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Introduction

Pd-Catalyzed Benzylic C–H Oxidation of 
Cyclotriveratrylene – Product Diversity  

B. Senthilkumara, R.G. Gonnadeb and C.V. Ramanaa*,  

The inner-rim functionalization of CTV has been examined by employing Pd-catalyzed 
benzylic oxidation. The outcome of the oxidation depends upon thesolvent and co-oxidants 
employed. An interesting array of CTV derivatives have been synthesized with a simple 
change in the conditions.  

The cyclotriveratrylene (CTV) is an interesting macrocyclic 
molecule characterized with a crown-like structure having a shallow 
molecular cavity and a pyramidal shape with the aromatic rings 
forming the three sides of the pyramid and the methylene hydrogens 
lying close together at the apex.1 During the last three decades, CTV 
and its congeners have been used as precursors for 
cryptophanes/cavitands, and as components in coordination and self-
assembled supramolecularnetworks.2,3 For example CTV and its 
derivatives have been extensively studied for their binding with 
smaller organic (such as benzene, ethanol, DMSO), and 
organometallic guests.4 Their ability to host molecules likeC60 and 
anionic C70 dimers,5lanthanoids, and xenon have led to the 
development of functionalized CTV derivatives for biomedical 
applications such as the delivery of fullerenes and their use of MRI-
based diagnostic techniques.6 
Thus, the manipulation of functional and structure/conformational 
aspects of the CTV holds great promise as increasing number of 
applications for this classofmolecules are continuously being 
reported. The functionalization of CTV can be carried out either at 
the aromatic rings (“outer-rim”) or at the methylene bridges (“inner-
rim or apex”), which are complementary to each other. The outer-
rim functionalization is important in modulating the host-guest 
properties of the CTV. The apex functionalization which is 
challenging has been thought to be a handle for tuning the 
conformational aspects of CTV. The oxidation of the methylene 
bridges of the CTV is one of the simple means for inner-rim 
functionalization that has been explored by several groups.7 Reports 
for the reliable preparation of the mono- and diketones of the CTV 
are documented, and the corresponding triketone is known to 
undergo trans-annular rearrangement.8 In general, these oxidations 
are carried out under harsh conditions employing chromium and 
permanganate based oxidants in solvents such as conc. H2SO4 or 
pyridine.8 Given the importance of functionalized CTV derivatives 
and the challenges associated with the inner-rim functionalization, 
we sought to explore the possibility of metal-catalyzed controlled C–
H oxidation of CTV, especially employing Pd-complexes. Unlike 
the Pd-catalyzed allylic acetoxylation which is very popular, Pd-
catalyzed benzylic oxidations are scarcely reported.9-12 

 

 
Figure 1. Selected CTV derivatives 

Result and discussion 
 
The three known CTV analogues 1 – 3 have been selected as the 
substrates and were prepared by following established procedures.13 

Coming to the Pd-catalyzed benzylic oxidations, one of earliest 
reports by Bryant and co-workers employed air as oxidant for the 
conversion of xylene to the xylene diacetate.11 Hydrogen peroxide is 
another oxidant that has been widely employed in the Pd-catalyzed 
oxidations.14 A combination of benzoquinone along with MnO2 as 
the co-oxidant has been employed in the Pd-catalyzed allylic 
oxidations. Considering these reports, our initial experiments are 
focused on the oxidation of CTV derivatives under these conditions 
and the characterization of the resulting products. 
As shown in Scheme 1, when air was employed as the oxidant,11 the 
oxidation of CTV 1 was sluggish and CTV derivative 4 having the 
saddle conformation was obtained in 12% yield (80% of 1 was 
recovered). The saddle conformation of 4 is evidenced by its 1H 
NMR spectrum, in which the methylene bridge hydrogens resonate 
as a sharp singlet at δ 3.89 ppm and the aromatic proton displays as a 
singlet at δ 6.83 ppm [in case of 1, CH2 as AB doublet at δ 3.55 and 
4.77 ppm and  aromatic-H as singlet at δ 7.36].13a With hydrogen 
peroxide as a co-oxidant, the reaction proceeded smoothly and 
provided the quinone 5 resulting from peroxide-mediated oxidative 
opening of the CTV methylene bridge and subsequent hydroquinone 
to benzoquinone oxidation. The structure of quinone 5 was 
confirmed by single crystal X-ray structure analysis (Fig. 2a).15 

