahedron Lett., 2001, 42, 5275; R. C. Larock and E. K. Yum, J. Am. Chem. Soc., 1991, 113, 6689; R. C. Larock, E. K. Yum and M. D. Refvik, J. Org. Chem., 1998, 63, 7652.

