Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Ruthenium-Catalyzed Direct C3 Alkylation of Indoles with α , β -Unsaturated Ketones

Shuai-Shuai Li,^{*a,b,c*} Hui Lin,^{*c*} Xiao-Mei Zhang^{*a*} and Lin Dong^{*c*}

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

In this paper, a simple and highly efficient rutheniumcatalyzed direct C3 alkylation of indoles with various α,β unsaturated ketones without the chelation assistance has been developed. This novel C-H activation methodology exhibits a broad substrate scope such as different substituted indoles, pyrroles, and other azoles. Further synthetic applications of the alkylation products can lead to more attractive 3,4-fused tricyclic indoles.

The indole unit is widely utilized in the synthesis of a large number of pharmaceuticals and biologically active compounds.¹ Therefore, functionalization of the indole structure has received a great deal of attention over the past several decades.²⁻¹⁰ For ¹⁰ example, a variety of alkylation of indoles with electron deficient olefins has been reported since 1955.⁹ Many groups made significant contributions on C–H arylation reactions.³ Very

- recently, Pd-catalyzed direct C2 or C3 alkenylations of indoles were developed (Scheme 1, approach 1).⁴⁻⁶ Despite these great advances, however, the development of new approaches via
- transition-metal-catalyzed C–H activation to afford the indole derivatives is still highly desirable.

More recently, the less-expensive ruthenium catalyst has been exploited in the chelation-assisted oxidative coupling reactions.¹¹

- ²⁰ In particular, in 1993 Murai published a pioneering work on the Ru-catalyzed *ortho*-C–H bond alkylation of aromatic ketones with olefins via a chelation assisted strategy.¹² Very recently, Chatani reported Ru-catalyzed *ortho*-C–H bond alkylation of aromatic amides with α,β -unsaturated ketones but need bidentate-
- ²⁵ chelation assistance.¹³ However, to the best of our knowledge, Ru-catalyzed C-H activation with α,β -unsaturated acceptors

^a SS. Li, Prof. Dr. XM. Zhang						
Key Laboratory for Asymmetric Synthesis and Chiraltechnology of						
Sichuan Province,						
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,						
Chengdu 610041, China						
^b SS. Li						
Graduate School of the Chinese Academy of Sciences,						
Beijing 100049, China						
^c SS. Li, H. Lin, Prof. Dr. L. Dong						
Key Laboratory of Drug-Targeting and Drug Delivery System of the						
Education Ministry, West China School of Pharmacy, and State Key						
Laboratory of Biotherapy, West China Hospital, Sichuan University,						
Chengdu 610041, China						
E-mail: dongl@scu.edu.cn						
*Electronic Supplementary Information (ESI) available: See						
DOI: 10.1039/b000000x/						

especially without directing groups still remains huge challenges.¹⁴ Herein, we report an efficient Ru-catalyzed direct C3 alkylation of indoles with α , β -unsaturated ketones via C-H ³⁰ activation without the chelation assistance, which can also tolerate air (Scheme 1, approach 2).

Scheme 1 Transition-metal-catalyzed C-H activation of indoles with α,β unsaturated ketones

35 Results and Discussion

Firstly, we investigated the potential reaction of *N*-methyl indole **1a** with chalcone **2a** to form C3 alkylation of indole product **3aa** (Table 1). [Cp*RhCl₂]₂ and [Ir(cod)Cl₂]₂ were previously studied as catalysts, however, only a trace amount of product **3aa** or a ⁴⁰ complex mixture of unidentified products could be observed (entries 1 and 2). Fortunately, RuCOCl(PPh₃)₂ can catalyze the alkylation reaction and gave **3aa** in 59% yield (entry 3). Surprisingly, AgSbF₆ alone as catalyst also worked well even at room temperature (entries 4-7). To our delight, the yield ⁴⁵ increased significantly when RuCl₂(PPh₃)₃ was applied as catalyst, and the yield was still excellent even after reducing the catalyst loading (entries 8 and 9). Among the test of the solvents, DCM produced the best satisfactory result and the desired product **3aa** could be obtained in 96% yield (entries 10-14). The ⁵⁰ same yield could be afforded when the loading of RuCl₂(PPh₃)₃

- was decreased to 3 mol % (entry 15), while the reactivity was worse under only 1 mol % loading (entry 16). However, the reaction yields were significantly diminished when less $AgSbF_6$ was used (entries 17 and 18).
- ⁵⁵ Under the optimized conditions, the scope and limitation of α,β -unsaturated ketones were explored (Table 2). Gratifying, a variety of α,β -unsaturated ketones reacted smoothly under this catalytic system. Initially, a series of substituted chalcones were employed to react with indole **1a**. The results showed that

Entry	Catalyst	Additive	Solvent	Т	Yield
-	/[equiv]	/[equiv]		[h]	[%] ^[b]
1 ^[c]	[Cp*RhCl2]2/0.05	$Cu(OAc)_2/1$,	DCE	9	Trace
		AgSbF ₆ /0.4			
2 ^[c]	[Ir(cod)Cl ₂] ₂ /0.05	$Cu(OAc)_2/1$,	DCE	9	Mess
		AgSbF ₆ /0.4			
3 ^[c]	RuCOCl(PPh ₃) ₂ /0.1	CuCl/1.9,	DCE	6	59
		AgSbF ₆ /0.4			
4	AgSbF ₆ /0.4	-	DCE	4	70
5	AgSbF ₆ /0.09	-	DCE	18	Trace
6	AgSbF ₆ /0.09	-	DCM	18	45
7	AgSbF ₆ /0.06	-	DCM	18	22
8	RuCl ₂ (PPh ₃) ₃ /0.1	AgSbF ₆ /0.4	DCE	4	96
9	RuCl ₂ (PPh ₃) ₃ /0.05	AgSbF ₆ /0.2	DCE	4	96
10	RuCl ₂ (PPh ₃) ₃ /0.05	AgSbF ₆ /0.2	DMF	24	50
11	RuCl ₂ (PPh ₃) ₃ /0.05	AgSbF ₆ /0.2	THF	5	90
12	RuCl ₂ (PPh ₃) ₃ /0.05	AgSbF ₆ /0.2	toluene	7	91
13	RuCl ₂ (PPh ₃) ₃ /0.05	AgSbF ₆ /0.2	CH ₃ CN	8	74
14	RuCl ₂ (PPh ₃) ₃ /0.05	AgSbF ₆ /0.2	DCM	4	96
15	RuCl ₂ (PPh ₃) ₃ /0.03	AgSbF ₆ /0.2	DCM	4	96
16	RuCl ₂ (PPh ₃) ₃ /0.01	AgSbF ₆ /0.2	DCM	4	72
17	RuCl ₂ (PPh ₃) ₃ /0.03	AgSbF ₆ /0.09	DCM	15	88
18	RuCl ₂ (PPh ₃) ₃ /0.03	AgSbF ₆ /0.06	DCM	18	50

^{*a*} Reaction conditions unless otherwise specified: 0.05 mmol of **1a**, 0.058 mmol of **2a**, 1 mL of solvent, 25 °C, under air. ^{*b*} Isolated yield. ^{*c*} Ar 10 atmosphere, 110 °C.

benzene ring bearing either electron-donating or -withdrawing groups all proceeded well to give the corresponding products **3ab-3ag** with good to excellent yields. To push the limitation of ¹⁵ this approach, phenyl was replaced by other functional groups, which did proceed but led to lower reactivity (products **3ah-3aj**). In addition, wherein R² was naphthalene or furan, products **3ak** and **3al** were obtained in excellent yields. However, the methyl group just provided **3am** in 55% yield. Similarly, (1E,4E)-1,5-

- 20 diphenylpenta-1,4-dien-3-one 2n and (E)-1,4-diary-2-buten-1,4-diones 20 were also tolerated in the reaction, the desired products could be prepared in 70% and 98% yield, respectively. To our delight, terminal olefin pent-1-en-3-one 2p and dialkyl substituted chalcone (E)-pent-3-en-2-one 2q also performed well
- ²⁵ with indole **1a**, giving the corresponding alkylated products **3ap** and **3aq** in 75% and 71% yield, respectively. It is worth mentioned that cyclic α,β -unsaturated ketones were also efficient to this method. Under the standard reaction conditions, 4methoxy-4-methylcyclohexa-2,5-dienone **2r** underwent the ³⁰ reaction with indole **1a** to give 3-arylated product **3ar**. Notable is
- that the efficiency of cyclohexenone is lower than cyclopentenone (3as, 3at), likely owing to geometrical constraints or strain.^{9d}

As shown in Table 3, the scope of indoles in the C-3 alkylation ³⁵ reactions was further studied. Various substituents on indole ring exhibited good reactivity (**3ba-3ga**), even for the bromine substituents **1b** and **1e**. Moreover, *N*-phenyl substituted indoles could achieve this alkylation reaction and gave the corresponding

^{*a*} Reaction conditions unless otherwise specified: 0.120 mmol of **1a**, 0.132 mmol of **2**, 3 mol % of RuCl₂(PPh₃)₃, 20 mol % AgSbF₆, 2 mL of DCM, 25 °C, under air, isolated yield.

product **3ha** in 70% yield. Notably, this new protocol is also appropriate for sterically hindered 2-phenly indole **1i**, which provided **3ia** in 73% yield.

⁵⁰ **Table 3** The scope of indoles ^{*a*}

^{*a*} Reaction conditions unless otherwise specified: 0.120 mmol of **1**, 0.132 mmol of **2a**, 3 mol % of RuCl₂(PPh₃)₃, 20 mol % AgSbF₆, 2 mL of DCM, 25 °C, under air, isolated yield.

