
Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Organic & Biomolecular Chemistry

RSCPublishing

ARTICLE

0Cite this: DOI: 10.1039/x0xx00000x

Conformational properties of 1,4- and 1,5-substituted 1,2,3-triazole amino acids – building units for peptidic foldamers

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Nina Kann,** Johan R. Johansson* and Tamás Beke-Somfai**.

Peptidic foldamers have recently emerged as a novel class of artificial oligomers with properties and structural diversity similar to that of natural peptides, but possessing additional interesting features granting them great potential for applications in fields from nanotechnology to pharmaceutics. Among these, foldamers containing 1,4- and 1,5-substitued triazole amino acids are easily prepared via the Cu- and Ru-catalyzed click reactions and may offer increased side chain variation, but their structural capabilities have not yet been widely explored. We here describe a systematic analysis of the conformational space of the two most important basic units, the 1,4-substitued (4Tzl) and the 1,5-substitued (5Tzl) 1,2,3-triazole amino acids, using quantum chemical calculations and NMR spectroscopy. Possible conformations of the two triazoles were scanned and their potential minima were located using several theoretical approaches (B3LYP/6-311++G(2d,2p), ωB97X-D/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and MP2/6-311++G(2d,2p)) in different solvents. BOC-protected versions of 4Tzl and 5Tzl were also prepared via one step transformations and analyzed by 2D NOESY NMR. Theoretical results show 9 conformers for 5Tzl derivatives with relative energies lying close to each other, which may lead to a great structural diversity. NMR analysis also indicates that conformers preferring turn, helix and zig-zag secondary structures may coexist in solution. In contrast, 4Tzl has a much lower number of conformers, only 4, and these lack strong intraresidual interactions. This is again supported by NMR suggesting presence of both extended and bent conformers. The structural information provided on these building units could be employed in future design of triazole foldamers.

Introduction

Peptidic compounds with structural properties resembling those of natural amino acids and peptides are interesting because they show great potential for future design of a variety of bioactive molecules. Such compounds are nowadays referred to as peptidic foldamers or foldamers² due to their ability to fold into versatile secondary structures in oligomeric forms.³ Apart from aliphatic homologues of natural amino acids, such as peptides composed of β -, γ - or δ -amino acids, ⁴ a large subgroup in this area have more exotic backbone structures, including diverse cyclic compounds.⁵ Peptidic foldamers with cyclic backbones can be built from ACPC, ACHC, hydrazine, oxazolidine, cholate, ¹⁰ pyrrolidone, ¹¹ diketopiperazine, ¹² or dioxolane, ¹³just to mention a few. Among these, 1,2,3-triazole based peptidomimetics have recently emerged as interesting candidates for several reasons. 14 Their relatively easy synthesis using 'click' chemistry, 15 via either a copper 16 (CuAAC) or a ruthenium catalyzed cycloaddition (RuAAC), 17 their high in vivo stability, and their conformational flexibility are all very

favourable properties in the design of novel bioactive compounds. Furthermore, an important practical advantage is that the backbone of these foldamers is polar enough to retain the same water solubility irrespective of the length of the oligomer.¹⁸

There are currently several examples where 1,4- or 1,5substituted triazoles are either incorporated as monomers into natural peptide sequences, 19 or used as oligomers with a completely non-natural peptide composition.²⁰ All these reports demonstrate that this exciting area has promising capacity in providing applications in biotechnology.²¹ of Nevertheless, the number of existing structural examples for foldamers clearly cannot compare to those of the natural proteins. Consequently, estimation of the structural capabilities for these systems has to be made based on the configuration of their monomeric building blocks. It is known that for natural compounds, most of the secondary structures found in nature are constructed from homoconformers, that is from amino acids which have the same structural properties in their backbone.²² For natural peptides and proteins, numerous conformational

studies have shown that the abundance of secondary structures in protein databases is closely related to the structural properties and relative energy distribution of the conformers of α-amino acids. ²³ The same concept holds for non-natural amino acids and peptides as well; the use of molecular modelling techniques, in particular ab initio calculations, in predicting stability of monomers and thus secondary structures built from them, has proven very effective in the last two decades.24 Recent advances with dispersion energy terms in density functionals have made calculation of energetic properties for larger compounds more accurate.

To better estimate the future potential of triazole peptidomimetics as foldamers, we have explored the structural properties and stability of the two simplest monomer units: the 1,4- and 1,5-substituted 1,2,3-triazole peptides, 4Tzl and 5Tzl (Fig. 1).

Constitution of the 4Tzl and 5Tzl models used for the QM calculations. Nomenclature used for defining torsional angles is highlighted.

Note that when considering these two molecules, use of 1,5substituted 1,2,3-triazoles is as yet far less common. Nevertheless we have recently indicated that their conformational properties may be much more diverse than that of 1,4-substituted 1,2,3-triazoles¹⁸ and have also shown that by using a microwave-assisted RuAAC reaction, 1,5-substitued 1,2,3-triazoles can be synthesized in excellent yields from an alkyl halide, sodium azide and an alkyne in a sequential one-pot procedure.2

We here investigate the peptidomimetic building units shown in Fig. 1 by employing quantum chemical calculations. To further evaluate these compounds, their synthetically useful BOC-protected versions (BOC-4Tzl and BOC-5Tzl) were prepared and subjected to solution phase characterization by 2D NOESY NMR spectroscopy. Exhaustive systematic analysis of the conformers was achieved by exploring the conformational potential energy hypersurface (PEHS) of 4Tzl and 5Tzl along all their rotatable dihedral angles (Fig. 1). Conformers obtained at lower levels of theory were refined by performing additional calculations at the B3LYP/6-311++G(2d,2p), ωB97X-D/6-M06-2X/6-311++G(2d,2p)311++G(2d,2p), and MP2/6-311++G(2d,2p) levels of theory, and considering effects of solvents with different polarity, i.e. water, dimethylsulfoxide (DMSO) and 1-decanol.

Results and discussion

The synthesis of investigated compounds, computational calculations, comparison with NMR measurements, as well as a discussion on BOC-4Tzl and on BOC-5Tzl, are all addressed separately in this section, organized under their corresponding sub-sections. For methodological details see the Experimental Section

Synthesis of BOC-4Tzl (1) and BOC-5Tzl (2)

To prepare the BOC-protected 1,4- and 1,5-substituted versions of 4Tzl and 5Tzl, the same starting materials could be employed for both reactions while the catalyst was varied to produce the desired regioisomer in each case (Scheme 1). To synthesize BOC-4Tzl (1), commercially available N-BOCpropargylamide and 2-azido-N-methylacetamide were stirred in a 1:1 mixture of water and tert-butanol in the presence of catalytic amounts of CuSO₄·5H₂O and sodium ascorbate, producing the desired 1.4-substituted triazole 1 in 81% vield after 20 h at ambient temperature. Using the same azide and alkyne in conjunction with a ruthenium catalyst ($[RuCl_2Cp^*]_n$), with THF as the solvent afforded the 1,5-substituted isomer 2 in 65% yield after microwave heating at 100 °C for 20 min. Both compounds are white solids and could be stored at ambient temperature without any significant deterioration.