Considering the mild conditions when H2O2 was employed as an co-
oxidant, to control oxidation over, various other catalysts such as 
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Chloroform-d (δ = 7.26) or TMS and coupling constants (J) are 
reported in Hertz (Hz). The following abbreviations are used to 
designate signal multiplicity: s = singlet, d = doublet, t = triplet, q = 
quartet, m = multiplet, b = broad. The Multiplicity of 13C NMR 
signals was assigned with the help of DEPT spectra and the 
abbreviations used: s = singlet d = doublet t = triplet q = quartet, 
represent C (quaternary), CH, CH2 and CH3 respectively. Mass 
spectra were recorded on a Thermo Finnigan MSQ LC/MS mass 
spectrometer. HRMS mass spectra were recorded on a Thermo 
Scientific Q-Exactive, Accela 1250 pump. 
 
Cyclotriveratrylene Saddle Conformer 4: A solution of 
cyclotriveratrylene (1) (200 mg, 0.4 mmol), Pd(OAc)2 (20 mg, 0.08 
mmol) and potassium acetate ( 42 mg, 0.22 mmol) in 20 mL of 
acetic acid was stirred at 100 °C for 24 h, while air was blown over 
its surface. After 24 h, the reaction mixture was cooled and filtrated 
over the Celite pad. The filtrate was diluted with an equal volume of 
water and extracted with EtOAc (2 x 20 ml). The combined extract 
was washed successively with a saturated NaHCO3 solution, water, 
and brine, dried (Na2SO4) and evaporated under reduced pressure. 
The crude was purified by column chromatography (ethyl acetate-
petroleum ether 3:7) to obtain starting CTV 1 (160 mg, 80%) and 4 
(22 mg, 12%) as a white solid. Mp. 219–220 °C; 1H NMR (200 
MHz, CDCl3): δ 3.84 (s, 18H), 3.89 (s, 6H), 6.62 (s, 6H) ppm; 13C 
NMR (50 MHz, CDCl3): δ 36.5, 56.0, 113.2, 131.8, 147.7 ppm; 
HRMS (ESI) Calculated for C27H31O6[M+H]+: 451.2115, found 
451.2103. 

Pd-catalyzed Oxidation of CTV 1 in AcOH with H2O2 at rt: A 
solution of CTV 1 (100 mg, 0.2 mmol), Pd(OAc)2 (10 mg, 0.04 
mmol) in acetic acid (10 mL) was treated slowly with 30% aqueous 
H2O2 (0.2 ml, 2 mmol,) and stirred at rt for 3 h. The excess peroxide 
was quenched with MnO2 and the reaction mixture was filtered over 
Celite pad and the Celite pad was washed successively with 35 mL 
of EtOAc and 25 mL of water. The organic layer was separated and 
the aqueous layer was extracted three times with 15 mL of EtOAc. 
The combined organic layer was washed successively with water, 
aq. NaHCO3 and brine, dried (Na2SO4) and evaporated under 
reduced pressure. The crude was purified by column 
chromatography (ethyl acetate-petroleum ether, 3:7) to afford 5 (86 
mg, 77%) as an orange solid. Mp. 120–121°C; 1H NMR (200 MHz, 
CDCl3): δ 3.67 (d, J = 1.8 Hz, 2H), 3.75 (s, 3H), 3.80 (s, 3H), 3.81 
(s, 3H), 3.82 (s, 3H), 3.86 (s, 3H), 3.88 (s, 2H), 4.93 (s, 2H), 5.86 (d, 
J = 2.7Hz, 2H), 6.47 (s, 1H), 6.62 (s, 2H), 6.75 (s, 1H) ppm; 13C 
NMR (50 MHz, CDCl3): δ 20.8, 32.4, 36.3, 55.7, 55.8, 55.9, 56.0, 
56.2, 64.2, 107.3, 113.4, 113.7, 113.9, 114.2, 126.1, 126.5, 130.6, 
130.9, 131.9, 147.1, 147.7, 148.0, 148.8, 148.8, 158.4, 170.8, 182.0, 
187.4 ppm; FTIR (CHCl3): ν 3435 (br), 3020, 1736, 1651, 1605, 
1517, 1216, 1021 cm-1; HRMS (ESI) Calculated for C28H30O9Na+ 
[M+Na]+: 533.1782, found 533.1782. 

