This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis of Novel Polyhydroxylated Pyrrolidine-Triazole/-Isoxazole Hybrid Molecules†

Cheng-Kun Lin, a Li-Wei Cheng, b Huang-Yi Li, a Wen-Yi Yun a and Wei-Chieh Cheng ab*

Abstract: A straightforward synthesis of novel, 2-heterocycl yl polyhydroxylated pyrrolidines is described. Stereocontrolled additions of nucleophiles to cyclic nitrones generated the corresponding 2,3-trans adducts, allowing the synthesis of the corresponding pyrrolidines via key intermediates bearing an alkyne and a nitrile oxide. Three hybrid systems, including a pyrrolidine with two isoxazoles and one triazole are efficiently prepared via 1,3-dipolar cycloaddition. Biological testing of the product alkaloids showed subtle structural variations to have drastic effects on their inhibitory activities against glucosidases.

Introduction

A new class of polyhydroxylated pyrrolidines, in which an aryl moiety is directly attached at the C-2 position of the pyrrolidine ring with a specific 2,3-trans configuration, was recently discovered. 1 The variety of biological activities exhibited by molecules containing the 2-aryl pyrrolidine skeleton suggests this motif to be a privileged scaffold of potential use in combinatorial chemistry for drug discovery. 2 Members of this class including (–)-codonopsinol, radicamine A, and radicamine B have been isolated from plants known for their utility as diuretics, antidotes, hemostats and carcinostatic agents, and for the treatment of liver diseases. 3 They have also been found to inhibit various glycosidases, especially α-glucosidases, and some synthetic 2-aryl pyrrolidines were found to exhibit better inhibitory potency than natural alkaloids against glycosidases. This interesting biological

a Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan. E-mail: wchung@gate.sinica.edu.tw; Fax: (+886)2-2789-8771
b Department of Chemistry, National Cheng Kung University, 1, University Road, Tainan City, 701, Taiwan
† Electronic supplementary information (ESI) available: Copies of 1H and 13C NMR spectra for new compounds. See DOI:
activity has motivated the development of various methods for their synthesis.\(^4\)

![Fig. 1 Examples of bioactive 2-aryl polyhydroxylated pyrrolidines, and the identification of cyclic nitrone 1 as a key intermediate for their synthesis.](image)

In a previous study,\(^4a\) we reported an efficient preparation of 2-aryl polyhydroxylated pyrrolidine alkaloids, in which excellent diastereoselectivity is achieved using a stereocontrolled addition of Grignard reagents to cyclic nitrones, and the five-membered chiral cyclic nitrone 1 and its enantiomer are key intermediates (Fig. 1). Inspired by many biomolecules containing a five-membered heterocycle such as a triazole or isoxazole,\(^5,6\) we are curious whether we can develop a new chemical method to combine two scaffolds, a polyhydroxylated pyrrolidine and a heterocycle, to form a hybrid molecule and also increase the molecular diversity.

Based on our literature search, a nucleophilic addition of organometallic reagents to cyclic nitrons has been reported,\(^7\) but the direct use of heterocyclic lithium reagents\(^7e\) is not practical for our further diversity. In contrast, isoxazoles and 1,2,3-triazoles can be accessed via a 1,3-dipolar cycloaddition of alkynes with nitrile oxides and azides, respectively, and the high yield and regioselectivity of this ring formation step make it a good choice for the efficient conjugation of two diverse fragments or even two molecules.\(^8\) Therefore, we decided to install desired functional groups such as an alkyne and a nitrile oxide on a pyrrolidine skeleton first and then undergo a heterocyclic ring formation with concomitant increase in molecular diversity.

To the best of our knowledge, however, the synthesis of hybrid molecules containing both a polyhydroxylated pyrrolidine and a functionalized triazole or isoxazole remains incompletely explored. Herein, we report a new approach for the installation of an alkyne and oxime group at the C-2 position of the pyrrolidine ring from a chiral cyclic nitrone (Scheme 1). These alkynes and oximes are then elaborated to give functionalized or substituted isoxazole or triazole via 1,3-dipolar cycloaddition. Novel polyhydroxylated pyrrolidine heterocycle hybrid molecules were prepared using this method, and their inhibitory activities against glycosidases were studied.
Scheme 1 General approaches towards the synthesis of polyhydroxylated pyrrolidine heterocycle hybrid molecules.