Scheme 1 Synthesis of BOC-protected 1,2,3-triazole isomers 1 and 2 (BOC = tert-butoxycarbonyl).

Theoretical analysis of 4Tzl conformers

As a result of the systematic scan on the potential energy hypersurface (PEHS) of 4Tzl, the fully relaxed RHF/3-21G level calculations have converged into 12 distinguishable conformers (Table S1, Supporting Information). For clarity, conformational enantiomers are considered as duplicates and are not discussed. The final optimizations, performed at higher level of theory or in the presence of solvents, have reduced these into four conformers (Fig. 2 and Tables 1-2).

Conformers of 4Tzl obtained at the ωB97X-D/6-311++G(2d,2p) level Fig. 2 of theory.

Structural properties of the 4Tzl conformers can be described by six dihedral angles (Fig. 1 and Table 1). The two central dihedrals cannot be considered as freely rotating, since these are held fixed in the anti position by the 1,2,3-triazole

heterocycle. Considering the four conformers remaining stable at the higher level calculations, the structural properties are rather similar for 4Tzl-1 to 4Tzl-3. For these conformations, the first two dihedrals are in gauche position, with alternating orientation, i.e. g- and g+. The last two dihedrals are also in a shifted gauche position, although they have the same

orientation, i.e. g+g+. The only exception is μ for 4Tzl-3, which is close to zero. The fourth conformer, 4Tzl-4, has a more extended conformation, with the first two dihedrals being *anti*, and only the last two in *gauche* position.

Table 1 Structural and energetic properties of 4Tzl conformers I to 4, located as minima at the B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p), ω B97X-D/6-311++G(2d,2p) and RMP2-FC/6-311++G(2d,2p) levels of theory in gas phase, with solvent effects considered by point energy calculations.

Conf.	Method	athod		ζ			μ	Relative energy ^a			
Com.	Method	φ	θ		ρ	Ψ		Gas	H ₂ O	DMSO	1-Decanol
4Tzl- <i>1</i>	B3LYP	-78.3	79.2	-178.6	-177.9	107	29.1	0.0	0.0	0.0	0.0
	M06-2X	-72.0	77.1	-177.8	-176.4	98.7	28.2	0.0	0.0	0.0	0.0
	ωB97X-D	-74.6	77.0	177.6	-176.8	102.7	26.5	0.0	0.0	0.0	0.0
	MP2	-72.4	78.4	-176.1	-174.2	95.7	30.8	0.0	0.0	0.0	0.0
	B3LYP	-78.5	75.5	-179.9	178.9	-109.8	-29.3	0.1	0.1	0.1	0.1
4Tzl-2	M06-2X	-72.9	71.4	-179.7	176.7	-100.5	-27.8	0.1	0.0	0.0	0.0
	ωB97X-D	-74.6	76.8	-179.1	176.1	-100.3	-29.0	0.1	-0.1	-0.1	-0.0
	MP2	-72.1	76.9	-178	174.1	-96	-31	0.1	-0.0	-0.2	0.0
	B3LYP	-	-	-	-	-	-	-	-	-	-
4Tzl- <i>3</i>	M06-2X	-54.2	111.0	-168.6	164.6	-67.1	3.3	-0.1	0.0	0.0	0.0
	ωB97X-D	-55.2	109.1	-168.9	165.5	-67.9	4.7	-0.1	-0.1	-0.1	-0.1
	MP2	-	-	-	-	-	-	-	-	-	-
	B3LYP	177.9	174.8	179.9	177.6	-103.6	-31.3	1.1	0.6	0.6	0.7
4Tzl-4	M06-2X	178.5	-176.0	179.6	175.8	-94.5	-29.0	1.6	1.0	1.0	1.1
	ωB97X-D	177.6	-178.2	179.2	176.3	-97.7	-29.1	1.5	0.8	0.8	0.9
	MP2	-163	141.2	177.9	173.4	-92.3	-32.8	2.0	1.5	1.5	1.6

^a Relative energies are in kcal/mol.

Table 2 Energetic properties of 4Tzl conformers located as stable minima optimized in water, DMSO and decanol at the B3LYP/6-311++G(2d,2p) and ωB97X-D/6-311++G(2d,2p) levels of theory.

Conf.	Method	Relative energy ^a					
Com.	Method	H ₂ O	DMSO	1-Decanol			
4Tzl-1	B3LYP	0.00	0.00	0.00			
	ωB97X-D	0.00	0.00	0.00			
4Tzl-2	B3LYP	0.01	0.02	0.05			
	ωB97X-D	-0.25	-0.02	0.02			
4Tzl- <i>3</i>	B3LYP	-	-	-			
	ωB97X-D	0.30	0.50	0.37			
4Tzl-4	B3LYP	0.60	0.61	0.63			
	ωB97X-D	0.80	1.03	1.09			

^a Relative energies are in kcal/mol.

Out of these conformers, only 4Tzl-3 forms a hydrogen bond with a 2.3Å O---H distance (Fig. 2). For 4Tzl-1 to 4Tzl-3, the energetic properties obtained from the single point energy calculations on the gas phase structure show rather small differences in solvents of different polarity (see Table 1),

whereas the more extended conformer 4Tzl-4 is less stable. For 4Tzl-4, all theoretical methods in all three solvents show a higher relative energy, B3LYP: 0.6-0.7 kcal/mol, ω B97X-D: 0.8-0.9 kcal/mol, M06-2X: 1.0-1.1 kcal/mol, MP2: 1.5-1.6 kcal/mol (Table 1). The relative difference in stability remains very similar when these four conformer structures are fully optimized in all solvents investigated, with zero-point energy and thermal contributions also considered (Table 2).

The obtained relative energy values indicate that conformers 4Tzl-3 and 4Tzl-4 are somewhat less stable than 4Tzl-1 and 4Tzl-2 in all solvents. However, the highest relative energy is 1.09 kcal/mol for 4Tzl-4 which, considering the Boltzmann distribution, may still allow the co-presence of all these conformers in solution. For 4Tzl-1 and 4Tzl-2, the relative energies are nearly identical at the ω B97X-D/6-311++G(2d,2p) level, 0.00 and -0.25kcal/mol for water, 0.00 and -0.02 kcal/mol for DMSO and 0.00 and 0.02 for decanol, respectively.