General Procedure for C–H Oxidation with MnO2 and BQ (A): 
In a 250-mL round-bottomed, were placed CTV 1 (2.22 mmol), 
Pd(OAc)2 (0.4 mmol), benzoquinone (1.1 mmol) and 100 mL of 
acetic acid and heated to 70 °C To this manganese dioxide (13.3 
mmol) was added and the reaction mixture was stirred at 70 °C for 
18h. The reaction mixture was cooled and diluted with 50 mL of 
EtOAc and stirred for 10 min. The content was filtrated over Celite 
pad and the Celite pad was washed successively with 50 mL of 
EtOAc and 100 mL of water. The organic phase was separated and 
washed successively with water, 2N NaOH, brine, dried (Na2SO4) 
and evaporated under reduced pressure. The crude product was 
purified by column chromatography using a mixture of ethyl acetate-
petroleum ether as eluent to give corresponding products. 

Pd-catalyzed Oxidation of CTV 1 in AcOH at 70 °C: The general 
procedure A was followed -1 (1 g, 2.22 mmol), Pd(OAc)2 (100 mg, 
0.4 mmol), benzoquinone (120 mg, 1.1 mmol) and MnO2 (1.2 g, 
13.3 mmol). The product was purified by column chromatography 
using ethyl acetate-petroleum ether (4:6) as the eluent to give 6 (490 
mg, 42%) and 7 (165 mg, 13%). 
Characterization data of 6: Yellow solid, Mp. 182 – 183 °C; 1H 
NMR (200 MHz, CDCl3): δ 2.07 (s, 3H), 3.45 (d, J = 15.2 Hz, 1H), 
3.80 (s, 3H), 3.82 (s, 3H), 3.93 (s, 3H), 3.96 (s, 6H), 3.98 (s, 3H), 
4.00 (d, J = 15.2 Hz, 1H), 6.51 (s, 1H), 6.56 (s, 1H), 6.79 (s, 1H), 
7.11 (s, 1H), 7.24 (s, 1H), 7.40 (s, 1H), 7.56 (s, 1H) ppm; 13C NMR 
(50 MHz, CDCl3): δ 21.0, 37.5, 55.8, 55.9, 56.0, 56.1, 56.1, 56.2, 
68.6, 107.8, 109.5, 110.7, 111.8, 112.6, 114.2, 131.1, 131.3, 131.8, 
132.7, 133.2, 147.6, 147.9, 148.1, 148.8, 152.6, 152.8, 169.0, 192.7 
ppm; FTIR (CHCl3): ν 3402 (br), 1597, 1511, 1264, 1218, 1020, 768 
cm-1; HRMS (ESI) Calculated for C29H30O9Na+ [M+Na]+: 
545.1782, found 545.1784. 
Characterization data of 7: Mp. 190–191°C, 1H NMR (200 MHz, 
CDCl3): δ 2.08 (s, 6H), 3.81 (s, 6H), 3.97 (s, 6H), 3.98 (s, 6H), 6.59 
(s, 2H), 6.95 (s, 2H), 7.26 (s, 2H), 7.53 (s, 2H) ppm; 13C NMR (50 
MHz, CDCl3): δ 21.0, 55.9 (2C), 56.1 (2C), 56.2 (2C), 68.3, 107.6 
(2C), 109.4 (2C), 111. (2C), 129.9 (2c), 131.0 (2C), 133.2 (2C), 
147.9 (2C), 149.1 (2C), 153.0 (2C), 168.8, 191.2ppm; FTIR 
(CHCl3): ν 3414 (br), 3016, 1602, 1514, 1267, 1216, 1094, 1021, 
757 cm-1; HRMS (ESI) Calculated for C31H32O11Na+ [M+Na]+: 
603.1837, found 603.1838. 

Pd-catalyzed Oxidation of CTV 1 in AcOH at reflux: The general 
procedure A was followed -1(100 mg, 0.2 mmol), Pd(OAc)2 (10 mg, 
0.04 mmol), benzoquinone (12 mg, 0.1 mmol) and MnO2 (114 mg, 
1.3 mmol), the mixture was refluxed for 12 h. After usual workup, 
the crude was purified by column chromatography using ethyl 
acetate-petroleum ether (3:7) as the eluent to give 8 (41 mg, 44%) 
and 9(14 mg, 15%) as yellow solid. Mp. 126 °C, 1H NMR (200 
MHz, CDCl3): δ 3.73 (s, 6H), 3.84 (s, 2H), 3.92 (s, 3H), 4.05 (s, H), 
4.10 (s, 3H), 6.59 (s, 2H), 6.89 (s, 1H), 7.21 (s, 2H), 7.71 (s, 1H), 
8.17 (s, 1H), 9.22 (s, 1H)ppm; 13C NMR (50 MHz, CDCl3): δ 55.7 
(2C), 55.9, 56.0, 56.1, 56.4, 103.1 (2C), 105.0 (2C), 108.3, 113.1, 
113.8, 123.2, 127.0 (2C), 128.6, 131.7, 138.6, 147.7, 149.0, 149.3 
(2C), 149.9 (2C), 154.2, 191.11ppm; FTIR (CHCl3): ν 3432 (br), 
3020, 2930, 1596, 1509, 1490, 1434, 1267, 1216, 1149, 1095, 
1014cm-1; HRMS (ESI) Calculated for C27H26O7Na+ [M+Na]+: 
485.1571, found: 485.1566. 