55 **Table 4** Reaction of indole and α,β -unsaturated ketones^a

^a Reaction conditions unless otherwise specified: 0.120 mmol of **4**, 0.132 mmol of **2**, 3 mol % of RuCl₂(PPh₃)₃, 20 mol % AgSbF₆, 2 mL of DCM, 25 °C, under air. Yields are reported for the isolated products.

Encouraged by these results, we decided to examine the applicability of the alkylation reaction of unprotected indoles (Table 4). Halide at the *ortho-*, *meta-*, or *para-*position were compatible in this alkylation reaction, producing **5ab-5ae** in satisfactory yields. In addition it seemed that there is no strong ¹⁰ influence on the electronic characteristics at the *para* position of phenyl (**5af**, **5ag**). In contrast, *N*-H indoles also reacted smoothly with substituted chalcones but affording relatively lower reactivity than *N*-protected indoles (**5ah**, **5ai**, **5ak**, **5al** and **5an**). Notably, (*E*)-1,4-diary-2-buten-1,4-diones **20** gave the best result.

To our satisfactory, aliphatic enones were also tolerated, furnishing the corresponding products in good yields (**5ap**, **5aq**, **5as** and **5at**). Moreover, even the indole with 2-methyl group ³⁰ could be tolerated in the reaction and formed **5ba** in 76% yield. Surprisingly, azole **4c** was also compatible in this system.

To additionally explore the scope of our approach, *N*-methyl pyrrole **6** was applied (Scheme 2). Interestingly, both C2 and C3 alkylation products were obtained under standard conditions. In addition, monoalkylated and dialkylated products were also ⁴⁰ formed. The 2,5-dialkylated pyrrole was isolated in 33% yield as an essentially 1:1 mixture of diastereoisomers **7c.d**.

Further conversion of the alkylation product **3** into useful 3,4fused tricyclic indoles was investigated, which are considered as attractive synthetic targets because of their biological activities ⁴⁵ and synthetic challenges (Scheme 3).¹⁵ As our previous speculated, the alkylation products **3** were converted to the corresponding alcohol intermediates by reduction, which then underwent Cu-catalyzed Ullmann-type cyclization reactions to produce seven-membered O-arylated rings **8a** and **8b** in good ⁵⁰ conversion yields over two steps. Furthermore, an efficient method to obtain the tricyclic ketones **8c** and **8d** which are bridged with eight-membered ring was developed through intramolecular Heck reaction.

55

4

Deuterium-labeling experiments were carried out to study the mechanism of this alkylation reaction (Scheme 4). When **1a** was conducted in D₂O under the specified conditions, no deuterium was observed at C3 of indoles (eqs 4, 5). In contrast, when **1a** so was stirred under RuCl₂(PPh₃)₃ in the absence of α,β -unsaturated between the neutron of 1 at the properties of α,β -unsaturated

ketones, the content of deuterium on C-3 was 40% (eq 6).¹⁶ All of these data imply that the C-H activation was happened on the first step under the catalysis of $RuCl_2(PPh_3)_3$, and on the other hand, it is possible that $AgSbF_6$ might be acting as a Lewis acid to ¹⁰ promote this reaction.

Depend on the evidence that we obtained and previous report, a plausible process is proposed (Scheme 5). The ruthenium catalyst first replaces the C(3)-H of indole to generate complex I, which presumably be stabilized by carbonyl and adjacent π

¹⁵ system. Then intermediate **I** undergoes conjugate addition to form ruthenium species **II**. Finally, protonation forms the alkylation product **3aa**.

25 Scheme 5 Proposed catalytic cycle

Conclusion

In summary, we have developed a new approach for direct C3 alkylation of indoles with α,β -unsaturated ketones via rutheniumcatalyzed C-H activation without the chelation assistance. Our ³⁰ methodology exhibits a broad substrate scope. Further mechanistic investigations and application to more types of heteroaromatic compounds are being conducted in our laboratory.

Acknowledgments

We are grateful for the financial support from the NSFC ³⁵ (21202106), Sichuan University "985 project-Science and technology innovation platform for novel drug development".

Experimental

General remarks

- NMR data were obtained for ¹H at 300 MHz or 400 MHz, and for ⁴⁰ ¹³C at 75 MHz or 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ or DMSO-d₆ solution. ESI HRMS was recorded on a Waters SYNAPT G2 and Water XEVO G2 Q-ToF. UV detection was monitored at 220 nm. TLC was performed on
- ⁴⁵ glass-backed silica plates. Column chromatography was performed on silica gel (200-300 mesh), eluting with ethyl acetate and petroleum ether. CH₂Cl₂, CHCl₂CHCl₂ were distilled over CaH₂.

General Procedure for Synthesis of 3-alkyl indole derivatives:

⁵⁰ *N*- methyl indole **1a** (6.6 mg, 0.05 mmol), chalcone **2a** (12.1 mg, 0.058 mmol), RuCl₂(PPh₃)₃ (1.4 mg, 3 mol %) and AgSbF₆ (3.44 mg, 20 mol %) were stirred in DCM (1.0 mL) at room temperature for 4 h. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and ⁵⁵ petroleum ether (1:50) to give the product **3aa** as a white solid (16.3 mg, 96%).

3-(1-methyl-1*H***-indol-3-yl)-1,3-diphenylpropan-1-one (3aa).** 4h, 96% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.6 Hz, 2H), 7.58-7.54 (m, 1H), 7.49-7.43 (m, 3H), 7.40-7.39 (m, 2H), 60 7.31-7.27 (m, 3H), 7.23-7.17 (m, 2H), 7.06-7.03 (m, 1H), 6.87 (s, 1H), 5.10 (t, J = 7.2 Hz, 1H), 3.81 (ddd, J = 6.4, 20.4, 24.4 Hz, 2H), 3.73 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.4, 144.4, 137.3, 137.1, 132.9, 128.5, 128.4, 128.0, 127.8, 126.9,

126.2, 121.6, 119.5, 118.8, 117.7, 109.2, 45.3, 38.0, 32.6 ppm. 65 ESI HRMS: calcd. for C₂₄H₂₁NO+Na 362.1521, found 362.1515. **3-(2-Chloro-phenyl)-3-(1-methyl-1H-indol-3-yl)-1-phenylpropan-1-one (3ab)**. 8 h, 91% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.6 Hz, 2H), 7.55-7.52 (m, 1H), 7.44-7.41 (m, 3H), 7.39-7.37 (m, 1H), 7.25-7.23 (m, 2H), 7.18-7.15 (m, 1H), 70 7.11-7.09 (m, 2H), 7.02-6.98 (m, 1H), 6.85 (s, 1H), 5.53 (t, J = 7.2 Hz, 1H), 3.73 (ddd, J = 8.4, 20.8, 44.4 Hz, 2H), 3.70 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.0, 141.7, 137.2, 136.8, 133.5, 133.0, 129.7, 128.9, 128.6, 128.1, 127.5, 127.0, 126.9, 126.6, 121.7, 119.5, 118.9, 116.1, 109.2, 44.3, 34.7, 32.7 ppm.

⁷⁵ ESI HRMS: calcd. for $C_{24}H_{20}CINO+Na$ 396.1131 found $C_{24}H_{20}$ ³⁵CINNaO 396.1133, $C_{24}H_{20}$ ³⁷CINNaO 398.1105.

3-[1-(3-Chloro-phenyl)-3-phenyl-but-3-enyl]-1-methyl-1*H***indole (3ac). 10 h, 80% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d,** *J* **= 7.6 Hz, 2H), 7.58-7.54 (m, 1H), 7.47-7.44 (m, 3H), 7.36 (s, 1H), 7.29-7.25 (m, 2H), 7.24-7.14 (m, 3H), 7.07-7.04 (m, 1H), 6.87 (s, 1H), 5.07 (t,** *J* **= 7.2 Hz, 1H), 3.78 (ddd,** *J* **= 6.8, 20, 33.6 Hz, 2H), 3.73 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 146.6, 137.3, 136.9, 134.1, 133.1, 129.6, 128.6, 128.0, 127.9, 126.7, 126.4, 126.1, 121.8, 119.3, 118.9, 117.0, 109.2, 85 44.9, 37.7, 32.7 ppm. ESI HRMS: calcd. for C₂₄H₂₀ClNO+Na**

396.1131 found $C_{24}H_{20}^{-35}$ CINNaO 396.1142, $C_{24}H_{20}^{-37}$ CINNaO 398.1096.

3-(4-Chloro-phenyl)-3-(1-methyl-1*H*-indol-3-yl)-1-phenyl-

propan-1-one (3ad). 8 h, 95% yield; ¹H NMR (400 MHz, ⁹⁰ CDCl₃): δ 7.92 (d, J = 7.2 Hz, 2H), 7.56-7.52 (m, 1H), 7.45-7.39 (m, 3H), 7.29-7.24 (m, 3H), 7.21-7.17 (m, 3H), 7.04-7.00 (m, 1H), 6.82 (s, 1H), 5.03 (t, J = 7.2 Hz, 1H), 3.74 (ddd, J = 6.4, 20, 29.6 Hz, 2H), 3.73 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.2, 142.9, 137.3, 136.9, 133.1, 131.8, 129.1, 128.6, 128.5, 128.0,

⁹⁵ 126.7, 126.1, 121.8, 119.1, 119.0, 117.3, 109.3, 45.0, 37.4, 32.7 ppm. ESI HRMS: calcd. for $C_{24}H_{20}CINO+Na$ 396.1131 found $C_{24}H_{20}^{35}CINNaO$ 396.1140, $C_{24}H_{20}^{37}CINNaO$ 398.1090.