Theoretical analysis of 5 Tzl conformers

For 5Tzl, the systematic PEHS scan has resulted in 27 distinguishable conformers (Table S2, Supporting Information). During the higher level optimizations, several conformers vanished and 13 conformers remained (Table 3). Full optimizations in solvents further reduced the number of minima, resulting finally in 9 conformers (Fig. 3 and Table 4). Structural properties of the 5Tzl conformers can be described by five dihedral angles (Fig. 1 and Table 3). The central

Fig. 3

ARTICLE Journal Name

dihedral angle is fixed in a near zero degree position. The 13 conformers stable at the higher level calculations mostly form "bent" conformers, with the majority of the dihedral angles in gauche position (Fig. 3 and Table 3). The only extended conformer is 5Tzl-21. Although 5Tzl-3, 5Tzl-4, 5Tzl-8, 5Tzl-10, 5Tzl-11, 5Tzl-14 and 5Tzl-20 have also one or more torsional angles in the anti range, i.e. $|120^{\circ} - 180^{\circ}|$, these most probably will not favor extended conformers in oligopeptides. A more detailed overview on potential secondary structures is presented below in the sub-section 5Tzl intraresidual properties. The structures of 5Tzl-6, 5Tzl-10, 5Tzl-11, 5Tzl-14 and 5Tzl-20 are stabilized by a hydrogen bond, with O---H distances of 2.19 Å, 1.91 Å, 1.97 Å, 2.20 Å, and 2.10 Å, respectively (Fig. 3).

For 5Tzl, the energetic distribution of the conformers depends more on the theoretical approach than for 4Tzl, partially due to the significantly higher number of minima, but also because there are discrepancies e.g. between consideration

of dispersive forces in the theoretical methods employed. When solvent effects were only considered by single point energy calculations on the gas phase structures, there are significant changes in relative stability between the three methods used

(Table 3). The calculations with the B3LYP functional indicate that conformers 5Tzl-2, 5Tzl-4, 5Tzl-7, 5Tzl-8, and 5Tzl-10 will be the most stable in the solutions used. These minima are within 1.5 kcal/mol in relative energy from the most stable conformer, 5Tzl-8. Conformers 5Tzl-1, 5Tzl-3, 5Tzl-6, 5Tzl-13, 5Tzl-14 and 5Tzl-20 have moderately low relative energies,

i.e. lower then 3 kcal/mol, whereas 5Tzl-11 and 5Tzl-21 have higher energies and are the least stable.

Solvent single point energies with the ωB97X-D functional result in 5Tzl-1, 5Tzl-2, 5Tzl-3, 5Tzl-8, 5Tzl-10 conformers within 1.5 kcal/mol counted from the lowest energy structure: 5Tzl-8 (Table 3). Conformers 5Tzl-4, 5Tzl-6, 5Tzl-7, 5Tzl-11, and 5Tzl-13 are moderately low, having smaller than 3 kcal/mol relative energy, and 5Tzl-14 and 5Tzl-21 have high relative energy. For the M06-2X functional, the conformers show very similar energy distribution as for $\omega B97X-D$, however, it results 5Tzl-10 as lowest energy conformer. The relative energy distribution of MP2 matches those obtained with the ωB97X-D functional, with only difference being the vanishing conformer 5Tzl-13 at MP2 level.

As expected, full optimizations in solvents result in smaller energetic differences. At the B3LYP/6-311++G(2d,2p) level of theory, 5Tzl-2 is the most stable conformer and 5Tzl-2, 5Tzl-3, 5Tzl-4, 5Tzl-7, 5Tzl-8, 5Tzl-10 are minima with lower than 1.5 kcal/mol energy values relative to 5Tzl-2 (Table 4). However, the $\omega B97X\text{-}D$ and MP2 calculations again show a significant deviation from the B3LYP results. Here the 5Tzl-1, 5Tzl-2, 5Tzl-3, 5Tzl-8, 5Tzl-10 conformers are the most stable, 5Tzl-4 and 5Tzl-7 being over 1.5 kcal/mol in relative energy, and 5Tzl-6, 5Tzl-14 having a ~3 kcal/mol energy difference from the most stable conformer. The most stable conformer is 5Tzl-1 for MP2, and 5Tzl-8 for ωB97X-D calculations (Table 4)

4Tzl intraresidual properties

The small relative energy values obtained for 4Tzl are reasonable if one considers that there are very few possible configurations where this peptidic residue could form intraresidual H-bonds. Only 4Tzl-3 has an H-bond, though the relatively high 2.3 Å distance between the corresponding oxygen and hydrogen indicates that their positioning is not optimal. Furthermore, there are no large differences in relative energies when comparing solvents with very different polarity (Table 2). All these properties suggest that without side chains, 4Tzl is rather flexible, and has small internal preference for a particular conformation. This observation is in close agreement with several experimental examples on conformational properties of 4Tzl, where these are predicted to result in extended configurations, a direct outcome of the extended 1,4positioning on the triazole heterocycle. 20b Although three 4Tzl conformers each have four dihedral angles in gauche position (Table 2), as there are most likely no major barriers for internal conformational transitions, the observed random/extended conformations in experiments may be enforced by the surrounding amino acid residues and the applied side chains. The latter observation is also supported by the fact that the 2D NMR NOESY experiments reveal both H¹-H⁷ and H⁴-H⁷ crosspeaks, which suggests that BOC-4Tzl-1, 2, or maybe even 3 have to be present simultaneously in solution (for the list of NOEs, see Figure S1 in SI).

5Tzl intraresidual properties

To compare theoretical results with those obtained by NMR, we have optimized the final 9 5Tzl minima with the same protecting groups as the synthesized compounds, BOC- and Nmethyl amide (BOC-5Tzl). When compared to the 5Tzl calculations, there are no significant changes in the structural properties of the BOC-5Tzl conformers. Regarding energetic properties, BOC-5Tzl-1, BOC-5Tzl-2, BOC-5Tzl-3, BOC-5Tzl-8, and BOC-5Tzl-10 have lower relative energies. Conformers 4 and 7 have higher than 1.5 kcal/mol values, while BOC-5Tzl-6 and BOC-5Tzl-14 are the highest energy

conformers, with values near 2.5 kcal/mol. The most stable conformer is BOC-5Tzl-1, although 1, 2, 3, 8 and 10 have nearly identical relative energies (Table 5). These conformers obtained for BOC-5Tzl were also used to analyse the NOESY data obtained for the same compound (Table S3 and Figure S2, Supporting Information). The number of NOE crosspeaks is

relatively large, and they are nearly identical in both DMSO and D_2O , indicating that the same conformer or conformers are present in both solvents. This is in close agreement with the 5Tzl calculations showing nearly identical relative energies for the above two solvents (Table 4).