Results and Discussion

As illustrated in Scheme 2, the synthesis of the desired alkyne 6 commenced with the elaboration of enantiopure tri-O-benzyl cyclic nitrone 1, readily available from D-arabinose.\(^9\) Nucleophilic addition of ethynyl lithium to cyclic nitrone 1 gave only a single 2,3-trans adduct 2 in good yield (90%), which underwent a copper catalyzed 'click' reaction with azidobenzene. Unexpectedly, a mixture of the triazolyl cyclic nitrones 3 and 4 was obtained, presumably, by copper-mediated oxidation.\(^10\) Cleavage of the N-O bond of 2 using Zn/AcOH conditions gave vinyl pyrrolidine 5 instead of the desired alkynyl pyrrolidine 6 (Scheme 2).\(^11\)

Scheme 2 Attempts for the preparation of the alkyne and triazoles. Reagents and conditions: (a) HC≡C–Li, THF, 0 °C, 3 h, 90%, (b) PhN\(_3\), CuSO\(_4\), Na ascorbate, i-BuOH, H\(_2\)O, rt, 14 h, 50%, (c) Zn, HOAc, rt, 3 h.

These problems required our synthetic strategy to be re-designed (Scheme 3). Fortunately, the TMS-masked acetylene moiety in 7 was found to withstand the Zn/AcOH reductive conditions\(^12\) and the key alkyne 8 was successfully obtained in 81% yield from 7 over three steps. With this 1,3-dipolarophile 8 in hand, the copper(I)-catalyzed 1,2,3-triazole ring formation between
2-azidoanisole and 8 was performed as a model reaction to generate the single adduct 9 in good yield (88%) with excellent regioselectivity.\(^\text{13}\) Catalytic hydrogenation [Pd(OH)\(_2\)/H\(_2\)] of 9 under acidic conditions delivered C-2-triazolyl polyhydroxylated pyrrolidine 10 in good yield (90%). The \(^1\)H NMR spectrum of 10 showed a characteristic peak at 8.3 ppm, corresponding to the methine proton on the triazole ring.

Attempts to react 8 with 4-methylbenzaldehyde oxime and bleach\(^\text{14}\) under biphasic conditions were unsatisfactory due to poor yield (<30%). In contrast, treatment of 8 with N-hydroxy-4-methylbenzimidoyl chloride (11), prepared by the treatment of 4-methylbenzaldehyde oxime with N-chlorosuccinimide (NCS) under basic homogeneous conditions,\(^\text{15}\) afforded 12 in good yield (70%) as a single adduct, with excellent regioselectivity. After global deprotection of 12 by treatment with BCl\(_3\) in CH\(_2\)Cl\(_2\) at \(-78^\circ C\),\(^\text{16}\) the C-2-isoxazolyl polyhydroxylated pyrrolidine 13 was obtained in 73% yield. Notably, catalytic hydrogenation [Pd(OH)\(_2\)/H\(_2\)] of 12 did not give 13, presumably because the isoxazole ring of 12 was labile under these conditions.\(^\text{17}\) In the \(^1\)H NMR spectrum of 13, the characteristic peak corresponding to the methine proton on the isoxazole ring was observed at 6.82 ppm.

Scheme 3 Synthesis of 2-triazolyl- and 2-isoxazolyl polyhydroxylated pyrrolidines 10 and 13 from alkyne 8. Reagents and conditions: (a) TMSC≡C–Li, THF, \(-78^\circ C\), 1.5 h, 89%, (b) i. Zn, HOAc, DCM, rt, 24 h, ii. TBAF, THF, rt, 2 h, iii. Boc\(_2\)O, Et\(_3\)N, DCM, rt, 2 h, 81% over three steps from 7, (c) 2-azidoanisole, CuSO\(_4\), Na ascorbate, \(t\)-BuOH, H\(_2\)O, rt, 14 h, 88%, (d) H\(_2\), Pd(OH)\(_2\)/C, MeOH, HCl, rt, 12 h, 90%, (e) N-hydroxy-4-methylbenzimidoyl chloride 11, Et\(_3\)N, DCM, rt, 12 h, 70%, (f) BCl\(_3\), DCM, \(-78^\circ C\), 4 h, 73%.

Next, our attention turned to the development of a new route towards the preparation of another type of a C-2-isoxazolyl polyhydroxylated pyrrolidine (Scheme 4). \(N\)-Protected aldehyde 15
(2,3-trans configuration)\(^{18}\) was obtained from cyclic nitrone 1 in an overall yield of 54\% over four steps via the selective addition of vinylmagnesium bromide, reduction of the N-O bond, N-Boc protection, and ozonolysis. Compound 15 was reacted with hydroxylamine hydrochloride in the presence of sodium methoxide to give oxime 16 (90\%), which was treated with bleach and 1-bromo-4-ethynylbenzene to afford isoxazole 17 (72\%) via in situ generation of the corresponding nitrile oxide and 1,3-dipolar cycloaddition at low temperature. To avoid dehalogenation during palladium-catalyzed hydrogenation, deprotection of 17 was performed using BCl\(_3\) to give pyrrolidine 18. In the \(^1\)H NMR spectrum of 18, the characteristic peak for the methine proton on the isoxazole ring was observed at 6.9 ppm, which is much more similar to the chemical shift of the methine proton in 13 than 10.