3-(4-Bromo-phenyl)-3-(1-methyl-1*H*-indol-3-yl)-1-phenyl-

propan-1-one (3ae). 10 h, 96% yield; ¹H NMR (400 MHz, ¹⁰⁰ CDCl₃): δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.55-7.51 (m, 1H), 7.44-7.39 (m, 3H), 7.36-7.34 (m, 2H), 7.26-7.16 (m, 4H), 7.03-7.00 (m, 1H), 6.81 (s, 1H), 5.01 (t, *J* = 7.2 Hz, 1H), 3.75 (ddd, *J* = 10.8, 22.2, 31.8 Hz, 2H), 3.70 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.1, 143.4, 137.3, 136.9, 133.1, 131.4, 129.6, 128.6, 128.0, ¹⁰⁵ 126.7, 126.1, 121.8, 119.9, 119.4, 118.9, 117.2, 109.3, 44.9, 37.4, 32.7 ppm. ESI HRMS: calcd. for $C_{24}H_{20}BrNO+Na$ 440.0626, found $C_{24}H_{20}^{79}BrNNaO$ 440.0615, $C_{24}H_{20}^{81}BrNNaO$ 442.0593. **3-(4-Methoxy-phenyl)-3-(1-methyl-1***H***-indol-3-yl)-1-phenyl-**

- **propan-1-one (3af).** 10 h, 95% yield; ¹H NMR (400 MHz, 5 CDCl₃): δ 7.92 (d, J = 7.6 Hz, 2H), 7.53-7.50 (m, 1H), 7.44-7.39 (m, 3H), 7.27-7.23 (m, 3H), 7.18-7.15 (m, 1H), 7.02-6.98 (m, 1H), 6.81-6.77 (m, 3H), 5.00 (t, J = 7.2 Hz, 1H), 3.75 (ddd, J = 6.8, 25.2, 33.2 Hz, 2H), 3.73 (s, 3H), 3.68 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 157.8, 137.3, 137.0, 136.4, 132.9,
- 10 128.7, 128.5, 128.0, 126.9, 126.1, 121.6, 119.6, 118.7, 118.1, 113.7, 109.1, 55.1, 45.4, 37.3, 32.6 ppm. ESI HRMS: calcd. for $C_{25}H_{23}NO_2{+}Na$ 392.1626, found 392.1627.

- **phenyl)-propan-1-one (3ag).** 12 h, 98% yield; ¹H NMR (400 ¹⁵ MHz, CDCl3): δ 7.93 (d, J = 7.6 Hz, 2H), 7.56-7.40 (m, 8H), 7.28-7.26 (m, 1H), 7.23-7.18 (m, 1H), 7.05-7.01 (m, 1H), 6.84 (s, 1H), 5.12 (t, J = 7.2 Hz, 1H), 3.79 (ddd, J = 6.4, 20.4, 26 Hz, 2H), 3.72 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): 198.0, 148.5, 137.3, 136.8, 133.2, 128.6, 128.1, 128.0, 126.7, 126.2, 125.4,
- ²⁰ 125.3, 125.3, 121.2, 119.3, 119.0, 116.9, 109.3, 44.8, 37.8, 32.7 ppm. ESI HRMS: calcd. for C25H20F3NO+Na 430.1395, found 430.1401.

3-(1-Methyl-1*H*-indol-3-yl)-3-naphthalen-1-yl-1-phenyl-

- **propan-1-one (3ah).** 10 h, 77% yield; ¹H NMR (400 MHz, 25 CDCl₃): δ 8.30 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 7.6 Hz, 2H), 7.85-7.35 (m, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.54-7.38 (m, 8H), 7.35-7.31 (m, 1H), 7.24-7.21 (m, 1H), 7.19-7.15 (m, 1H), 6.99 (t, J = 7.2 Hz, 1H), 5.94 (t, J = 6.8 Hz, 1H), 3.88 (ddd, J = 7.6, 21.4, 61.8 Hz, 2H), 3.62 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ
- $_{30}$ 198.3, 140.0, 137.3, 137.0, 134.0, 133.0, 131.4, 128.8, 128.5, 128.0, 127.0, 126.9, 126.1, 125.4, 125.3, 124.2, 123.6, 121.6, 119.5, 118.8, 117.5, 109.2, 44.9, 33.0, 32.6 ppm. ESI HRMS: calcd. for $C_{28}H_{23}NO+Na$ 412.1677, found 412.1675.

3-(1-Methyl-1*H*-indol-3-yl)-1-phenyl-3-thiophen-2-yl-propan-

- ³⁵ **1-one (3ai)**. 18 h, 60% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.6 Hz, 2H), 7.59-7.54 (m, 2H), 7.47-7.43 (m, 2H), 7.31-7.21 (m, 2H), 7.12-7.07 (m, 2H), 6.96-6.95 (m, 2H), 6.91-6.89 (m, 1H), 5.39 (t, J = 7.2 Hz, 1H), 3.86 (ddd, J = 7.6, 17.6, 21.2 Hz, 2H), 3.73 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.9,
- $_{40}$ 148.9, 137.2, 136.9, 133.0, 128.5, 128.0, 126.5, 126.4, 126.3, 124.1, 123.3, 121.7, 119.5, 118.9, 117.4, 109.3, 46.2, 33.3, 32.7 ppm. ESI HRMS: calcd. For $C_{22}H_{19}NOS+Na$ 368.1085, found 368.1093.

3-(1-Methyl-1*H***-indol-3-yl)-1-phenyl-butan-1-one (3aj)**. 10 h, 45 60% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 7.2 Hz, 2H), 7.67-7.65 (m, 1H), 7.55-7.51 (m, 1H), 7.45-7.41 (m, 2H), 7.29-7.27 (m, 1H), 7.24-7.20 (m, 1H), 7.12-7.08 (m, 1H), 6.88 (s, 1H), 3.81 (m, 1H), 3.73 (s, 3H), 3.34 (ddd, J = 5.2, 18.8, 89.4 Hz, 2H), 1.43 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃):

⁵⁰ δ 199.7, 137.3, 137.2, 132.9, 128.5, 128.1, 126.6, 125.0, 121.5, 120.0, 119.3, 118.6, 109.3, 46.6, 32.6, 29.7, 27.0, 21.1 ppm. ESI HRMS: calcd. for C₁₉H₁₉NO+Na 300.1364, found 300.1366. **3-(1-Methyl-1***H***-indol-3-yl)-1-naphthalen-2-yl-3-phenyl-**

propan-1-one (3ak). 12 h, 96% yield; ¹H NMR (400 MHz, 55 DMSO): δ 8.79 (s, 1H), 8.13 (d, J = 7.6 Hz, 1H), 7.97-7.95 (m,

⁵⁵ DM3O). 6 8.79 (s, 1H), 8.15 (d, J = 7.6 Hz, 1H), 7.97-7.95 (ff, 3H), 7.68-7.60 (m, 2H), 7.49-7.43 (m, 3H), 7.35-7.33 (m, 2H), 7.25-7.21 (m, 2H), 7.11-7.08 (m, 2H), 6.96-6.92 (m, 1H), 4.94 (t, J = 7.2 Hz, 1H), 4.01 (ddd, J = 7.2, 20.8, 32.8 Hz, 2H), 3.71 (s,

3H) ppm; ¹³C NMR (100 MHz, DMSO): δ 198.3, 145.4, 136.9,

- $_{60}$ 135.2, 134.3, 132.4, 130.3, 129.8, 128.8, 128.4, 128.3, 128.0, 127.8, 127.1, 126.9, 126.5, 126.1, 123.8, 121.4, 119.2, 118.6, 117.7, 109.8, 44.5, 37.7, 32.5 ppm. ESI HRMS: calcd. for $C_{28}H_{23}NO+Na$ 412.1677, found 412.1667.
- **1-Furan-2-yl-3-(1-methyl-1***H***-indol-3-yl)-3-phenyl-propan-1-**65 **one (3al).** 10 h, 96% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.52 (s, 1H), 7.45-7.43 (m, 1H), 7.36-7.34 (m, 2H), 7.26-7.23 (m, 3H), 7.18-7.12 (m, 2H), 7.11-7.10 (m, 1H), 7.02-6.98 (m, 1H), 6.87 (s,
- 1H), 6.46-6.45 (m, 1H), 5.03 (t, J = 7.6 Hz, 1H), 3.70 (s, 3H), 3.63 (ddd, J = 7.6, 19.6, 28.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, ⁷⁰ CDCl₃): δ 187.6, 152.9, 146.2, 144.1, 137.2, 128.3, 127.8, 126.9, 126.2, 121.6, 119.6, 118.8, 117.4, 117.0, 112.2, 109.1, 45.0, 38.1,
- 32.6 ppm. ESI HRMS: calcd. for $C_{22}H_{19}NO_2+Na$ 352.1313, found 352.1307.
- **4-(1-Methyl-1***H***-indol-3-yl)-4-phenyl-butan-2-one (3am)**. 8 h, 75 55% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.46 (m, 1H), 7.36-7.34 (m, 2H), 7.32-7.26 (m, 3H), 7.23-7.18 (m, 2H), 7.07-7.03 (m, 1H), 6.86 (s, 1H), 4.86 (t, *J* = 7.6 Hz, 1H), 3.74 (s, 3H), 3.23 (ddd, *J* = 7.2, 19.6, 32 Hz, 2H), 2.10 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 207.6, 144.1, 137.2, 128.4, 127.6, 126.8,
- $_{80}$ 126.3, 126.1, 121.7, 119.4, 118.8, 117.2, 109.2, 50.4, 38.3, 32.6, 30.3 ppm. ESI HRMS: calcd. for $C_{19}H_{19}NO+Na$ 300.1364, found 300.1360.