Conf.	Secondary	Method		0	<i>y</i>	_	ψ -		Relativ	e energy ^b	
	structure ^a	Method	φ	θ	5	ρ		Gas	H ₂ O	DMSO	1-Decanol
		B3LYP	-116.3	59.6	-6.8	-98.4	-40.3	0.00	0.00	0.00	0.00
5Tzl- <i>1</i>		M06-2X	-116.4	55.9	-7.9	-83.8	-29.2	0.00	0.00	0.00	0.00
	H14	ωB97X-D	-117.8	57.9	-7.5	-87.9	-26.2	0.00	0.00	0.00	0.00
		MP2	-116.5	58.9	-8.5	-88.2	-26.7	0.00	0.00	0.00	0.00
		B3LYP	103.9	75.2	-5.7	-83.5	-73.2	-0.65	-0.50	-0.52	-0.74
5Tzl-2		M06-2X	68.6	52.3	-9.5	-74.4	-29.1	-0.07	-0.03	-0.04	-0.18
	C8	ωB97X-D	73.4	64.0	-7.2	-76.6	-45.4	-0.17	0.45	0.41	0.12
		MP2	68.4	63.2	-8.4	-77.0	-40.4	-0.17	0.41	0.38	0.12
		B3LYP	-104.3	70.9	-4.2	-100.6	-134.0	1.19	0.12	0.12	0.20
5Tzl- <i>3</i>		M06-2X	-99.8	77.2	-2.7	-82.5	-176.7	0.79	0.16	0.16	0.21
	Turn	ωB97X-D	-102.3	73.9	-3.1	-85.1	-174.8	1.12	0.23	0.23	0.30
		MP2	-99.5	77.3	-2.8	-84.8	-174.6	1.84	0.70	0.71	0.86
		B3LYP	-87.6	95.9	4.6	78.0	140.3	1.00	-1.15	-1.13	-0.83
5Tzl-4		M06-2X	-79.5	101.4	5.8	73.9	144.5	3.52	1.58	1.60	1.82
	2-Helix	ωB97X-D	-85.9	96.5	5.1	76.2	143.7	2.92	1.05	1.06	1.28
		MP2	-80.0	99.5	6.8	75.0	141.7	3.56	1.60	1.62	1.85
		B3LYP	103.1	42.9	-7.0	66.1	76.3	1.49	0.74	0.73	0.70
5Tzl-6		M06-2X	83.5	49.1	-4.2	57.7	59.0	2.98	2.39	2.39	2.34
	H8	ωB97X-D	85.0	44.4	-4.5	61.7	63.7	2.42	1.95	1.94	1.85
		MP2	79.3	48.1	-4.7	57.8	58.5	2.94	1.85	1.85	1.91
		B3LYP	-89.0	96.7	6.6	95.6	34.2	0.97	-0.66	-0.65	-0.41
5Tzl-7		M06-2X	-74.7	103.7	7.7	83.4	30.4	3.22	2.07	2.07	2.17
	Spiral	ωB97X-D	-83.0	98.5	8.3	87.3	31.7	2.68	1.49	1.49	1.61
	H16	MP2	-74.0	102.0	10.0	83.1	33.5	2.68	1.71	1.71	1.79
		B3LYP	-107.8	80.9	3.3	70.6	-122.0	0.92	-1.96	-1.92	-1.42
5Tzl-8		M06-2X	-108.2	80.0	5.6	67.8	-131.1	2.46	0.11	0.14	0.51
	H10	ωB97X-D	-109.2	78.7	4.9	70.0	-1201.7	1.66	-0.95	-0.91	-0.50
		MP2	-106.8	80.1	6.2	66.7	-126.0	2.33	-0.24	-0.21	0.23
	H10	B3LYP	-70.2	144.1	1.5	-85.5	16.5	1.71	-1.39	-1.35	-0.85
5Tzl- <i>10</i>		M06-2X	-69.1	152.5	-0.9	-74.5	5.4	2.13	-0.11	-0.08	0.21
	Turn2	ωB97X-D	-68.9	149.1	0.8	-78.1	-9.8	2.02	-0.47	-0.44	-0.10
	Turn3	MP2	-66.0	150.0	-0.3	-78.9	9.2	2.62	-0.03	0.01	0.40
		B3LYP	-131.7	42.5	-11.6	66.6	26.3	3.88	1.93	1.96	2.38
5Tzl- <i>11</i>		M06-2X	-131.0	38.9	-9.8	58.1	26.1	2.53	1.84	1.85	1.98
	H14	ωB97X-D	-131.9	39.5	-10.4	61.1	24.9	2.86	1.91	1.93	2.12
		MP2	-133.1	39.8	-10.6	59.8	24.7	3.21	2.20	2.21	2.42
		B3LYP	84.7	94.1	6.4	94.7	37.3	2.10	0.22	0.24	0.49
5Tzl- <i>13</i>		M06-2X	82.9	49.7	-4.4	57.0	58.1	2.87	1.95	1.94	1.96
		ωB97X-D	85.4	45.0	-4.7	61.0	61.6	2.47	1.76	1.75	1.70
		MP2	-	-	-	-	-	-	-	-	-
5Tal 14		B3LYP	114.7	170.4	-4.2	-97.1	-36.6	2.07	-0.04	-0.02	0.24
5Tzl- <i>14</i>		M06-2X	86.8	175.7	-6.3	-83.9	-31.6	5.04	2.84	2.86	3.13
		ωB97X-D	99.2	175.3	-5.4	-85.0	-34.2	4.34	2.37	2.39	2.61

	MP2	86.7	172.2	-7.4	-83.8	-33.3	5.33	3.25	3.27	3.53
5Tzl-20	B3LYP M06–2X	114.6	164.7	3.6	94.0	30.80	2.25	-0.27	-0.25	0.11
	ωB97X-D MP2	- -	-	-	-	-	-	-	-	-
	B3LYP	180.0	180.0	0.0	180.0	0.0	6.09	4.63	4.64	4.81
5Tzl-2 <i>1</i>	M06-2X	180.0	180.0	0.0	-180.0	0.0	9.95	9.05	9.05	9.09
	ωB97X-D MP2	180.0 180.0	180.0 180.0	0.0	-180.0 180.0	0.0 0.0	9.22 10.92	8.26 10.00	8.26 10.00	8.31 10.05

^aPotential secondary structures which could be built for peptidic oligomers using the particular 5Tzl conformer.

One should highlight the crosspeak H¹-H⁷, which is between protons located on the two end protecting groups. This suggests a bent conformer (Figure S2 in SI). This may apply to several of the located minima, nevertheless, a joint qualitative analysis of available computational and NMR structural data could narrow down the number of probable conformers. Although the presented energy values incorporate only zero point corrections, and thermal corrections to energies and enthalpies, use of these values to approximate relative stability of a conformer may be justified in a qualitative analysis. Accordingly, BOC-5Tzl-2 and BOC-5Tzl-10 are most likely to be present in solution. Both conformers have low relative energies (Table 5) and their H-H distances fit to most of the found NOEs (Table S3 in SI). Among the other low energy conformers, I and 3 would also show a H¹-H⁷ crosspeak, but we conclude that these structures are less probable because both of these would display one proton-proton distance below 3Å, which, despite the considerable dynamics present in a room temperature solvent, should be seen in the spectra. BOC-5Tzl-8 is also a low energy conformer which could give rise to several NOEs, although not

Table 4 Structural and energetic properties of 5Tzl conformers located as stable minima optimized in various solvents at the at the B3LYP/6-311++G(2d,2p) , ω B97X-D/6-311++G(2d,2p) and RMP2-FC/6-311+G(d,p) levels of theory.