Scheme 4 Synthesis of the regioisomeric 2-isoxazolyl polyhydroxylated pyrrolidine 18 from oxime 16. Reagents and conditions: (a) i. VinylMgBr, THF, 0 °C, 2 h, ii. Zn, HOAc, rt, 14 h, iii. Boc\(_2\)O, Et\(_3\)N, DCM, rt, 2 h; 4. O\(_3\), MeOH, –78 °C, 10 min, 54\% over four steps, (b) NaOMe, NH\(_2\)OH-HCl, MeOH, rt, 2 h, 90\%, (c) NaOCl, Et\(_3\)N, DCM, H\(_2\)O, 1-bromo-4-ethynylbenzene, 0 °C, 12 h, 72\%, (d) BCl\(_3\), DCM, –78 °C, 4 h, 65\%.

Several different polyhydroxylated pyrrolidine-heterocycle hybrid molecules were synthesized using these conditions (Fig. 2), and their inhibitory activity against glucosidases studied (Table 1).
Fig. 2 Examples of synthesized hybrid molecules. The specified yield refers to the overall yield from the corresponding alkyne 8 or oxime 16.

Biological evaluation

Inhibitory potency and selectivity was found to depend on the type of heterocyclic ring and its substituents. For example, compounds 10, 18, 20 and 21 showed significant inhibitory selectivity between α-glucosidase and β-glucosidase. Also, 21 and 22, which are similar in overall structure but have different heterocyclic rings, had very different biological activities: against α-glucosidase (Bacillus), the former, with an isoxazole ring, was approximately 30-fold more potent (IC$_{50}$ = 0.2 µM) than the latter, with a triazole ring (IC$_{50}$ = 6.5 µM). However, two types of regioisomeric isoxazoles, 20 and 24 showed similar inhibitory potency of α-glucosidase; their IC$_{50}$ values were 1.1 and 1.4 µM, respectively. Compound 21 was the most potent inhibitor with a K_i value of 67 nM against α-glucosidase (Bacillus) (Fig. 3). For comparison purpose, 26 (vs. 20 or 24) and 27 (vs. 21) were prepared with an alkyl chain instead of a heterocyclic ring between the pyrrolidine and substituent moieties. Obviously, 20 and 24 showed much better activity (>10 fold) than 26 against α-glucosidase. And, the inhibition activity of 21 gave approximately 6.5-fold higher than that of 27 against α-glucosidase. Notably, though 26 and 27 had moderate inhibition activity against α- and β-glucosidases, they dramatically lost their selectivity to distinguish α- and β-glucosidases, possibly due to their flexible alkyl spacer. In contrast, our molecules containing a heterocyclic ring exhibited not only inhibition potency but also selectivity between α- and β-glucosidases.

Table 1 Inhibitory activities of synthesized alkaloids against glucosidasesa

-6-
<table>
<thead>
<tr>
<th>Compound</th>
<th>α-glucosidase (µM)</th>
<th>β-glucosidase (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.4 ± 0.1</td>
<td>NI</td>
</tr>
<tr>
<td>13</td>
<td>5.8 ± 0.6</td>
<td>59 ± 7</td>
</tr>
<tr>
<td>18</td>
<td>1.6 ± 0.2</td>
<td>NI</td>
</tr>
<tr>
<td>20</td>
<td>1.1 ± 0.2</td>
<td>NI</td>
</tr>
<tr>
<td>21</td>
<td>0.2 ± 0.01</td>
<td>50 ± 5</td>
</tr>
<tr>
<td></td>
<td>(Ki = 67 nM)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6.5 ± 0.4</td>
<td>75 ± 6</td>
</tr>
<tr>
<td>23</td>
<td>72 ± 6</td>
<td>NI</td>
</tr>
<tr>
<td>24</td>
<td>1.4 ± 0.1</td>
<td>39 ± 2</td>
</tr>
<tr>
<td>26</td>
<td>15 ± 1</td>
<td>6.3 ± 0.5</td>
</tr>
<tr>
<td>27</td>
<td>1.3 ± 0.02</td>
<td>8 ± 1</td>
</tr>
</tbody>
</table>

*IC*₅₀ and Ki values were measured in triplicate. *b* From *Bacillus stearothermophilus*. *c* From almonds. *d* No inhibition (less than 50% inhibition at 400 µM). *e* Competitive inhibition.

Fig. 3 Lineweaver-Burk double reciprocal plots of compound 21.