5-(1-Methyl-1*H*-indol-3-yl)-1,5-diphenyl-pent-1-en-3-one

(3an). 8 h, 70% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, ⁸⁵ 1H), 7.52-7.48 (m, 3H), 7.42-7.40 (m, 5H), 7.33-7.28 (m, 3H), 726-7.19 (m, 2H), 7.09-7.05 (m, 1H), 6.91 (s, 1H), 6.76-6.72 (m, 1H), 5.02 (t, J = 7.2 Hz, 1H), 3.74 (s, 3H), 3.50 (ddd, J = 6.8, 19.2, 37.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 144.2, 142.6, 137.2, 134.4, 130.4, 128.8, 128.4, 128.2, 127.7, ⁹⁰ 126.9, 126.2, 126.1, 121.6, 119.6, 118.8, 117.5, 109.2, 47.5, 38.4, 32.6 ppm. ESI HRMS: calcd. for C₂₆H₂₃NO+Na 388.1677, found 388.1676.

2-(1-Methyl-1*H*-indol-3-yl)-1,4-diphenyl-butane-1,4-dione

(3ao). 6 h, 98% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.07-8.05 95 (m, 2H), 7.98-7.96 (m, 2H), 7.78-7.76 (m, 1H), 7.54-7.50 (m, 1H), 746-7.39 (m, 3H), 7.37-7.33 (m, 2H), 7.28-7.22 (m, 2H), 7.18-7.15 (m, 1H), 6.88 (s, 1H), 5.59 (dd, J = 3.6, 10.4 Hz, 1H), 4.24 (dd, J = 10.4, 18.4 Hz, 1H), 3.42 (dd, J = 3.2, 18 Hz, 1H), 3.66 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 198.6, 137.1, 100 136.5, 136.4, 133.1, 132.6, 128.7, 128.5, 128.4, 128.1, 127.4, 126.4, 122.0, 119.5, 118.7, 111.4, 109.5, 43.1, 39.4, 32.7 ppm. ESI HRMS: calcd. for C₂₅H₂₁NO₂+Na 390.1470, found 390.1465. 1-(1-Methyl-1H-indol-3-yl)-pentan-3-one (3ap). 8 h, 75% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.0 Hz, 1H), 7.28-105 7.19 (m, 2H), 7.12-7.08 (m, 1H), 6.82 (s, 1H), 3.70 (s, 3H), 3.03 (t, J = 7.6 Hz, 2H), 2.79 (t, J = 7.6 Hz, 2H), 2.39 (q, J = 7.2 Hz, 2H), 1.03 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 211.3, 136.9, 127.5, 126.3, 121.5, 118.7, 118.6, 113.7, 109.1, 42.9, 35.9, 32.5, 19.2, 7.7 ppm. ESI HRMS: calcd. for ¹¹⁰ C₁₄H₁₇NO+Na 238.1208, found 238.1210.

4-(1-Methyl-1*H***-indol-3-yl)-pentan-2-one (3aq)**. 8 h, 71% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.62 (m, 1H), 7.29-7.27 (m, 1H), 7.24-7.20 (m, 1H), 7.12-7.09 (m, 1H), 6.82 (s, 1H), 3.72 (s, 3H), 3.65-3.60 (m, 1H), 2.81 (ddd, *J* = 6.0, 19, 86.6 Hz, 2H), 2.09 ¹¹⁵ (s, 3H), 1.37 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 208.6, 137.1, 126.5, 124.9, 121.5, 119.4, 119.1, 118.6, 109.3, 51.6, 32.5, 30.3, 26.9, 21.4 ppm. ESI HRMS: calcd. for $C_{14}H_{17}NO+Na$ 238.1208, found 238.1205.

4-Methyl-3-(1-methyl-1*H***-indol-3-yl)-phenol (3ar)**. 12 h, 42% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.0 Hz, 1H), 562 750 (-14), 742 720 (-24), 742 720

- $^{\rm s}$ 7.52-7.50 (m, 1H), 7.43-7.38 (m, 1H), 7.32-7.26 (m, 2H), 7.16 (s, 1H), 7.05-7.04 (m, 1H), 6.89-6.86 (m, 1H), 5.23 (s, 1H), 3.93 (s, 3H), 2.20 (s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃): δ 153.3, 136.6, 135.6, 131.3, 128.6, 127.6, 127.3, 121.7, 120.2, 119.4, 117.4, 115.6, 113.4, 109.3, 32.8, 19.8 ppm. ESI HRMS: calcd. for 10 C₁₆H₁₅NO+Na 260.1051, found 260.1048.
- **3-(1***H***-Indol-3-yl)-cyclohexanone (3as)**. 4 h, 33% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 7.6 Hz, 1H), 7.32-7.30 (m, 1H), 7.27-7.23 (m, 1H), 7.14-7.11 (m, 1H), 6.84 (s, 1H), 3.76 (s, 3H), 3.49-3.44 (m, 1H), 2.82-2.81 (m, 1H), 2.66-2.60 (m, 1H),
- 15 2.50-2.37 (m, 2H), 2.27-2.24 (m, 1H), 2.09-2.02 (m, 1H), 1.99-1.93 (m, 1H), 1.88-1.82 (m, 1H) ppm; $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ 211.8, 170.6, 137.0, 126.4, 125.2, 121.7, 119.0, 118.8, 118.1, 109.3, 48.1, 41.5, 35.8, 32.6, 31.8, 24.8 ppm. ESI HRMS: calcd. for C15H17NO+Na 250.1208, found 250.1196.
- ²⁰ **3-(1-methyl-1***H***-indol-3-yl)cyclopentanone** (3at). 4 h, 66% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.0 Hz, 1H), 7.28-7.26 (m, 1H), 7.22-7.19 (m, 1H), 7.10-7.06 (m, 1H), 6.78 (s, 1H), 3.70 (s, 3H), 3.66-3.64 (m, 1H), 2.73-2.66 (m, 1H), 2.49-2.44 (m, 1H), 2.43-2.34 (m, 2H), 2.31-2.22 (m, 1H), 2.12-2.04 (m,
- 25 1H) ppm; 13 C NMR (75 MHz, DMSO): δ 218.3, 136.9, 126.8, 125.6, 121.2, 118.9, 118.4, 116.5, 109.7, 44.9, 37.9, 33.1, 32.3, 29.7 ppm. ESI HRMS: calcd. For C_{14}H_{15}NO+Na 236.1051, found 236.1042.

3-(4-Bromo-1-methyl-1*H*-indol-3-yl)-1,3-diphenyl-propan-1-

- ³⁰ **one (3ba).** 10 h, 70% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.56-7.53 (m, 1H), 7.46-7.42 (m, 2H), 7.39-7.37 (m, 2H), 7.32-7.25 (m, 3H), 7.22-7.20 (m, 2H), 7.05-7.00 (m, 1H), 6.74 (s, 1H), 5.82 (t, *J* = 7.2 Hz, 1H), 3.82 (ddd, *J* = 5.6, 20.4, 27.2 Hz, 2H), 3.67 (s, 3H) ppm; ¹³C NMR (100 MHz,
- ³⁵ CDCl₃): δ 197.9, 144.3, 138.5, 137.0, 132.9, 128.5, 128.3, 128.1, 128.0, 126.1, 124.8, 123.8, 122.4, 118.8, 114.3, 108.5, 46.7, 36.9, 32.9 ppm. ESI HRMS: calcd. for C₂₄H₂₀BrNO+Na 440.0626, found C₂₄H₂₀⁷⁹BrNNaO 440.0620, C₂₄H₂₀⁸¹BrNNaO 442.0612. **3-(1,4-Dimethyl-1***H***-indol-3-yl)-1,3-diphenyl-propan-1-one**
- ⁴⁰ (**3ca**). 8 h, 79% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.0 Hz, 2H), 7.59-7.55 (m, 1H), 7.48-7.45 (m, 2H), 7.31-7.25 (m, 4H), 7.19-7.14 (m, 1H), 7.12-7.08 (m, 2H), 6.86 (s, 1H), 6.79 (d, J = 6.4 Hz, 1H), 5.45 (t, J = 7.2 Hz, 1H), 3.74 (ddd, J = 6.8, 24.6, 33 Hz, 2H), 3.72 (s, 3H), 2.57 (s, 3H) ppm; ¹³C NMR (100 MHz,
- ⁴⁵ CDCl₃): δ 198.2, 145.4, 137.6, 137.1, 133.0, 131.2, 128.6, 128.4, 128.0, 127.9, 126.5, 126.1, 125.8, 121.7, 120.8, 118.1, 107.0, 47.1, 38.6, 32.8, 20.7 ppm. ESI HRMS: calcd. for C₂₅H₂₃NO+Na 376.1677, found 376.1680.
- **3-(5-Methoxy-1-methyl-1***H***-indol-3-yl)-1,3-diphenyl-propan-**⁵⁰ **1-one (3da)**. 8 h, 96% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 7.6 Hz, 2H), 7.58-7.54 (m, 1H), 7.47-7.43 (m, 2H), 7.41-7.39 (m, 2H), 7.31-7.26 (m, 2H), 7.21-7.15 (m, 2H), 6.89-6.83 (m, 3H), 5.05 (t, *J* = 7.2 Hz, 1H), 3.81 (ddd, *J* = 6.8, 20.2, 29.2 Hz, 2H), 3.77 (s, 3H), 3.69 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃):
- $_{55}$ δ 198.5, 153.5, 144.3, 137.0, 132.9, 132.6, 128.5, 128.4, 128.0, 127.7, 127.2, 126.7, 126.2, 117.2, 111.7, 109.9, 101.4, 55.8, 45.2, 37.9, 32.8 ppm. ESI HRMS: calcd. for $C_{25}H_{23}NO_2+Na$ 392.1626, found 392.1633.