Conf.	Sec.	3.5.1.1		Relative energy ^b				
Com.	struct.a	wicthou -	H ₂ O	DMSO	Decanol	level		
		B3LYP	0.00	0.00	0.00			
5Tzl- <i>1</i>	H14	ωB97X-D	0.00	0.00	0.00	LOW		
		MP2	0.00	0.00	-			
		B3LYP	-1.65	-1.64	-1.60			
5Tzl-2	C8	ωB97X-D	0.42	0.36	-0.19	LOW		
		MP2	0.94	0.95	-			
		B3LYP	-0.65	-0.63	0.14			
5Tzl- <i>3</i>	Turn1	ωB97X-D	-0.14	-0.10	0.19	LOW		
		MP2	0.23	0.22	-			
		B3LYP	-0.56	-0.55	-0.48			
5Tzl-4	2-Helix	ωB97X-D	1.51	1.48	1.43	MOD		
		MP2	1.27	1.27	-			
5Tzl-6		B3LYP	1.32	1.30	0.42			
	Н8	ωB97X-D	2.77	2.70	2.35	HIGH		

		MP2	1.88	1.85	-	
5Tzl-7	Spiral /	B3LYP	-0.20	-0.18	-0.07	
	H16	ωB97X-D	1.51	1.47	1.53	MOD
		MP2	1.62	1.60	-	
5Tzl-8		B3LYP	-1.04	-1.01	-0.81	
	H10	ωB97X-D	-0.23	-0.25	-0.02	LOW
		MP2	0.21	0.21	-	
	H10 /	B3LYP	-0.70	-0.69	-0.50	
5Tzl- <i>10</i>	Turn2 /	ωB97X-D	-0.08	-0.11	-0.06	LOW
	Turn3	MP2	0.29	0.29	-	
5Tzl- <i>14</i>		B3LYP	0.25	0.29	0.37	
	Spiral	ωB97X-D	2.24	2.28	2.49	HIGH
		MP2	1.62	1.60	-	

^aPotential secondary structures which could be built for peptidic oligomers using the particular 5Tzl conformer.

the H¹-H² interaction (Table 5 and Table S3 in SI). Nevertheless, the H-bond in 8 would constrain the structure to some extent and should give rise to a H²-H² crosspeak (Fig. 3). BOC-5Tzl-4 and 7, despite having somewhat higher relative energies, both have several H-H distances which fit well into the experimental NOEs. At the same time, both have a more extended structure without a stabilizing internal H-bond, and it is likely that in a polar solvent the structure will shift into a conformer where the apolar end groups are less exposed to the solvent. Finally, the two remaining conformers could be present if only the NOEs were considered; nevertheless they have the highest relative energies, making these less likely.

A recent study employing joint theoretical and experimental approaches on trimer-heptamer oligomers composed of achiral 5Tzl demonstrated that several secondary structures may coexist in solution. According to calculations on tetramer and heptamer models, H14, H16, H20 helices, T1, T2, T3-type turns, as well as double-stranded constructs all have rather small relative energy differences. In accordance, results presented here indicate that several of the 5Tzl conformers would promote a turn in a peptidic oligomer (Fig. 3). Further on, our exhaustive search of 5Tzl conformational space suggests a number of other secondary structures which could be built from this residue, especially when they are used as oligomers with the appropriate side chains. Accordingly, the

^b Relative energies are in kcal/mol.

^b Relative energies are in kcal/mol.

relative energies of the obtained conformers advise that low energy conformers of 5Tzl would particularly favour turns, Turn1, Turn2, Turn3, helices with 10 or 14 atoms in the H-bonded pseudo ring, H10, H14, as well as a zig-zag like conformation with 8-membered H-bond pseudo rings, C8 (Table 4). Furthermore, appropriate side chains would also allow the formation of H16, Spiral, or double-helix assemblies, and even H8 or Sheet conformations could be achieved. The relation between the different, theoretically plausible, secondary structures, and the conformers which would be most

Based on the above conformational analysis and the NMR measurements of the BOC protected monomer, we propose that for longer oligomers the most probable secondary structures can be narrowed down to turns, H10, and C8.

suitable to build them is highlighted (Table 3 and 4).

 $\begin{tabular}{ll} \textbf{Table 5} & Energetic properties of BOC-5Tzl conformers optimized at the ωB97X-D/6-311++G(2d,2p) level of theory using water as solvent. \end{tabular}$

Conformer	Relative energy (H ₂ O)
BOC-5Tzl-1	0.00
BOC-5Tzl-2	0.16
BOC-5Tzl-3	0.13
BOC-5Tzl-4	1.75
BOC-5Tzl-6	2.70
BOC-5Tzl-7	1.82
BOC-5Tzl-8	0.22
BOC-5Tzl-10	0.04
BOC-5Tzl-14	2.46

^a Relative energies are in kcal/mol.

Conclusions

We have investigated the conformational properties of two compounds, 1,4-substituted (4Tzl) and 1,5-substituted (5Tzl) 1,2,3-triazole amino acids, which can be considered as basic building units of triazole-based peptidomimetics. We combined exhaustive theoretical conformational analysis with organic synthesis and 2D NMR measurements. BOC-protected 4Tzl and 5Tzl were prepared in good yields from commercially available starting materials in a one-step reaction, using CuSO₄ as the catalyst to attain the 1,4-substitution pattern in 4Tzl, and [RuCl₂Cp*]_n in the case of the 5Tzl isomer. The two isomers were fully characterized and subjected to 2D NOESY NMR analysis to complement the computational studies.

Out of the few (i.e. 4) stable conformers of 4Tzl, in principle none of these has shown a large stabilization relative to the others, with no strong intraresidual H-bonds obtained. The 2D NOESY NMR experiments, in accordance with the calculations, show that extended, BOC-4Tzl-1, and more bent conformers, BOC-4Tzl-2 or BOC-4Tzl-3, may be simultaneously present in solution.

4Tzl units in foldamers most likely adopt conformations following positioning of their central 1,4-substituted triazole pentacycle and the conformational preference of the surrounding residues in a peptidomimetic oligomer. Based on the joint theoretical analysis and NMR measurements, we conclude that the 1,4-substituted triazoles have promising capabilities in forming sheet-like elongated secondary structures.

In contrast, the 5Tzl show much higher diversity, with 9 stable conformers found by QM conformational analysis. Surprisingly, the vast majority of 5Tzl conformers have a relative energy lower than 3 kcal/mol, and they are structurally more diverse than those of 4Tzl. Together with previous NMR results on their corresponding homooligomers, ¹⁸ this observation suggests that several secondary structures built from these may coexist in solution, a basic prerequisite for larger scale conformational diversity in the case of natural proteins ²⁶Most likely turns, ten-membered helices (H10) and zig-zag like structures (C8) could be easily manifested for their homooligomers, but with appropriate side chains H8, H14, H16, spiral or even sheet secondary structures may also be achieved.