Pd-catalyzed Oxidation of CTV 1 in AcOH-DMF (1:1): The 
general procedure A was followed -1(200 mg, 0.4 mmol), Pd(OAc)2 
(20 mg, 0.09 mmol), benzoquinone (24 mg, 0.2 mmol) and MnO2 
(230 mg, 2.6 mmol) in 30 mL of acetic acid and DMF (1:1). After 
usual workup, the resulting crude was purified by column 
chromatography (ethyl acetate-petroleum ether 4:6) as the eluent to 
give 11(115 mg, 56%) and 12(31 mg, 15%) as yellow solids 
Characterization data of 11: Mp. 197–198 °C; 1H NMR (200 MHz, 
CDCl3): δ 3.62 (d, J = 14.0 Hz, 2H), 3.84 (s, 12H), 3.86 (s, 6H), 
3.88 (d, J = 14.0 Hz, 2H), 6.80 (s, 2H), 6.81 (s, 2H), 7.07 (s, 2H) 
ppm; 13C NMR (50 MHz, CDCl3): δ 36.9 (2C), 55.8 (2C), 55.9 (2C), 
56.1 (2C), 111.4 (2C), 112.6 (2C), 114.2 (2C), 131.9 (2C), 132.7 
(2C), 132.9 (2C), 147.4 (2C), 147.8 (2C), 152.5 (2C), 194.0 ppm; 
HRMS (ESI) Calculated for C27H29O7 [M+H]+: 465.1908, found 
465.1909, HRMS (ESI) Calculated for C27H28O7Na+ [M+Na]+: 
487.1727, found 487.1725. 
Characterization data of 12: Mp. 144–145 °C, 1H NMR (200 MHz, 
CDCl3): δ 3.57 (d, J = 14.0 Hz, 2H), 3.83 (s, 6H), 3.84 (s, 6H), 3.87 
(s, 6H), 4.77 (d, J = 14.0 Hz, 2H), 6.77 (s, 2H), 6.80 (s, 2H), 6.99 (s, 
1H), 7.28 (s, 2H)ppm; 13C NMR (50 MHz, CDCl3): δ 35.7 (2C), 
55.8 (2C), 55.9 (2C), 56.0 (2C), 67.1, 107.9 (2C), 112.3 (2C), 113.1 
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(2C), 129.7 (2C), 131.3 (2C), 134.3 (2C), 147.8 (2C), 148.1 (2C), 
148.2 (2C)ppm; HRMS (ESI) Calculated for C27H29O6 [M-H2O]+: 
449.1959, found 449.1956. 

 
Pd-catalyzed Oxidation of CTV 1 in AcOH-H2O (1:1): The 
general procedure A was followed -1(200 mg, 0.4 mmol), Pd(OAc)2 
(20 mg, 0.09 mmol), benzoquinone (24 mg, 0.2 mmol) and MnO2 
(229 mg, 2.6 mmol) in 30 mL of acetic acid and water (1:1). After 
usual workup, the crude was purified by column chromatography 
using ethylacetatepetroleum ether (1:1) as the eluent to give 13(106 
mg, 48%) with 6 (21 mg, 9%) and 7 (9 mg, 3%). 
Characterization data of 13: yellow solid, Mp. 156–157 °C; 1H 
NMR (200 MHz, CDCl3): δ 3.61 (s, 3H), 3.83 (s, 3H), 3.84 (s, 3H), 
3.92 (s, 3H), 4.00 (s, 6H), 6.00 (s, 1H), 6.60 (s, 1H), 6.97 (s, 1H), 
7.10 (s, 1H), 7.41 (s, 1H), 7.75 (s, 1H), 7.77 (s, 1H) ppm; 13C NMR 
(50 MHz, CDCl3): δ 55.9 (2C), 56.0 (2C), 56.1 (2C), 60.4, 87.1, 
102.0, 103.3, 105.0, 107.9, 108.2, 110.6, 123.4, 124.0, 128.0, 138.7, 
139.8, 140.0, 149.1 (2C), 149.7, 151.3, 153.5, 153.6, 181.8 ppm; 
FTIR (CHCl3): ν 3432 (br), 3020, 1598, 1508, 1465, 1421, 1292, 
1292, 1117, 1019 cm-1; HRMS (ESI) Calculated for C27H26O9Na+ 
[M+Na]+: 517.1469, found 517.1465. 