Conclusions

In summary, general and flexible synthetic routes towards isoxazolyl and triazolyl polyhydroxylated pyrrolidines have been developed via protected pyrrolidines bearing an alkyne or oxime moiety at the C-2 position as key intermediates. A [3+2] cycloaddition reaction between alkynes and azides or
nitrile oxides conveniently generates structurally diverse adducts in excellent yields and regioselectivities. The nature of the heterocyclic ring and its substituents was found to have a profound effect on inhibition potency and glycosidase selectivity. This general and flexible chemistry should allow easy access to more structurally and stereogenically diverse polyhydroxylated pyrrolidine-heterocycle hybrid molecules, and therefore allow more comprehensive studies into their biological functions in the future.

Experimental

General Information

All solvents and reagents were obtained commercially and used without further purification. 1H NMR spectra were recorded on a Bruker AVANCE 600 spectrometer in deuterium solvents such as chloroform-d ($\delta = 7.24$), methanol-d_4 ($\delta = 3.31$), and deuterium oxide ($\delta = 4.81$) at ambient temperature. 13C NMR spectra were obtained with Bruker AVANCE 600 spectrometer and were assigned according to chloroform-d ($\delta = 77.0$ ppm of central line). Chemical shifts are given in ppm (δ) and coupling constants (J) are given in Hz. The splitting patterns are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and dd (double of doublets). High resolution mass spectra were obtained on a Bruker Daltonics BioTOF III spectrometer (ESI-MS). Analytical HPLC spectra were recorded at 220 nm on a HITACHI L-2450 equipped with photodiode array detector and a Mightysil column (ZORBOX XDB-C-18, 2.1×50 mm, 5 μm) gradiently eluted with 90% H$_2$O/10% CH$_3$OH to 10% H$_2$O/90% CH$_3$OH with flow rate = 0.2 mL/min. Flash column chromatography was carried out using Merck Kieselgel Si60 (40–63 μm). IR spectra were recorded with a Theremo Nicolet380. Optical rotations were measured with a Perkin-Elmer Model 341 polarimeter. Thin-layer chromatography (TLC) plates visualized by exposure to ultraviolet light at 254 nm and/or immersion in a staining solution (phosphomolybdic acid, ninhydrin or potassium permanganate) followed by heating on a hot plate. Ozonolysis was performed on an ozone generator (Fischer Technology OZ 502/10). Reactions were monitored by analytical thin-layer chromatography (TLC) in silica gel 60 F254 plates and visualized under UV (254 nm) and by staining with p-anisaldehyde or acidic ninhydrin or phosphomolybdic acid. Concentration refers to rotary evaporation.

Synthesis
(2R,3R,4R)-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyrrole 1-oxide (1).
The cyclic nitrone 1 was prepared as a white solid in an overall yield of 56% over five steps following the known method. 1H NMR (600 MHz, CDCl$_3$) δ 3.73 (dd, J = 2.9, 10.2 Hz, 1H), 4.02 (br, 1H), 4.05 (dd, J = 5.0, 10.2 Hz, 1H), 4.35 (t, J = 3.2 Hz, 1H), 4.50–4.53 (m, 5H), 4.60 (d, J = 12 Hz, 1H), 4.64 (br, 1H), 6.90 (s, 1H), 7.27–7.36 (m, 15H); 13C NMR (150 MHz, CDCl$_3$) δ 137.6, 137.2, 137.1, 132.8, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 82.7, 80.3, 77.5, 73.5, 71.9, 71.6, 66.0; HRMS: calculated for [C$_{26}$H$_{27}$NO$_4$]+H$^+$ 418.2044, found 418.2049.

(2R,3R,4R,5R)-3,4-bis(Benzyloxy)-5-((benzyloxy)methyl)-2-((trimethylsilyl)ethynyl)pyrrolidin-1-ol (7). Compound 1 (5.0 g, 12.0 mmol) was dissolved in anhydrous tetrahydrofuran (10 mL) and then ((trimethylsilyl)ethynyl)lithium (3 equiv) was added dropwise at –78 °C under argon. After stirring for 1.5 h, the reaction mixture was quenched with a saturated aqueous solution of ammonium chloride, extracted with ethyl acetate (15 mL × 3), dried over anhydrous magnesium sulfate, and concentrated. The crude product was purified by column chromatography (20% ethyl acetate in hexanes, silica gel) to give the title compound 7 (5.6 g, 89%) as a colorless oil. 1H NMR (600 MHz, CDCl$_3$) δ 0.18 (s, 9H), 3.35 (q, J = 4.3 Hz, 1H), 3.69 (qd, J = 4.4, 10.2 Hz, 2H), 3.94 (dd, J = 2.7, 6.4 Hz, 1H), 4.10 (t, J = 2.7 Hz, 1H), 4.23 (d, J = 2.7 Hz, 1H), 4.44–4.66 (m, 6H), 5.20 (br, 1H), 7.22–7.34 (m, 15H); 13C NMR (150 MHz, CDCl$_3$) δ 138.3, 138.2, 137.6, 128.6, 128.5, 128.4, 128.3, 128.0, 127.99, 127.92, 127.8, 127.7, 86.5, 82.9, 73.6, 72.2, 72.0, 69.5, 68.0, 62.8, 0.2; HRMS: calculated for [C$_{31}$H$_{37}$NO$_4$Si]+H$^+$ 516.7153, found 516.7141.