3-(5-Bromo-1-methyl-1*H*-indol-3-yl)-1,3-diphenyl-propan-1-

- ⁶⁰ one (3ea). 8 h, 80% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 7.6 Hz, 2H), 7.54-7.50 (m, 2H), 7.43-7.39 (m, 2H), 7.33-7.31 (m, 2H), 7.27-7.22 (m, 2H), 7.20-7.16 (m, 2H), 7.08-7.05 (m, 1H), 6.83 (s, 1H), 4.98 (t, J = 7.6 Hz, 1H), 3.72 (ddd, J = 7.2, 20.4, 27.6 Hz, 2H), 3.63 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ
- ⁶⁵ 198.1, 143.9, 136.9, 135.9, 133.0, 128.5, 128.4, 128.0, 127.6, 127.3, 126.4, 124.4, 121.9, 117.3, 112.2, 110.7, 45.2, 37.8, 32.8 ppm. ESI HRMS: calcd. for $C_{24}H_{20}BrNO+Na$ 440.0626 found $C_{24}H_{20}^{79}BrNNaO$ 440.0626, $C_{24}H_{20}^{81}BrNNaO$ 442.0608.

3-(6-Methoxy-1-methyl-1*H*-indol-3-yl)-1,3-diphenyl-propan-

- ⁷⁰ **1-one (3fa).** 8 h, 86% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.2 Hz, 2H), 7.53-7.49 (m, 1H), 7.42-7.38 (m, 2H), 7.35-7.33 (m, 2H), 7.28-7.22 (m, 3H), 7.16-7.12 (m, 1H), 6.71-6.65 (m, 3H), 5.00 (t, J = 7.2 Hz, 1H), 3.82 (s, 3H), 3.74 (ddd, J = 6.8, 20.2, 27.4 Hz, 2H), 3.62 (s, 3H) ppm; ¹³C NMR (100 MHz,
- $_{75}$ CDCl₃): δ 198.5, 156.3, 144.4, 138.0, 137.0, 132.9, 128.5, 128.4, 128.0, 127.7, 126.2, 125.0, 121.4, 120.2, 117.7, 108.6, 92.73, 55.60, 45.3, 38.1, 32.6 ppm. ESI HRMS: calcd. for $C_{25}H_{23}NO_2+Na$ 392.1626 found 392.1621.

3-(7-Methoxy-1-methyl-1*H*-indol-3-yl)-1,3-diphenyl-propan-

- ⁸⁰ 1-one (3ga). 8 h, 91% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.2 Hz, 2H), 7.49-7.45 (m, 2H), 7.37-7.34 (m, 4H), 7.24-7.19 (m, 3H), 7.14-7.07 (m, 2H), 7.00-6.96 (m, 1H), 5.12 (t, J = 7.2 Hz, 1H), 3.93 (ddd, J = 7.6, 17.2, 20 Hz, 2H), 3.58 (s, 3H), 2.41 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 144.4, 127.4 (s, 126.4 122.6 122.6 122.8 128.4 128.2 128.0 127.5 126.4
- 85 137.1, 136.8, 133.6, 132.8, 128.4, 128.2, 128.0, 127.5, 126.4, 125.8, 120.2, 119.1, 118.7, 112.9, 108.7, 43.7, 37.0, 29.4, 10.5 ppm. ESI HRMS: calcd. for $C_{25}H_{23}NO_2+Na$ 392.1626 found 392.1619.

1,3-diphenyl-3-(1-phenyl-1*H*-indol-3-yl)propan-1-one (3ha).

- ⁹⁰ 20 h, 60% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 7.6 Hz, 2H), 7.58-7.54 (m, 3H), 7.53-7.44 (m, 8H), 7.37-7.30 (m, 3H), 7.26-7.20 (m, 3H), 7.13-7.09 (m, 1H), 5.18 (t, J = 7.2 Hz, 1H), 3.86 (ddd, J = 6.4, 20.4, 22.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.3, 143.9, 139.7, 137.0, 136.3, 132.9, 129.5,
- $_{95}$ 128.5, 128.4, 128.0, 127.8, 126.4, 126.2, 125.2, 124.1, 122.6, 120.3, 120.0, 119.8, 110.5, 45.1, 38.0 ppm. ESI HRMS: calcd. for $C_{29}H_{23}NO+Na$ 424.1677, found 424.1674.

3-(1-Methyl-2-phenyl-1*H*-indol-3-yl)-1,3-diphenyl-propan-1-

one (3ia). 14 h, 73% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.86 100 (d, *J* = 7.6Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.54-7.48 (m, 4H),

- 7.41-7.36 (m, 7H), 7.30-7.25 (m, 3H), 7.20-7.14 (m, 2H), 5.07 (t, J = 7.2 Hz, 1H), 3.92 (ddd, J = 7.2, 15.6, 20.4 Hz, 2H), 3.56 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.4, 144.6, 138.3, 137.3, 136.8, 132.7, 131.8, 130.8, 128.3, 128.2, 128.0, 127.5,
- 105 126.4, 125.7, 121.4, 120.1, 119.2, 114.6, 109.5, 44.2, 37.5, 30.6 ppm. ESI HRMS: calcd. for $C_{30}H_{25}NO+Na$ 438.1834 found 438.1833.

3-(1*H***-Indol-3-yl)-1,3-diphenyl-propan-1-one (5aa).** 12 h, 90% yield; ¹H NMR (400 MHz, DMSO): δ 10.9 (s, 1H), 8.03 (d, *J* = 110 7.2 Hz, 2H), 7.63-7.61 (m, 1H), 7.54-7.50 (m, 2H), 7.46-7.42 (m,

110 7.2 112, 211), 7.0527.01 (iii, 111), 7.3477.30 (iii, 211), 7.4677.42 (iii, 3H), 7.38-7.33 (iii, 2H), 7.26-7.22 (iii, 2H), 7.13-7.12 (iii, 1H), 7.06-7.03 (iii, 1H), 6.93-6.90 (iii, 1H), 4.90 (i, J = 6.4 Hz, 1H), 3.90 (ddd, J = 6.8, 20, 40.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 214.7, 198.6, 145.5, 137.1, 136.6, 133.3, 128.9, 128.3, 115 128.0, 126.6, 126.0, 122.1, 121.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 113.7, 12.2, 118.9, 118.5, 118.2, 111.6, 118.5, 1

Page 6 of 9

44.5, 37.9 ppm. ESI HRMS: calcd. for $C_{23}H_{19}NO+Na$ 348.1364, found 348.1365.