Pd-catalyzed Oxidation of CTV 1 in AcOH-EtOH (1:1): The 
general procedure A was followed - 1 (100 mg, 0.2 mmol), 
Pd(OAc)2 (10 mg, 0.04 mmol), benzoquinone (12 mg, 0.1 mmol) 
and MnO2 (114 mg, 1.3 mmol) in 20 mL of acetic acid and ethanol 
(1:1). After usual workup, the crude was purified by column 
chromatography using ethyl acetate/petroleum ether (3:7) as the 
eluent to give 1 (35 mg) and 14 as yellow solid (53 mg, 45%), Mp. 
97-98°C, 1H NMR (200 MHz, CDCl3): δ 1.31 (tt, J = 7.0, 7.0 Hz, 
6H), 3.58 (d, J = 13.8Hz, 1H), 3.58-3.62 (m, 5H), 3.84 (s,9H), 3.85 
(s, 9H), 4.78 (d, J = 13.8Hz, 1H), 6.45 (s, 2H), 6.78 (s, 2H), 6.82 (s, 
2H), 7.26 (s, 2H) ppm; 13C NMR (50 MHz, CDCl3): δ 15.3 (2C), 
35.7, 55.8 (4C), 55.9 (2C), 64.1 (2C), 73.0 (2), 107.3, 107.9, 108.2, 
112.3, 113.0, 113.1, 129.6, 130.1, 131.3 (2C), 133.0, 134.5, 147.6, 
147.7, 148.0, 148.1, 148.2ppm; HRMS (ESI) Calculated for 
C31H38O8Na+ [M+Na]+: 561.2459, found: 561.2449. 
 
Pd-catalyzed Oxidation of CTV 1 in AcOH-nPropanol (1:1) with 
12 eq. MnO2: The general procedure A was followed -1 (200 mg, 
0.4 mmol), Pd(OAc)2 (20 mg, 0.09 mmol), benzoquinone (24 mg, 
0.2 mmol) and with 12 eq. of MnO2 (418 mg, 4.8 mmol) in 30 mL of 
acetic acid and propanol (1:1). After usual workup, the crude was 
purified by column chromatography using ethyl acetate-petroleum 
ether (2:8) as the eluent to give 8 (50 mg, 27%) and 15 (77mg, 33%) 
as yellow solid. Mp. 170–172 °C; 1H NMR (400 MHz, CDCl3): δ 
0.84 (t, J = 7.4 Hz, 6H), 1.47 (q, J= 6.8 Hz, 4H), 2.97- 3.16 (m, 4H), 
3.81 (s, 6H), 3.95 (s, 6H), 3.98 (s, 6H), 5.39 (s, 2H), 6.73 (s, 2H), 
7.41 (s, 2H), 7.49 (s, 2H) ppm; 13C NMR (100 MHz, CDCl3): δ 10.7, 
22.8 (2C), 55.9 (2C), 56.0 (2C), 56.1 (2C), 69.7 (2C), 73.1 (2C), 
107.8 (2C), 109.6 (2C), 110.0 (2C), 132.3 (2C), 133.9 (2C), 134.5 
(2C), 147.4 (2C), 148.6 (2C), 153.3 (2C), 192.7ppm; HRMS (ESI) 
Calculated for C33H40O9Na+ [M+Na]+: 603.2565, found 603.2557. 
 