(2R,3R,4R,5R)-tert-Butyl-4-bis(benzyloxy)-5-((benzyloxy)methyl)-2-ethynylpyrrolidine-1-carboxylate (8). Zinc dust (2.75 g, 10 equiv) was suspended in acetic acid (10 mL). The mixture was stirred at room temperature for 15 min, after which the color of the solution turned to brown. A solution of compound 7 (2.18 g, 4.23 mmol) in dichloromethane (10 mL) was added. After stirring at room temperature for 24 h, acetic acid was removed under reduced pressure, and the solution was adjusted to pH = 7 with saturated sodium bicarbonate aqueous solution and filtered through a pad of Celite. The filtrate was washed with ethyl acetate, dried over anhydrous magnesium sulfate, and concentrated to give the crude product, which was treated with tetrabutylammonium fluoride (1M solution in tetrahydrofuran, 4.9 mL, 1.17 equiv). The mixture was stirred at room temperature for 2 h. The reaction mixture was concentrated and purified by column chromatography (33% ethyl acetate in hexanes, silica gel) to give the pyrrolidine (1.5 g, 92%) as a colorless oil. The pyrrolidine (1.50 g, 3.51 mmol) was reacted with di-tert-butyl dicarbonate (1.11 mL, 1.3 equiv) in dichloromethane (7 mL) in the presence of triethylamine (660 µL) at room temperature. After stirring for 2 h, water was added to the reaction mixture, followed by extraction with dichloromethane, dried over anhydrous magnesium sulfate, and concentrated. The crude mixture was purified by column chromatography (10% ethyl acetate in hexanes, silica gel) to give the title compound 8 (1.63 g, 88%).
as a colorless oil; 1H NMR (600 MHz, CDCl$_3$; rotamers were observed) δ 1.45 + 1.50 (s s, 9H), 2.36 + 2.42 (s s, 1H), 3.45 (t, $J = 9.6$ Hz, 1H), 3.75 + 3.92 (dd dd, $J = 3.6$, 8.4 Hz, $J = 3.6$, 8.4 Hz, 1H), 4.12–4.29 (m, 3H), 4.40–4.67 (m, 7H), 7.20–7.37 (m, 15H); 13C NMR (150 MHz, CDCl$_3$; rotamers were observed) δ 154.1 + 153.6, 138.6 + 138.3, 138.0 + 138.9, 137.2, 128.6, 128.5, 128.4, 128.1, 127.9, 127.8, 127.7, 127.6, 86.4 + 85.3, 82.9, 81.6 + 81.5, 80.8, 80.7, 80.6, 73.1, 72.3, 71.8, 71.7, 71.6, 71.2, 71.0, 68.7 + 68.3, 62.8 + 62.5, 54.6 + 54.0, 28.5; HRMS: calculated [C$_{33}$H$_{37}$NO$_5$+H]$^+$ 528.2672, found 528.2672.

(2R,3R,4R,5R)-tert-Butyl 3,4-bis(benzyloxy)-5-((benzyloxy)methyl)-2-(1-(2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)pyrrolidine-1-carboxylate (9). To a solution of compound 8 (60 mg, 0.11 mmol) and 2–azidoanisole (0.5 M solution in tert-butyl methyl ether, 0.29 mL, 1.09 equiv) in tert-butanol (2 mL) was added copper(II) sulfate pentahydrate (2.8 mg, 0.1 equiv), sodium ascorbate (2.2 mg, 0.1 equiv), and water (1 mL). The mixture was stirred at 40 °C for 12 h. The mixture was then diluted with water and extracted with ethyl acetate (10 mL × 3). The combined organic layers were dried over anhydrous magnesium sulfate, and concentrated. The crude mixture was purified by column chromatography (10% ethyl acetate in hexanes, silica gel) to give the title compound 9 (69 mg, 88%) as yellow oil. 1H NMR (600 MHz, CDCl$_3$; rotamers were observed) δ 1.23 + 1.40 (s s, 1H), 3.64 (m, 1H), 3.66 + 3.37 (s s, 1H), 3.98 (dd, $J = 4.2$, 8.8 Hz, 1H), 4.17 + 4.18 (s s, 1H), 4.24 + 4.26 (s s, 1H), 4.35–4.63 (m, 6 H), 4.65 + 4.75 (d d, $J = 5.1$ Hz, $J = 11.7$ Hz, 1H), 5.27 + 5.34 (s s, 1H), 6.89–7.15 (m, 7H), 7.24–7.39 (m, 13 H), 7.58 + 7.22 (dd br, $J = 1.3$, 7.9 Hz, 1H), 7.82 + 7.86 (s s, 1H); 13C NMR (150 MHz, CDCl$_3$; rotamers were observed) δ 154.3, 151.5, 148.6, 138.8, 137.8, 137.7, 130.2, 129.9, 128.7, 128.64, 128.60, 128.5, 128.4, 128.0, 127.9, 127.8, 127.76, 127.73, 126.6, 125.9, 125.6, 124.2, 121.3 + 121.2, 112.4 + 112.2, 87.0 + 86.6, 84.9 + 83.6, 82.6 + 80.3, 73.3, 71.9+71.8, 71.1, 68.9 + 68.3, 63.9 + 63.5, 61.3 + 60.6, 56.0 + 55.8, 28.6 + 28.3; HRMS: calculated for [C$_{40}$H$_{44}$N$_4$O$_6$+H]$^+$ 676.3261, found 676.3251.