- **3-(2-Chloro-phenyl)-3-(1***H***-indol-3-yl)-1-phenyl-propan-1-one (5ab). 12 h, 93% yield; ¹H NMR (400 MHz, DMSO): \delta 10.93 (s, 5 1H), 8.03 (d,** *J* **= 7.2 Hz, 2H), 7.65-7.62 (m, 1H), 7.54-7.50 (m, 2H), 7.46-7.42 (m, 3H), 7.34-7.30 (m, 2H), 7.23-7.15 (m, 2H), 7.07-7.03 (m, 1H), 6.94-6.91 (m, 1H), 5.38 (t,** *J* **= 7.2 Hz, 1H), 4.02 (dd,** *J* **= 7.2, 16.8 Hz, 1H), 3.72 (dd,** *J* **= 6.4, 17.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO): \delta 203.1, 147.4, 141.8, 141.4,**
- 10 138.3, 137.7, 134.5, 134.4, 133.8, 133.2, 132.7, 132.3, 131.5, 127.8, 127.7, 126.3, 123.6, 121.8, 116.6, 48.8, 39.9 ppm. ESI HRMS: calcd. for $C_{23}H_{18}{\rm CINO+Na}$ 382.0975, found $C_{23}H_{18}{}^{35}{\rm CINNaO}$ 382.0960, $C_{23}H_{18}{}^{37}{\rm CINNaO}$ 384.0944.
- **3-(3-Chloro-phenyl)-3-(1***H***-indol-3-yl)-1-phenyl-propan-1-one** 15 **(5ac).** 12 h, 90% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (s, 1H), 7.95 (d, *J* = 7.6 Hz, 2H), 7.58-7.55 (m, 1H), 7.47-7.43 (m, 3H), 7.35-7.30 (m, 2H), 7.28-7.26 (m, 1H), 7.21-7.14 (m, 3H), 7.08-7.04 (m, 1H), 6.95-6.94 (m, 1H), 5.07 (t, *J* = 7.2 Hz, 1H),
- 3.77 (ddd, J = 6.4, 20.4, 44.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, 20 CDCl₃): δ 198.2, 146.4, 136.8, 136.5, 134.1, 133.2, 129.6, 128.6, 128.0, 127.9, 126.5, 126.3, 126.1, 122.2, 121.4, 119.5, 119.2, 118.4, 111.2, 44.8, 37.8 ppm. ESI HRMS: calcd. for C₂₃H₁₈CINO+Na 382.0975, found C₂₃H₁₈³⁵CINNaO 382.0967, C₂₃H₁₈³⁷CINNaO 384.0947.
- ²⁵ 3-(4-chlorophenyl)-3-(1*H*-indol-3-yl)-1-phenylpropan-1-one
 (5ad). 12 h, 87% yield; ¹H NMR (400 MHz, DMSO): δ 10.91 (s, 1H), 8.02 (d, J = 7.6 Hz, 2H), 7.63-7.60 (m, 1H), 7.52-7.48 (m, 2H), 7.44-7.42 (m, 3H), 7.38 (s, 1H), 7.33-7.31 (m, 1H), 7.28-7.26 (m, 2H), 7.04 (t, J = 7.2 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H),
- ³⁰ 4.89 (t, J = 7.2 Hz, 1H), 3.89 (dd, J = 6.8, 20.8, 35.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 198.4, 144.5, 137.0, 136.6, 133.4, 130.5, 129.9, 128.9, 128.3, 128.2, 126.4, 122.2, 121.3, 118.8, 118.6, 117.8, 111.6, 44.2, 37.2 ppm. ESI HRMS: calcd. for C₂₃H₁₈CINO+Na 382.0975, found C₂₃H₁₈³⁵CINNaO 382.0967, ³⁵ C₂₃H₁₈³⁷CINNaO 384.0940.
- **3-(4-Bromo-phenyl)-3-(1***H***-indol-3-yl)-1-phenyl-propan-1-one (5ae). 14 h, 90% yield; ¹H NMR (400 MHz, DMSO): \delta 10.91 (s, 1H), 8.02-8.00 (m, 2H), 7.63-7.60 (m, 1H), 7.52-7.48 (m, 2H), 7.43-7.31 (m, 7H), 7.03 (t, J = 7.2 Hz, 1H), 6.90 (t, J = 7.2Hz,**
- ⁴⁰ 1H), 4.87 (t, J = 5.6 Hz, 1H), 3.88 (ddd, J = 6.4, 20.4, 33.6 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 198.4, 145.0, 137.0, 136.6, 133.4, 131.1, 130.3, 128.9, 128.3, 126.4, 122.2, 121.3, 119.0, 118.8, 118.6, 117.8, 111.6, 44.2, 37.2 ppm. ESI HRMS: calcd. for C₂₃H₁₈BrNO+Na 426.0469, found C₂₃H₁₈⁷⁹BrNNaO 45 426.0483, C₂₃H₁₈⁸¹BrNNaO 428.3361.
- **3-(1***H***-indol-3-yl)-3-(4-methoxyphenyl)-1-phenylpropan-1-one (5af)**. 26 h, 63% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.00 (s, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.51-7.49 (m, 1H), 7.42-7.48 (m, 3H), 7.27-7.22 (m, 3H), 7.13-7.09 (m, 1H), 7.01-6.98 (m, 1H),
- ⁵⁰ 6.90 (s, 1H), 6.77 (d, J = 8.4 Hz, 2H), 5.00 (t, J = 7.2 Hz, 1H), 3.71 (ddd, J = 6.4, 20, 30 Hz, 2H), 3.70 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.8, 157.8, 137.0, 136.6, 136.3, 133.0, 128.7, 128.5, 128.0, 126.5, 122.0, 121.3, 119.5, 119.4, 119.2, 113.7, 111.1, 55.1, 45.3, 37.4 ppm. ESI HRMS: calcd. for ⁵⁵ C₂₄H₂₁NO₂+Na 378.1470, found 378.1466.
- **3-(1H-indol-3-yl)-1-phenyl-3-(4-(trifluoromethyl)phenyl) propan-1-one (5ag)**. 26 h, 70% yield; ¹H NMR (400 MHz, DMSO): δ 10.96 (s, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.67-7.65 (m,

3H), 7.62-7.58 (m, 2H), 7.54-7.50 (m, 2H), 7.48-7.43 (m, 2H), 60 7.34-7.32 (m, 1H), 7.06-7.03 (m, 1H), 6.94-6.90 (m, 1H), 4.99 (s, 1H), 3.97 (ddd, J = 6.8, 21.2, 24.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 198.3, 150.4, 136.9, 136.5, 133.4, 128.9, 128.8, 128.3, 126.4, 125.2, 125.2, 122.4, 121.3, 118.7, 118.7, 117.4, 111.6, 44.0, 37.6 ppm. ESI HRMS: calcd. for C₂₄H₁₈F₃NO+Na 65 416.1238, found 416.1240.

3-(1*H***-Indol-3-yl)-3-naphthalen-1-yl-1-phenyl-propan-1-one (5ah)**. 12 h, 87% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.35-8.33 (m, 1H), 7.97-7.95 (m, 2H), 7.90-7.87 (m, 2H), 7.75-7.73 (m, 1H), 7.58-7.54 (m, 1H), 7.50-7.44 (m, 5H), 7.42-7.33 (m, 2H), 7.29-70 7.26 (m, 1H), 7.17-7.14 (m, 1H), 7.04-7.00 (m, 1H), 6.77-6.76 (m, 1H), 5.97 (t, *J* = 6.8 Hz, 1H), 3.89 (ddd, *J* = 8.0, 21.2, 77.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.5, 139.9, 137.0, 136.6, 134.0, 133.1, 131.4, 128.8, 128.6, 128.0, 127.0, 126.6, 126.1, 125.5, 125.3, 124.3, 123.6, 122.2, 122.0, 119.4, 119.3, 75 118.9, 111.1, 44.6, 33.2 ppm. ESI HRMS: calcd. for

⁷⁵ 118.9, 111.1, 44.6, 33.2 ppm. ESI HRMS: calcd. for C₂₇H₂₁NO+Na 398.1521, found 398.1530. **3-(1***H***-indol-3-yl)-1-phenyl-3-(thiophen-2-yl)propan-1-one (5ai)**. 48 h, 40% yield; ¹H NMR (400 MHz, DMSO): δ 10.92 (s, 1H), 8.02 (d, *J* = 7.2Hz, 2H), 7.64-7.60 (m, 1H), 7.51 (t, *J* = 7.2 W, 3H), 7.35-7.33 (m, 2H), 7.23-7.22 (m, 1H), 7.08-7.04 (m, 1H), 7.00-6.99 (m, 1H), 6.95 (t, *J* = 7.2 Hz, 1H), 6.88-6.86 (m, 1H), 5.20 (t, *J* = 7.2 Hz, 1H), 3.92 (d, *J* = 7.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 198.2, 149.9, 136.9, 136.6, 133.4, 128.9, 128.3, 126.7, 126.3, 124.1, 123.8, 122.4, 121.3, 118.9, 85 118.7, 117.9, 111.7, 45.4, 32.9 ppm. ESI HRMS: calcd. for

85 118.7, 117.9, 111.7, 43.4, 32.9 ppin. ES1 11KM3. calcd. for $C_{21}H_{17}NOS+Na$ 354.0929, found 354.0930. **3-(1***H***-Indol-3-yl)-1-naphthalen-2-yl-3-phenyl-propan-1-one (5ak)**. 11 h, 80% yield; ¹H NMR (400 MHz, DMSO): δ 10.89 (s, 1H), 8.81 (s, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 7.98-7.07 (m, 3H), 90 7.68-7.60 (m, 2H), 7.47-7.45 (m, 3H), 7.39 (m, 1H), 7.34-7.32 (m, 1H), 7.24 (t, *J* = 7.2 Hz, 2H), 7.11 (t, *J* = 7.2Hz, 1H), 7.06-7.02 (m, 1H), 6.93-6.89 (m, 1H), 4.97 (t, *J* = 7.2Hz, 1H), 4.02 (ddd, *J* = 7.2, 20.8, 66.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 198.5, 145.5, 136.6, 135.2, 134.4, 132.4, 130.3, 129.8, 128.8, 95 128.4, 128.3, 128.0, 127.8, 127.1, 126.6, 126.0, 123.8, 122.1, 121.2, 118.9, 118.5, 118.2, 111.6, 44.4, 38.0 ppm. ESI HRMS: calcd. for $C_{27}H_{21}NO+Na$ 398.1521, found 398.1511.

- **1-Furan-2-yl-3-(1***H***-indol-3-yl)-3-phenyl-propan-1-one (5al). 16 h, 73% yield; ¹H NMR (400 MHz, DMSO): δ 10.88 (s, 1H), 7.95 (s, 1H), 7.60-7.59 (m, 1H), 7.43-7.38 (m, 3H), 7.33-7.30 (m, 2H), 7.24-7.20 (m, 2H), 7.12-7.08 (m, 1H), 7.04-7.00 (m, 1H), 6.91-6.88 (m, 1H), 6.69-6.68 (m, 1H), 4.85 (s, 1H), 3.64 (ddd, J = 6.4, 19.6, 60 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 186.9, 152.4, 148.1, 148.0, 145.1, 136.5, 128.4, 127.9, 126.5, 105 126.1, 122.1, 122.1, 121.3, 119.3, 118.9, 118.6, 117.8, 112.7, 112.7, 111.6, 44.2, 38.0 ppm. ESI HRMS: calcd. for C₂₁H₁₇NO₂+Na 338.1157, found 338.1157.**
- **5-(1***H***-Indol-3-yl)-1,5-diphenyl-pent-1-en-3-one (5an)**. 12 h, 62% yield; ¹H NMR (400 MHz, DMSO): δ 10.88 (s, 1H), 7.69-¹¹⁰ 7.67 (m, 2H), 7.63 (s, 1H), 7.43-7.38 (m, 6H), 7.33-7.30 (m, 2H), 7.25-7.22 (m, 2H), 7.13-7.09 (m, 1H), 7.05-7.01 (m, 1H), 6.96 (s, 1H), 6.92-6.88 (m, 1H), 4.84 (t, J = 7.6 Hz, 1H), 3.52 (ddd, J =7.6, 20, 66.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO): δ 198.7, 145.4, 142.4, 136.6, 134.7, 130.6, 129.1, 128.6, 128.3, ¹¹⁵ 127.9, 126.9, 126.6, 126.0, 122.1, 121.2, 118.9, 118.4, 118.0,

111.6, 46.5, 38.0 ppm. ESI HRMS: calcd. for $C_{25}H_{21}NO+Na$ 374.1521, found 374.1514.