Pd-catalyzed Oxidation of CTV 1 in AcOH-nButanol (1:1) with 
12 eq. MnO2:The general procedure A was followed -1 (200mg, 0.4 
mmol), Pd(OAc)2 (20 mg, 0.09 mmol), benzoquinone (24 mg, 0.2 
mmol) and MnO2 (418mg, 4.8 mmol) in 30 mL of acetic acid and 
butanol (1:1).The product was purified by column chromatography 
using ethyl acetate-petroleum ether (2:8) as the eluent to give 8 (58 
mg, 31%) and 16 (64 mg, 26%) as yellow solid; Mp. 165–166 °C; 
1H NMR (400 MHz, CDCl3): δ 0.83 (t, J= 7.0 Hz, 6H), 1.23-1.48 
(m, 8H), 3.0-3.17 (m,4H), 3.80 (s. 6H), 3.94 (s, 6H), 3.97 (s, 6H), 
5.38 (s, 2H), 6.72 (s, 2H), 7.41 (s, 2H), 7.47 (s, 2H)ppm; 13C NMR 
(100 MHz, CDCl3): δ 13.9 (2C), 19.4 (2C), 31.6 (2C), 55.9 (2C), 

56.0 (2C), 56.1 (2C), 67.8 (2C), 73.1 (2C), 107.9 (2C), 109.5 (2C), 
110.0 (2C), 132.3 (2C), 133.9 (2C), 134.5 (2C), 147.4 (2C), 148.6 
(2C), 153.3 (2C), 192.7ppm; HRMS (ESI) Calculated for 
C35H44O9Na+ [M+Na]+: 631.2878, found 631.2874. 

Pd-catalyzed Oxidation of CTV 2 in AcOH at 70 °C: The general 
procedure A was followed. 2 (100 mg, 0.19 mmol), Pd(OAc)2 (8 mg, 
0.04 mmol), benzoquinone (10 mg, 0.09 mmol) and MnO2 (98 mg, 
1.14 mmol) in 20 mL of acetic acid. The product was purified by 
column chromatography using ethyl acetate-petroleum ether (4:6) as 
the eluent to give starting compound 2 (32 mg) and 17 as a yellow 
solid (46 mg, 41%). Mp.101–103 °C; 1H NMR (200 MHz, CDCl3): δ 
2.03 (s, 9H), 2.16 (3.64 (d, J = 13.8 Hz, 2H), 3.79 (s, 6H), 3.81 (s, 
3H), 4.82 (d, J = 13.8 Hz, 2H), 6.82 (s, 1H), 6.84 (s, 1H), 6.98 (s, 
1H), 6.99 (s, 1H), 7.10 (s, 1H), 7.24 (s, 1H), 7.89 (s, 1H)ppm; 13C 
NMR (125 MHz, CDCl3): δ 20.6 (3C), 21.2, 35.8 (2C), 56.0, 56.1, 
56.1, 68.2, 109.6, 113.3, 114.1, 119.6, 123.6, 124.1, 129.9, 130.7, 
130.9, 136.3, 137.2, 137.8, 138.4, 138.8, 139.2, 149.8, 150.1, 150.4, 
168.7, 168.8, 169.0, 169.6ppm; HRMS (ESI) Calculated for 
C32H32O11Na+ [M+Na]+: 615.1837, found: 615.1832. 

 
Pd-catalyzed Oxidation of CTV 3 in AcOH at 70 °C: The general 
procedure A was followed - 3 (200 mg, 0.37 mmol), Pd(OAc)2 (17 
mg, 0.07 mmol), benzoquinone (20mg, 0.18 mmol) and MnO2 (192 
mg, 2.22 mmol) in 30 mL of acetic acid. The product was purified 
by column chromatography using ethyl acetate-petroleum ether (3:7) 
as the eluent to give 18as a yellow solid (138 mg, 67%), Mp. 98–99 
°C; 1H NMR (200 MHz, CDCl3): δ 2.98 (d, J = 14.0 Hz, 1H), 3.56 
(s, 3H), 3.72 (d, J = 14.0 Hz, 1H), 3.83 (s, 3H), 3.84 (s, 3H), 3.86 (s, 
6H), 3.88 (s, 3H), 3.89 (s, 3H), 3.95 (s, 3H), 6.19 (s, 1H), 6.46 (s, 
1H), 6.76 (s, 1H), 6.79 (s, 1H), 6.85 (s, 1H) ppm; 13C NMR (50 
MHz, CDCl3): δ 27.5, 55.8, 56.0, 56.2, 60.4, 60.6, 60.8, 61.1 (2C), 
62.2, 79.6, 87.6, 99.6, 109.7, 112.4, 125.9, 126.1, 127.2, 136.6, 
136.9, 137.9, 140.0, 141.8, 141.9, 147.1, 151.1, 152.1, 152.4, 152.7, 
155.1ppm; HRMS (ESI) Calculated for C30H34O10Na+ [M+Na]+ : 
577.2044, found: 577.2036. 
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