(2R,3R,4R,5R)-5-(Hydroxymethyl)-2-(1-(2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)pyrrolidine-3,4-diol (10). A mixture of compound 9 (68 mg, 0.1 mmol), concentrated hydrochloric acid (5 drops), and Pd(OH)$_2$ (5 mg, 0.01 equiv) in methanol (4 mL) was stirred at room temperature under hydrogen. After 12 h, the reaction mixture was filtered through a pad of Celite and concentrated. The crude product was purified by column chromatography (10% methanol in dichloromethane, silica gel) to give the title compound 10 (28 mg, 90%) as a white solid. $[\alpha]_D^{20}$ +10.16 (c 0.16 in MeOH); IR (neat): 3313 (br), 2934 (m), 1658 (m), 1475 (m) cm$^{-1}$; 1H NMR (600 MHz, CD$_3$OD) δ 3.27 (dd, $J = 6.1$,10.4 Hz, 1H), 3.70 (dd, $J = 3.7$, 11.3 Hz, 1H), 3.76 (dd, $J = 4.0$, 11.3 Hz, 1H), 3.90 (s, 3H), 3.97 (t, $J = 6.5$ Hz, 1H), 4.27 (t, $J = 6.1$ Hz, 1H), 4.30 (d, $J = 7.3$ Hz, 1H); 13C NMR (150 MHz, CD$_3$OD) δ 153.4, 148.5, 132.1, 127.5, 126.8, 126.2, 122.2, 113.9, 83.5, 79.4, 65.2, 63.2, 59.3, 56.7; HRMS: calculated for [C$_{14}$H$_{18}$N$_4$O$_4$+H]$^+$ 307.1401 found 307.1402.
(2R,3R,4R,5S)-5-(Hydroxymethyl)-2-(3-(p-tolyl)isoxazol-5-yl)pyrrolidine-3,4-diol (13). A mixture of compound 8 (60 mg, 0.12 mmol), N-hydroxy-4-methylbenzimidoyl chloride 11 (1M solution in dichloromethane, 150 µL, 3 equiv) and triethylamine (20 µL, 1.17 equiv) in dichloromethane (3 mL) was stirred at room temperature for 12 h. The mixture was evaporated and then water was added. The aqueous layer was extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous magnesium sulfate, and concentrated. The crude mixture was dissolved in dry dichloromethane under argon atmosphere at −78 °C. Boron trichloride (1M solution in hexanes, 1.8 mL, 15 equiv) was added dropwise at the same temperature. The reaction mixture was allowed to warm up to 0 °C and stirred for 4 h. The reaction mixture was quenched with methanol, and concentrated. The crude mixture was purified by column chromatography (10% methanol in dichloromethane, silica gel) to give the title compound 13. \([\alpha]_D^{20} +11.90 (c 0.13 \text{ in MeOH})\); IR (neat): 3313 (br), 2955 (m), 2924 (s), 1612 (m), 1403 (s) cm⁻¹; ′H NMR (600 MHz, CD₃OD) δ 2.39 (s, 3 H), 3.16–3.18 (m, 1H), 3.66 (dd, J = 5.2, 11.2 Hz, 1H), 3.70 (dd, J = 4.5, 11.2 Hz, 1H), 4.01 (t, J = 5.0 Hz, 1H), 4.16 (t, J = 5.8 Hz, 1H), 4.34 (d, J = 6.5 Hz, 1H), 6.82 (s, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H); ′C (150 MHz, CD₃OD) δ 174.7, 163.9, 141.8, 130.8, 127.9, 127.5, 101.1, 77.3, 73.7, 66.6, 63.7, 60.6, 21.5; HRMS: calculated for [C₁₅H₁₈N₂O₄⁺H]⁺ 291.1267, found 291.1262.