Four different theoretical methods were tested to see which is the most appropriate to characterize these systems. Based on the close correlation between MP2 and ω B97X-D results, we propose that the latter is a fast and reliable method, also accounting for dispersive effects in triazole foldamers. The M06-2X functional performs nearly equally well, however produces some larger deviations as ω B97X-D in case of the lower energy conformers. We hope that this analysis of the basic properties of triazole amino acids will help rational computer-aided design of novel oligomers with desired secondary structures.

Experimental section

Computational methods

All computations were carried out using the Gaussian 09 software package.²⁷ Initial exploration of the conformational space was performed at the RHF/3-21G level of theory, where the dihedral angles were scanned with a resolution of 60°. These have resulted 1296 and 800 converged constrained conformers for 4Tzl and 5Tzl models, respectively. All obtained conformers were submitted to fully relaxed optimizations at the RHF/3-21G level of theory, resulting 12 and 27 conformers for 4Tzl and 5Tzl, respectively. These were submitted to further optimizations using both Becke's three parameter functional with the Lee-Yang-Parr exchange functional (B3LYP)²⁸, Head-Gordon's ωB97X-D functional, which included dispersion correction and long-range electron correlation corrections, ²⁹, as well as M06-2X of the Minnesota functionals.³⁰ For all these functionals the 6-311++G(2d,2p) basis set was employed. During these calculations, the number of stable conformers were reduced to 4 (4Tzl) and 13 (5Tzl). The remaining structures obtained from the high level calculations were also submitted to MP2/6-311++G(2d,2p) calculations. Point energy calculations were performed to estimate solvent effects of water, dimethylsulfoxide (DMSO) and 1-decanol These environments were modelled using the Integral Equation Formalism for Polarizable Continuum Model (IEFPCM).³¹ To consider effects of solvent on conformational properties, as well as to confirm nature of the critical points obtained, all 4 4Tzl and 13 5Tzl conformers were submitted to fully relaxed optimization followed by frequency calculations at the B3LYP/6-311++G(2d,2p), $\omega B97X-D/6-311++G(2d,2p)$ and MP2/6-311+G(d,p) levels of theory in the above three solvents using the IEFPCM model. These confirmed that all obtained critical points are minima. In the case of 5Tzl, these calculations have further reduced the number of stable conformers to 9. To compare theoretical results with the experimental, 5Tzl models containing the same protecting

group as the experimental ones, BOC and N-methyl, were also optimized at the $\omega B97X-D/6-311++G(2d,2p)$ level with water as solvent (BOC-5Tzl). During frequency calculations on conformers optimized in solvents, for all three models 4Tzl, 5Tzl and BOC-5Tzl, several low frequency vibrations were found due to internal rotation modes. Such vibrations would not effect significantly the thermal energy and enthalpic contributions, but may cause significant errors when estimating entropic effects at room temperature. Consequently an additional harmonic vibrational analysis, identifying internal rotational modes, was also performed for BOC-5Tzl minima,, nevertheless, for several conformers a one-to-one correspondence between vibrational and internal rotation modes could not be achieved. For the compounds studied here, the arising error would be ~2.6-3.3kcal/mol, thus on the same magnitude as relative energy difference between the lowest and highest energy conformers. Therefore presented energies for solvent optimized conformers incorporate only zero-point energy corrections (ZPE), and thermal corrections to energy and enthalpy.

Precision and accuracy of computations

ARTICLE

Although here we focused on the practical applicability of the 4Tzl and 5Tzl residues, as there are no exhaustive studies on which theoretical methods should be the most accurate and computationally least demanding for them, a short discussion is included here on the performance of the applied theoretical methods. Based on previous benchmark studies on peptide conformations, 32 alanine and proline dipeptides, 33 using among others B3LYP, ω B97X-D, M06-2X, it was expected that ω B97X-D and M06-2X will perform nearly equally well, when compared to reference MP2 calculations. 33

Indeed, for 4Tzl and 5Tzl the B3LYP calculations show significant deviations from those of MP2, ωB97X-D and M06-2X methods (Tables 1-4). At the same time, a rather close agreement can be seen between MP2, M06-2X and ωB97X-D, although solvent effects may cause larger deviations. Considering relative energy values in solvents, the latter two is almost equally accurate when compared to the MP2 values. The only difference is that ωB97X-D shows somewhat higher accuracy for the lower energy conformers over M06-2X, which may be important when one aims to estimate structural preferences among most stable conformers. As the MP2 calculations are rather time consuming, they are not appropriate to handle larger systems such as oligopeptides. The good agreement with ωB97X-D and M06-2X suggests that the latter density functionals are suitable to quickly and accurately assess properties of these foldamers, where we give some preference for the ωB97X-D functional due to the reasons mentioned above. Nevertheless, a systematic analysis on theoretical methods, a task beyond our current focus, is necessary to have solid conclusions on the most suitable theoretical approaches.

General experimental

All reactions were performed under an argon atmosphere. 2-Azido-N-methylacetamide was purchased from Fluorochem (UK). [RuCl₂Cp*]_n was purchased from Strem Chemicals. Automated flash chromatography was performed using a Biotage Isolera One system. Microwave reactions were carried out in a Biotage Series 60 Initiator (actual vial temperature was monitored with an IR sensor, using a fixed hold time). Chemical shifts (δ) are given in ppm relative to the solvent

residual peak (DMSO-d₆: 2.50 ppm for ¹H NMR and 39.51 ppm for ¹³C NMR), or an internal standard (TMS: 0.00 ppm for ¹H NMR). 2D NOESY experiments were carried out in 30-70 mM DMSO-d₆ solution at 25 °C, using a NOESY mixing time of 500 ms, and a relaxation delay of 1.5 s, and were acquired with 2048 points in the *f*2 domain and 256 points in the *f*1 domain. The data was processed using MestReNova software and baseline correction was applied to both dimensions using Bernstein polynomial fit (3 orders) and a 90 °C sin bell window function was applied in both dimensions.

Synthesis

tert-Butyl ((1-(2-(methylamino)-2-oxoethyl)-1H-1,2,3triazol-4-yl)methyl)carbamate, BOC-4Tzl (1) 2-Azido-Nmethylacetamide (115 mg, 1.01 mmol) was dissolved in 2 mL H₂O:t-BuOH (1:1) in a 4 mL vial equipped with a magnetic stir bar. To the mixture was added N-BOC-propargylamine (188 mg, 1.21 mmol), CuSO₄·5H₂O (5.0 mg, 0.02 mmol) and sodium ascorbate (12.0 mg, 0.06 mmol). The vial was capped and the orange solution was stirred for 20 h at ambient temperature. Brine (3 mL) was added and the mixture was extracted with EtOAc (5x3 mL). The combined organic phases were dried (Na₂SO₄) and concentrated under vacuum. The crude product was purified by automated flash chromatography on silica gel (eluent 20-80% EtOAc in petroleum ether, followed by 1-30% MeOH in CH₂Cl₂), affording BOC-4Tzl (1) as a white solid (221 mg, 81%). Anal. Calcd for $C_{11}H_{10}N_5O_3$: C, 49.06; H, 7.11; N, 26.01. Found: C, 49.09; H, 7.15; N, 25.91. IR (KBr) 3402, 3332, 3130, 2979, 1669, 1517, 1269, 1176 cm⁻¹; ¹H NMR (500 MHz; DMSO- d_6) δ 8.19 (d, J = 4.2 Hz, 1H), 7.82 (s, 1H), 7.32 (t, J = 5.7 Hz, 1H), 5.03 (s, 2H), 4.17 (d, J = 5.9 Hz, 2H), 2.63(d, J = 4.6 Hz, 3H), 1.39 (s, 9H); ¹³C NMR (126 MHz; DMSO d_6) δ 165.8, 155.6, 145.4, 124.0, 77.9, 51.6, 35.6, 28.2, 25.6; m/z (ESI) 270 (M⁺, 40%), 214 (100).