2-(1*H***-Indol-3-yl)-1,4-diphenyl-butane-1,4-dione (5ao)**. 12 h, 99% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H), 8.04-8.02 s (m, 2H), 7.95-7.93 (m, 2H), 7.77-7.75 (m, 1H), 7.53-7.49 (m, 1H), 7.43-7.37 (m, 3H), 7.32-7.27 (m, 3H), 7.22-7.14 (m, 2H), 6.92 (s,

- 1H), 5.58 (dd, J = 3.2, 10.4 Hz, 1H), 4.24 (dd, J = 10.4, 18.4 Hz, 1H) 3.40 (dd, J = 3.6, 18.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 199.2, 198.8, 136.4, 136.4, 133.2, 132.7, 128.7, 128.5, 128.4, 128.1, 128.5,
- 10 128.4, 128.1, 125.9, 122.8, 122.4, 119.9, 118.6, 112.9, 111.5, 42.8, 39.6 ppm. ESI HRMS: calcd. for $C_{24}H_{19}NO_2+Na$ 376.1313, found 376.1311.

1-(1*H***-Indol-3-yl)-pentan-3-one (5ap)**. 12 h, 91% yield; ¹H NMR (400 MHz, DMSO): δ 10.77 (s, 1H), 7.53-7.51 (m, 1H),

- ¹⁵ 7.35-7.33 (m, 1H), 7.09-7.05 (m, 2H), 6.99-6.96 (m, 1H), 2.90 (t, J = 7.2Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 2.45 (q, J = 7.2 Hz, 2H), 0.93 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO): δ 210.9, 136.5, 127.2, 122.4, 121.2, 118.5, 118.4, 113.8, 111.5, 42.4, 35.2, 19.3, 7.8 ppm. ESI HRMS: calcd. for C₁₃H₁₅NO+Na 224.1051, found ²⁰ 224.1044.
- **4-(1***H***-Indol-3-yl)-pentan-2-one (5aq)**. 12 h, 76% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.33-7.32 (m, 1H), 7.20-7.16 (m, 1H), 7.13-7.09 (m, 1H), 6.93 (s, 1H), 3.66-3.60 (m, 1H), 2.81 (ddd, *J* = 6.0, 18.8, 86.4 Hz, 2H),
- ²⁵ 2.08 (s, 3H), 1.37 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 208.8, 136.4, 126.2, 121.9, 120.8, 120.1, 119.1, 119.0, 111.3, 51.4, 30.4, 26.9, 21.2 ppm. ESI HRMS: calcd. for C₁₃H₁₅NO+Na 224.1051, found 224.1042.

3-(1*H***-Indol-3-yl)-cyclohexanone (5as)**. 16 h, 41% yield; ¹H

- ³⁰ NMR (400 MHz, CDCl₃): δ 8.18 (s, 1H), 7.66 (d, *J* = 8.0 Hz, 1H),
 7.39 (d, *J* = 8.0 Hz, 1H), 7.27-7.22 (m, 1H), 7.18-7.14 (m, 1H),
 6.98 (s, 1H), 3.51-3.44 (m, 1H), 2.86-2.81 (m, 1H), 2.69-2.63 (m, 1H), 2.53-2.39 (m, 2H), 2.31-2.27 (m, 1H), 2.11-1.95 (m, 2H),
 1.91-1.81 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 212.0,
- $_{35}$ 136.4, 126.0, 122.1, 120.3, 119.5, 119.3, 118.9, 111.3, 48.0, 41.5, 35.9, 31.6, 24.8 ppm. ESI HRMS: calcd. for $C_{14}H_{15}NO+Na$ 236.1051, found 236.1043.

3-(1*H***-Indol-3-yl)-cyclopentanone (5at)**. 16 h, 51% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.15 (s, 1H), 7.64-7.62 (m, 1H),

- ⁴⁰ 7.38-7.36 (m, 1H), 7.24-7.20 (m, 1H), 7.16-7.20 (m, 1H), 6.96-6.95 (m, 1H), 3.75-3.67 (m, 1H), 2.79-2.72 (m, 1H), 2.56-2.50 (m, 1H), 2.50-2.41 (m, 2H), 2.40-2.27 (m, 1H), 2.17-2.08 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 219.6, 136.6, 126.5, 122.2, 119.9, 119.4, 119.0, 118.4, 111.3, 45.2, 38.1, 33.6, 29.8 ppm. ESI
 ⁴⁵ HRMS: calcd. for C₁₃H₁₃NO+Na 222.0895, found 222.0892.
- **3-(2-Methyl-1***H***-indol-3-yl)-1,3-diphenyl-propan-1-one (5ba)**. 16 h, 76% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.2 Hz, 2H), 7.75 (s, 1H), 7.50-7.46 (m, 2H), 7.38-7.34 (m, 4H), 7.25-7.18 (m, 3H), 7.15-7.11 (m, 1H), 7.06-7.03 (m, 1H), 7.00-
- ⁵⁰ 6.96 (m, 1H), 5.08 (t, J = 6.8 Hz, 1H), 3.92 (ddd, J = 7.6, 24.8, 26 Hz, 2H), 2.36 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 144.2, 137.1, 135.4, 132.9, 131.7, 128.4, 128.2, 128.0, 127.5, 127.4, 125.8, 120.6, 119.1, 119.1, 113.5, 110.4, 43.5, 36.7, 12.1 ppm. ESI HRMS: calcd. for C₂₄H₂₁NO+Na 362.1521, found ⁵⁵ 362.1508.
 - **1,3-Diphenyl-3-(1***H***-pyrazol-4-yl)-propan-1-one (5ca)**. 10 h, ¹¹⁵ 30% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.6 Hz, 2H), 7.57-7.49 (m, 3H), 7.45-7.42 (m, 2H), 7.33-7.32 (m, 4H),

7.30-7.25 (m, 1H), 6.23 (s, 1H), 5.2 (dd, J = 5.2, 8.4 Hz, 1H), 60 4.49 (q, J = 8.8 Hz, 1H) 3.64 (dd, J = 4.8, 17.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 140.7, 139.2, 136.4, 133.3, 129.7, 128.8, 128.6, 128.2, 127.9, 126.6, 105.5, 60.7, 44.1 ppm. ESI HRMS: calcd. for C₁₈H₁₆N₂O+Na 299.1160, found 299.1154. **3-(1-methyl-1H-pyrrol-2-yl)-1,3-diphenylpropan-1-one (7a)**. 8

- ⁶⁵ h, 33% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 7.2 Hz, 2H), 7.57-7.55 (m, 1H), 7.46-7.42 (m, 2H), 7.28-7.17 (m, 5H), 6.54 (s, 1H), 6.08 (s, 2H), 4.81 (t, *J* = 7.2 Hz, 1H), 3.80 (dd, *J* = 7.2, 17.2 Hz, 1H), 3.50 (dd, *J* = 7.2, 17.2 Hz, 1H), 3.38 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 143.2, 137.0, 134.3,
- $_{70}$ 133.0, 128.6, 128.5, 128.0, 127.9, 126.4, 121.9, 106.3, 105.6, 45.5, 38.2, 33.9 ppm. ESI HRMS: calcd. for $C_{20}H_{19}NO+Na$ 312.1364, found 312.1365.

3-(1-methyl-1H-pyrrol-3-yl)-1,3-diphenylpropan-1-one (7b). 8 h, 6% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 7.6 Hz,

- ⁷⁵ 2H), 7.55-7.51 (m, 1H), 7.45-7.41 (m, 2H), 7.32-7.30 (m, 3H), 7.28-7.26 (m, 1H), 7.18-7.14 (m, 1H), 6.48 (s, 1H), 6.32 (s, 1H), 5.97 (s, 1H), 4.69 (t, J = 7.2 Hz, 1H), 3.62 (ddd, J = 7.2, 20.3, 34.4 Hz, 2H), 2.56 (s, 3H) ppm. ESI HRMS: calcd. for C₂₀H₁₉NO+Na 312.1364, found 312.1364.
- (3R,3'S)-3,3'-(1-methyl-1H-pyrrole-2,5-diyl)bis(1,3-diphenylpropan-1-one) (7c). 8 h, 16% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.2 Hz, 4H), 7.55-7.52 (m, 2H), 7.44-7.41 (m, 4H), 7.27-7.23 (m, 4H), 7.18-7.14 (m, 6H), 6.04 (s, 2H), 4.71 (t, J = 7.2 Hz, 2H), 3.61 (ddd, J = 6.4, 20.4, 91.6 Hz, 4H), 2.05 (c, 2H) npm; ¹³C NMB (100 MHz, CDCl) > 5 107.0
- 85 4H), 3.05 (s, 3H) ppm; ^{13}C NMR (100 MHz, CDCl₃): δ 197.9, 143.3, 137.1, 134.4, 132.9, 128.5, 128.4, 127.9, 127.8, 126.4, 104.2, 45.4, 38.6, 30.6 ppm. ESI HRMS: calcd. for $C_{35}H_{31}NO_2+Na$ 520.2252, found 520.2250.
 - (3R,3'R)-3,3'-(1-methyl-1H-pyrrole-2,5-diyl)bis(1,3-
- ⁹⁰ diphenylpropan-1-one) (7d). 8 h, 17% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.92-7.90 (m, 4H), 7.55-7.52 (m, 2H), 7.44-7.41 (m, 4H), 7.26-7.15 (m, 4H), 7.11-7.09 (m, 6H), 6.00 (s, 2H), 4.75 (t, *J* = 7.2 Hz, 2H), 3.75 (dd, *J* = 7.2, 17.2 Hz, 2H), 3.43 (dd, *J* = 7.2, 17.2 Hz, 2H), 2.99 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO):
- $_{95}$ δ 197.8, 143.7, 136.7, 134.2, 133.2, 128.7, 128.2, 128.0, 127.7, 126.1, 104.2, 44.6, 37.9, 30.2 ppm. ESI HRMS: calcd. for $C_{35}H_{31}NO_2+Na$ 520.2252, found 520.2258.