(2R,3R,4R,5R)-tert-Butyl 3,4-bis(benzyloxy)-5-((benzyloxy)methyl)-2-((hydroxyimino)methyl)pyrrolidine-1-carboxylate (16). Compound 1 (2 g, 5 mmol) was dissolved in tetrahydrofuran (20 mL) and then vinyl magnesium bromide (1M solution in tetrahydrofuran, 14 mL, 3 equiv) was added dropwise at 0 °C under argon atmosphere. After 14 h, the reaction mixture was quenched with saturated ammonium chloride aqueous solution, extracted with dichloromethane (20 mL × 3), dried over anhydrous magnesium sulfate, and concentrated. The crude mixture was purified by column chromatography (25% ethyl acetate in hexanes, silica gel) to give the hydroxylamine (1.91 g, 90%) as a brown solid. A mixture of the hydroxylamine (170 mg, 0.38 mmol) and zinc dust (248 mg, 10 equiv) in acetic acid (3 mL) was stirred at room temperature overnight. The reaction mixture was filtered through a pad of Celite and the filtrate was neutralized with saturated sodium bicarbonate aqueous solution, and extracted with dichloromethane (5 mL × 3). The combined organic layers were dried over anhydrous magnesium sulfate, concentrated, and then reacted directly with di-tert-butyl dicarbonate (437 µL, 5 equiv) and triethylamine (265 µL, 5 equiv) in dichloromethane (4 mL) at room temperature. After stirring for 2 h, water (20 mL) was added to the reaction mixture, which was then extracted with dichloromethane, dried over anhydrous magnesium sulfate, and concentrated to give a crude tert-butoxycarbonyl-protected product. After the ozonolysis of the crude tert-butoxycarbonyl-protected product in methanol (20 mL) at −78 °C for 10 min, the crude aldehyde
was reacted with hydroxylamine hydrochloride (132 mg, 5 equiv) and sodium methoxide (5.4 M solution in methanol, 352 µL, 5 equiv) for 2 h. The solvent was evaporated and after addition of water, the aqueous layer was extracted with ethyl acetate (5 mL × 3). The combined organic layers were dried over anhydrous magnesium sulfate, concentrated, and purified by column chromatography (25% ethyl acetate in hexanes, silica gel) to give compound 16 (112 mg, 54% over four steps) as a white solid.

1H NMR (600 MHz, CDCl3; rotamers were observed) δ 1.47 (s, 13H), 3.61 + 3.69 (m, 1H), 3.67 (m, 1H), 4.02 (m, 1H), 4.03–4.37 (m, 3H), 4.44 (m, 1H), 4.47–4.80 (m, 9H), 5.12 + 5.24 (d d, J = 4.8, 5.2 Hz), 6.75 + 6.76 (s s, 1H), 7.31–7.51 (m, 23H), 8.99 + 9.10 (s s, 1H), 9.45 + 9.49 (s s, 1H); 13C NMR (150 MHz, CDCl3; rotamers were observed) δ 154.2, 153.2, 154.0, 153.9, 153.8, 153.7, 152.4, 152.3, 150.8, 150.7, 138.6, 138.5, 138.3, 138.2, 137.9, 137.8, 137.6, 137.5, 137.3, 137.2, 128.6, 128.5, 128.47, 128.44, 128.41, 128.3, 128.0, 127.9, 127.8, 127.7, 127.68, 127.65, 127.59, 127.56, 127.4, 85.9, 84.7, 84.6, 83.3, 82.4, 82.2, 81.1, 80.7, 80.67, 80.63, 73.1, 71.64, 71.62, 71.60, 71.2, 71.1, 71.0, 70.9, 68.5, 67.9, 63.3, 63.1, 63.0, 62.7, 62.6, 59.2, 59.1, 28.5, 28.4; HRMS: calculated for [C32H38N2O6]+H 547.2730, found 547.2731.