((1-(2-(methylamino)-2-oxoethyl)-1H-1,2,3tert-Butvl triazol-5-yl)methyl)carbamate, BOC-5Tzl (2) 2-Azido-Nmethylacetamide (93 mg, 0.82 mmol, 1.0 equiv.) was dissolved in 2 mL dry THF in a 4 mL vial equipped with a magnetic stir bar under an argon atmosphere. N-BOC-propargylamine (139 mg, 0.90 mmol, 1.1 equiv.) was added, followed by $[RuCl_2Cp^*]_n$ (10.0 mg, 0.033 mmol, 0.04 equiv.). The solution was transferred to a microwave reaction vial using a syringe, equipped with a syringe filter to remove undissolved catalyst. The reddish reaction mixture was heated for 20 min at 100 °C in a microwave reactor, affording a dark solution. After cooling, the solution was concentrated under vacuum and subsequently purified by automated flash chromatography (eluent 1-30% MeOH in CH₂Cl₂), affording BOC-5Tzl (4) as a white solid (144 mg, 65%). Anal. Calcd for $C_{11}H_{19}N_5O_3$: C, 49.06; H, 7.11; N, 26.01. Found: C, 49.13; H, 7.17; N, 25.71. IR (KBr) 3332, 2984, 1670, 1560, 1520, 1369, 1266, 1163 cm⁻¹ ¹; ¹H NMR (500 MHz, DMSO- d_6) δ 8.26 (d, J = 4.2 Hz, 1H), 7.51 (s, 1H), 7.36 (s, 1H), 5.09 (s, 2H), 4.22 (d, J = 5.9 Hz, 2H), 2.64 (d, J = 4.6 Hz, 3H), 1.38 (s, 9H); ¹³C NMR (126 MHz, DMSO-d₆) δ 165.8, 155.5, 136.9, 132.2, 78.4, 49.7, 32.9, 28.1, 25.6; *m/z* (ESI) 270 (M⁺, 100%).

Acknowledgements

We would like to thank Prof. Bengt Nordén for inspiring discussions on this project. This work was funded by the King Abdullah University of Science and Technology (KAUST Kuk No1) and by the European Research Council (ERC).

References

Journal Name

^aDepartment of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden. E-mail: beke@chalmers.se; kann@chalmers.se; http://www.chalmers.se/chem/; Fax: +46-31-7723858; Tel: +46 (0)31 772 3029 (T. Beke-Somfai, Physical Chemistry); +46 (0)31 772 3070 (N. Kann, Organic Chemistry).

^bAstraZeneca R&D Mölndal, RIA IMED, Medicinal Chemistry, SE-43183 Mölndal. E-mail: johan.x.johansson@astrazeneca.com.

^cResearch Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány 1, H-1125 Budapest, Hungary.

Electronic Supplementary Information (ESI) available: Tables on the RHF/3-21G conformers, NMR spectra and analysis. See DOI: 10.1039/b000000x/

- I. Avan, C. D. Hall and A. R. Katritzky, Chem. Soc. Rev., 2014, 43, 3575.
- (a) S. H. Gellman, Accounts Chem. Res., 1998, 31, 173; (b) T. A. Martinek and F. Fulop, Chem. Soc. Rev., 2012, 41, 687.
- 3 L. K. A. Pilsl and O. Reiser, Amino Acids, 2011, 41, 709.
- 4 (a) D. Seebach, A. K. Beck and D. J. Bierbaum, *Chem. Biodiversity*, 2004, 1, 1111; (b) C. Baldauf, R. Gunther and H. J. Hofmann, *J. Org. Chem.*, 2004, 69, 6214.
- (a) W. S. Horne and S. H. Gellman, Acc. Chem. Res., 2008, 41, 1399;
 (b) D. Haldar, Curr. Org. Synth., 2008, 5, 61.
- (a) D. H. Appella, L. A. Christianson, D. A. Klein, M. R. Richards, D. R. Powell and S. H. Gellman, *J. Am. Chem. Soc.*, 1999, 121, 7574;
 (b) T. A. Martinek, I. M. Mandity, L. Fulop, G. K. Toth, E. Vass, M. Hollosi, E. Forro and F. Fulop, *J. Am. Chem. Soc.*, 2006, 128, 13539.
- 7 (a) M. Schinnerl, J. K. Murray, J. M. Langenhan and S. H. Gellman, Eur. J. Org. Chem., 2003, 721; (b) I. M. Mandity, L. Fulop, E. Vass, G. K. Toth, T. A. Martinek and F. Fulop, Org. Lett., 2010, 12, 5584.
- 8 J. H. Tsai, A. S. Waldman and J. S. Nowick, *Bioorg. Med. Chem.*, 1999, 7, 29.
- C. Tomasini, G. Luppi and M. Monari, J. Am. Chem. Soc., 2006, 128, 2410;
 N. Castellucci and C. Tomasini, Eur. J. Org. Chem., 2013, 3567.
- 10 Z. Q. Zhong and Y. Zhao, Org Lett, 2007, 9, 2891.
- 11 E. A. Porter, X. F. Wang, M. A. Schmitt and S. H. Gellman, *Org. Lett.*, 2002, 4, 3317.
- 12 R. Delatouche, M. Durini, M. Civera, L. Belvisi and U. Piarulli, *Tetrahedron Lett.*, 2010, **51**, 4278.
- 13 A. Kothari, M. K. N. Qureshi, E. M. Beck and M. D. Smith, *Chem. Commun.*, 2007, 2814.
- 14 J. M. Holub and K. Kirshenbaum, Chem. Soc. Rev., 2010, 39, 1325.
- 15 H. C. Kolb, M. G. Finn and K. B. Sharpless, *Angew. Chem. Int. Edit.*, 2001, **40**, 2004.
- 16 (a) C. W. Tornoe, C. Christensen and M. Meldal, *J. Org. Chem.*, 2002, 67, 3057; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, *Angew. Chem. Int. Edit.*, 2002, 41, 2596.
- 17 (a) L. Zhang, X. G. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin and G. C. Jia, *J. Am. Chem. Soc.*, 2005, 127, 15998; (b) L. K. Rasmussen, B. C. Boren and V. V. Fokin, *Org. Lett.*, 2007, 9, 5337; (c) B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang, H. T. Zhao, Z. Y. Lin, G. C. Jia and V. V. Fokin, *J. Am. Chem. Soc.*, 2008, 130, 8923.