Notes and references

- (a) R. J. Sundberg, *The Chemistry of Indoles*, Academic Press, New York, 1970;
 (b) E. C. Taylor, J. E. Saxton, *The Chemistry of Heterocyclic Compounds*, ed. Wiley-Interscience, New York, 1983 & 1994, vol. 25;
 (c) T. Kawasaki, K. Higuchi, *Nat. Prod. Rep.*, 2005, 22, 761;
 (d) G. R. Humphrey, J. T. Kuethe, *Chem. Rev.*, 2006, 106, 2875;
 (e) Nurullah Saracoglu, *Top. Heterocycl. Chem.*, 2007, 11 (*Bioactive Heterocycles V*), 145;
 (f) M. Bandini, A. Eichholzer, *Angew. Chem., Int. Ed.*, 2009, 48, 9608.
- 2 (a) E. M. Beck, M. J. Gaunt, *Top. Curr. Chem.*, 2010, 292, 85; (b) M. Zeng, S.-L. You, *Synlett*, 2010, 1289; (c) Q. Kang, Z.-A. Zhao, S.-L.
 You, *J. Am. Chem. Soc.*, 2007, 129, 1484.
 - For selected examples, see: (a) L. Joucla, L. Djakovitch, Adv. Synth. Catal., 2009, 351, 673; (b) D. R. Stuart, K. Fagnou, Science, 2007, 316, 1172; (c) W. Lu, C. Jia, T. Kitamura, Y. Fujiwara, Org. Lett., 2000, 2, 2927; (d) D. R. Stuart, E. Villemure, K. Fagnou, J. Am. Chem. Soc., 2007, 129, 12072; (e) T. A. Dwight, N. R. Rue, D. Charyk, R. Josselyn, B. DeBoef, Org. Lett., 2007, 9, 3137; (f) B. S. Lane, D. Sames, Org. Lett., 2004, 6, 2897; (g) B. B. Touré, B. S. Lane, D. Same, Org. Lett., 2006, 8, 1979; (h) N. R. Deprez, D.

Kalyani, A. Krause, M. S. Sanford, J. Am. Chem. Soc., 2006, 128, 4972; (i) X. Wang, D. V. Gribkov, D. Sames, J. Org. Chem., 2007, 72, 1476; (j) N. Lebrasseur, I. Larrosa, J. Am. Chem. Soc., 2008, 130, 2926; (k) J. Zhao, Y. Zhang, K. Cheng, J. Org. Chem., 2008, 73,

- 7428; (l) S.-D. Yang, C.-L. Sun, Z. Fang, B.-J. Li, Y.-Z. Li, Z.-J. Shi, Angew. Chem. Int. Ed., 2008, 47, 1473; (m) X. Wang, B. S. Lane, D. Sames, J. Am. Chem. Soc., 2005, 127, 4996; (n) R. J. Phipps, N. P. Grimster, M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 8172; (o) B. S. Lane, M. A. Brown, D. Sames, J. Am. Chem. Soc., 2005, 127, 8050;
- (p) L. Djakovitch, V. Dufaud, R. Zaidi, Adv. Synth. Catal., 2006, 348, 10 715; (q) T. Tsuchimoto, M. Iwabuchi, Y. Nagase, K. Oki, H. Takahashi, Angew. Chem. Int. Ed., 2011, 50, 1375; (r) C. Bressy, D. Alberico, M. Lautens, J. Am. Chem. Soc., 2005, 127, 13148.
- 4 (a) Y. Yokoyama, T. Matsumoto, Y. Murakami, J. Org. Chem., 1995, 15 60, 1486; (b) C. Jia, W. Lu, T. Kitamura, Y. Fujiwara, Org. Lett., 1999, 1, 2097; (c) A. Maehara, H. Tsurugi, T. Satoh, M. Miura, Org. Lett., 2008, 10, 1159; (d) T. Itahara, K. Kawasaki, F. Ouseto, Synthesis, 1984, 236; (e) L. Djakovitch, P. Rouge, J. Mol. Catal. A: Chem., 2007, 273, 230.
- (a) E. Capito, J. M. Brown, A. Ricci, Chem. Commun., 2005, 1854; 20 5 (b) A. García-Rubia, R. G. Arravás, J. C. Carretero, Angew. Chem., Int. Ed., 2009, 48, 6511; (c) A. García-Rubia, B. Urones, R. G. Arrayás, J. C. Carretero, Chem. Eur. J., 2010, 16, 9676.
- 6 N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, Angew. Chem., Int. Ed., 2005, 44, 3125. 25
- Y. Nakao, K. S. Kanyiva, S. Oda, T. Hiyama, J. Am. Chem. Soc., 7 2006, 128, 8146.
- 8 For the intramolecular a lkenylation, see: (a) G. Abbiati, E. M. Beccalli, G. Broggini, C. Zoni, J. Org. Chem., 2003, 68, 7625; (b) A. 30 Kong, X. Han, X. Lu, Org. Lett., 2006, 8, 1339; (c) J. A. Schiffner, A.
- B. Machotta, M. Oestreich, Synlett, 2008, 2271. 9
- (a) W. E. Noland, G. M. Christensen, G. L. Sauer, G. G. S. Dutto, J. Am. Chem. Soc., 1955, 77, 456; (b) J. Szmuszkovicz, J. Am. Chem. Soc., 1957, 79, 2819; (c) J. F. Austin, D. W. C. MacMillan, J. Am.
- Chem. Soc., 2004, 124, 1172; (d) J. Moran, T. Suen, A. M. 35 Beauchemin J. Org. Chem., 2006, 71, 676; (e) K. B. Jensen, J. Thorhauge, R. G. Hazell, K. A. Jørgensen, Angew. Chem., Int. Ed., 2001, 40, 160; (f) W.-T. Wang, X.-M. Feng, Chem. Eur. J., 2010, 16, 1664
- 40 10 For some reviews, see: (a) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res., 2001, 34, 633; (b) S. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev., 2007, 107, 5318; (c) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792; (d) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem., Int. Ed.,
- 2009, 48, 5094; (e) B.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett, 2008, 949; 45 (f) P. Thansandote, M. Lautens, Chem.Eur. J., 2009, 15, 5874; (g) T. Kitamura, Eur. J. Org. Chem., 2009, 1111; (h) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu, Chem. Soc. Rev., 2009, 38, 3242; (i) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res., 2009, 42,
- 1074; (j) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. 50 Baudoin, Chem. Eur. J., 2010, 16, 2654; (k) T. W. Lyons, M. S. Sanford, Chem. Rev., 2010, 110, 1147; (l) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev., 2010, 110, 624; (m) E. M. Beck, M. J. Gaunt, Top. Curr. Chem., 2010, 292, 106; (n) C.-L. Sun, B.-J.
- Li, Z.-J. Shi, Chem. Rev., 2011, 111, 1293. 55
- 11 (a) L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem., Int. Ed., 2011, 50, 6379; (b) B. Li, H. Feng, S. Xu, B. Wang, Chem. Eur. J., 2011, 17, 12573; (c) L. Ackermann, A. V. Lygin, N. Hofmann, Org. Lett., 2011, 13, 3278; (d) L. Ackermann, L. Wang, A. V. Lygin,
- Chem. Sci., 2012, 3, 177; (e) R. K. Chinnagolla, M. Jeganmohan, Eur. 60 J. Org. Chem., 2012, 417; (f) V. S. Thirunavukkarasu, M. Donati, L. Ackermann, Org.Lett., 2012, 14, 3416; (g) K. Parthasarathy, N. Senthilkumar, J. Jayakumar, C.-H. Cheng, Org. Lett., 2012, 14, 3478; (h) B. Li, H. Feng, N. Wang, J. Ma, H. Song, S. Xu, B. Wang, Chem. Eur. J., 2012, 18, 12873. 65
- 12 S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, Nature, 1993, 366, 529.
- 13 G. Rouquet, N. Chatani, Chem. Sci., 2013, 4, 2201.
- 14 F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N.
- Chatani, S. Murai, Bull. Chem. Soc. Jpn., 1995, 68, 62. 15 D. Shan, Y. Gao, Y. Jia, Angew. Chem. Int. Ed., 2013, 52, 4902.

16 For more details, see the Supporting Information.