- 18 J. R. Johansson, E. Hermansson, B. Norden, N. Kann and T. Beke-Somfai, Eur. J. Org. Chem., 2014, 2703.
- 19 (a) Y. L. Angell and K. Burgess, Chem. Soc. Rev., 2007, 36, 1674; (b) A. Tam, U. Arnold, M. B. Soellner and R. T. Raines, J. Am. Chem. Soc., 2007, 129, 12670; (c) J. K. Pokorski, L. M. M. Jenkins, H. Q. Feng, S. R. Durell, Y. W. Bai and D. H. Appella, Org. Lett., 2007, 9, 2381; (d) W. S. Horne, C. A. Olsen, J. M. Beierle, A. Montero and M. R. Ghadiri, Angew. Chem. Int. Edit., 2009, 48, 4718; (e) S. Roux, M. Ligeti, D. A. Buisson, B. Rousseau and J. C. Cintrat, Amino Acids, 2010, 38, 279; (f) D. Tietze, M. Tischler, S. Voigt, D. Imhof, O. Ohlenschlager, M. Gorlach and G. Buntkowsky, Chem. Eur. J., 2010, 16, 7572; (g) K. Buysse, J. Farard, A. Nikolaou, P. Vanderheyden, G. Vauquelin, D. S. Pedersen, D. Tourwe and S. Ballet, Org. Lett., 2011, 13, 6468; (h) J. Q. Zhang, J. Kemmink, D. T. S. Rijkers and R. M. J. Liskamp, Org. Lett., 2011, 13, 3438; (i) A. Isidro-Llobet, T. Murillo, P. Bello, A. Cilibrizzi, J. T. Hodgkinson, W. Galloway, A. Bender, M. Welch and D. R. Spring, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 6793; (j) N. Castellucci and C. Tomasini, Eur. J. Org. Chem., 2013, 3567; (k) I. E. Valverde, A. Bauman, C. A. Kluba, S. Vomstein, M. A. Walter and T. L. Mindt, Angew. Chem. Int. Edit., 2013, 52, 8957.
- (a) D. Zornik, R. M. Meudtner, T. El Malah, C. M. Thiele and S. Hecht, *Chem. Eur. J.*, 2011, 17, 1473; (b) M. R. Krause, R. Goddard and S. Kubik, *J. Org. Chem.*, 2011, 76, 7084; (c) Z. H. Ke, H. F. Chow, M. C. Chan, Z. F. Liu and K. H. Sze, *Org. Lett.*, 2012, 14, 394; (d) L. Y. You, S. G. Chen, X. Zhao, Y. Liu, W. X. Lan, Y. Zhang, H. J. Lu, C. Y. Cao and Z. T. Li, *Angew. Chem. Int. Edit.*, 2012, 51, 1657; (e) S. Lee, Y. R. Hua and A. H. Flood, *J. Org. Chem.*, 2014, 79, 838; (f) C. F. Wu, Z. M. Li, X. N. Xu, Z. X. Zhao, X. Zhao, R. X. Wang and Z. T. Li, *Chem. Eur. J.*, 2014, 20, 1418.
- 21 D. S. Pedersen and A. Abell, Eur. J. Org. Chem., 2011, 2399.
- 22 (a) A. Perczel, O. Farkas, I. Jakli, I. A. Topol and I. G. Csizmadia, J. Comput. Chem., 2003, 24, 1026; (b) W. Kabsch and C. Sander, Biopolymers, 1983, 22, 2577.
- 23 (a) P. Y. Chou and G. D. Fasman, *Biochemistry*, 1974, 13, 211; (b) A. Perczel, J. G. Angyan, M. Kajtar, W. Viviani, J. L. Rivail, J. F. Marcoccia and I. G. Csizmadia, *J. Am. Chem. Soc.*, 1991, 113, 6256; (c) M. Karplus and J. A. McCammon, *Nat. Struct. Biol.*, 2002, 9, 646.
- (a) Y. D. Wu and D. P. Wang, J. Am. Chem. Soc., 1998, 120, 13485;
 (b) Y. D. Wu and D. P. Wang, J. Chin. Chem. Soc., 2000, 47, 129;
 (c) C. Baldauf and H. J. Hofmann, Helv. Chim. Acta, 2012, 95, 2348;
 (d) G. V. M. Sharma, B. S. Babu, K. V. S. Ramakrishna, P. Nagendar, A. C. Kunwar, P. Schramm, C. Baldauf and H. J. Hofmann, Chem. Eur. J., 2009, 15, 5552;
 (e) T. Beke, C. Somlai and A. Perczel, J. Comput. Chem., 2006, 27, 20;
 (f) A. Lang, A. K. Fuzery, T. Beke, P. Hudaky and A. Perczel, Theochem-J. Mol. Struct., 2004, 675, 163;
 (g) S. J. Shandler, M. V. Shapovalov, R. L. Dunbrack and W. F. DeGrado, J. Am. Chem. Soc., 2010, 132, 7312;
 (h) K. Bisetty, F. J. Corcho, J. Canto, H. G. Kruger and J. J. Perez, J. Pept. Sci., 2006, 12, 92.
- 25 J. R. Johansson, P. Lincoln, B. Norden and N. Kann, J. Org. Chem., 2011, 76, 2355.
- 26 (a) R. L. Dunbrack and M. Karplus, *Nat. Struct. Biol.*, 1994, 1, 334; (b) L. J. Smith, A. E. Mark, C. M. Dobson and W. F. van Gunsteren, *J. Mol. Biol.*, 1998, 280, 703; (c) A. G. Csaszar and A. Perczel, *Prog. Biophys. Mol. Biol.*, 1999, 71, 243.

- 27 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A.,, H. Nakatsuji, Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G.,, J. L. Sonnenberg, Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M.,, T. Nakajima, Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J., O. E., F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N.,, R. Kobayashi, Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., J. Tomasi, Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken,, A. V., C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., R. Cammi, Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., G. A. Voth, Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., and J. B. Foresman, Ortiz, J. V., Cioslowski, J., Fox, D. J., Gaussian 09, Revision A.1, (2009) Gaussian, Inc., Wallingford
- 28 (a) C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372.
- 29 J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615.
- 30 Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
- 31 E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032.
- 32 (a) Atwood, R. E.; Urban, J. J. J. Phys. Chem. A 2012, 116, 1396-1408; (b) Mardirossian, N.; Parkhill, J. A.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2011, 13, 19325-19337.
- 33 Kang, Y. K.; Byun, B. J. J. Comput. Chem. 2010, 31, 2915-2923.