(2R,3R,4R,5R)-2-(5-(4-Bromophenyl)isoxazol-3-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol (18). A mixture of the oxime 16 (700 mg, 1.3 mmol) and 4–bromo–1–ethynylbenzene (1 g, 4.2 equiv) in dichloromethane (6 mL) was stirred at 0 °C, and then a mixture of bleach (18 mL, 12 equiv) and water (26 mL) was added dropwise. The reaction mixture was warmed up to room temperature. After 12 h, the reaction mixture was quenched with saturated ammonium chloride aqueous solution, extracted with dichloromethane, dried over anhydrous magnesium sulfate, and concentrated. The crude product without purification was directly used in the next step. The crude material was dissolved in dichloromethane (80 mL) at −78 °C and then boron trichloride (20 mL, 15 equiv) was added dropwise under argon atmosphere. After stirring for 4 h, the mixture was quenched with methanol. Solvents were removed under reduced pressure and the residue was purified by column chromatography (10 % methanol in dichloromethane) to give the title compound 18 (218 mg, 47%) as a white solid. [α]D20 +17.05 (c 0.13 in MeOH); IR (neat): 3305 (br), 3124 (m), 2919 (m), 1610 (s), 1465 (s) cm−1; 1H NMR (600 MHz, CD3OD) δ 3.18–3.20 (m, 1H), 3.67 (dd, J = 5.8, 11.2 Hz, 1H), 3.74 (dd, J = 3.9, 11.2 Hz, 1H), 3.93 (t, J = 6.7 Hz, 1H), 4.13 (t, J = 6.7 Hz, 1H), 4.18 (d, J = 7.3 Hz, 1H), 4.6 (s, 1H), 6.90 (s, 1H), 7.67 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H); 13C NMR (150 MHz, CD3OD) δ 170.5, 167.4, 133.6, 128.6, 127.9, 125.6, 100.0, 83.6, 79.4, 65.2, 63.4, 59.8; HRMS: calculated for [C14H15BrN2O4]+H+ 356.1839, found 356.1829.

(2R,3R,4R,5R)-5-(Hydroxymethyl)-2-(5-phenylisoxazol-3-yl)pyrrolidine-3,4-diol (19). The title compound 19 was synthesized by the procedure as described for the preparation of compound 16 in 49% yield over three steps. [α]D20 +11.43 (c 0.12 in MeOH); IR (neat): 3310 (br), 2919 (m), 1610 (s), 1465 (s) cm−1; 1H NMR (600 MHz, CD3OD) δ 3.21 (br, 1H), 3.67 (dd, J = 5.8, 11.2 Hz, 1H),
3.74 (dd, \(J = 3.2, 11.2 \) Hz, 1H), 3.94 (t, \(J = 6.4 \) Hz, 1H), 4.15 (t, \(J = 6.4 \) Hz, 1H), 4.18 (d, \(J = 6.9 \) Hz, 1H), 6.86 (s, 1H), 7.46–7.51 (m, 3H), 7.82 (d, \(J = 7.6 \) Hz, 1H); \(^{13}\)C NMR (150 MHz, CD\(_3\)OD) \(\delta \) 171.7, 167.1, 131.6, 130.4, 128.9, 126.9, 99.4, 83.6, 79.5, 65.2, 63.4, 59.8; HRMS: calculated [C\(_{14}\)H\(_{16}\)N\(_2\)O\(_4\)+H\(^+\)]+ 276.1110, found 276.1111.

\((2R,3R,4R,5R)-2-(5-(4-Chlorophenyl)isoxazol-3-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol\) (20). The title compound 20 was synthesized by the procedure as described for the preparation of compound 16 in 53% yield over three steps. \([\alpha]_D^{20} +9.76 \text{ (c } 0.04 \text{ in MeOH)}; \text{ IR (neat)}: 3307 \text{ (br), } 2924 \text{ (m), } 1613 \text{ (m), } 1466 \text{ (m) cm}^{-1}; \text{ } ^1\text{H NMR (600 MHz, CD}_3\text{OD)} \delta 3.18–3.20 \text{ (m, 1H), } 3.67 \text{ (dd, } J = 5.8, 11.2 \text{ Hz, 1H), } 3.73 \text{ (dd, } J = 3.9, 11.2 \text{ Hz, 1H), } 3.93 \text{ (t, } J = 6.5 \text{ Hz, 1H), } 4.13 \text{ (t, } J = 6.4 \text{ Hz, 1H), } 4.17 \text{ (d, } J = 7.3 \text{ Hz, 1H), } 7.51–7.53 \text{ (m, 2H), } 7.81–8.33 \text{ (m, 2H); } ^{13}\text{C NMR (150 MHz, CD}_3\text{OD)} \delta 170.4, 167.4, 137.5, 130.6, 128.5, 127.6, 99.9, 83.6, 79.4, 65.2, 63.4, 59.8; \text{ HRMS: calculated for [C}_{14}\text{H}_{15}\text{ClN}_2\text{O}_4\text{+H}^+]}+ 311.0720, found 311.0711.

\((2R,3R,4R,5R)-2-(5-(2-Bromophenyl)isoxazol-3-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol\) (21). The title compound 21 was synthesized by the procedure as described for the preparation of compound 16 in 50% yield over three steps. \([\alpha]_D^{20} –7.10 \text{ (c } 0.18 \text{ in MeOH)}; \text{ IR (neat)}: 3317 \text{ (br), } 2925 \text{ (m), } 1601 \text{ (s), } 1435 \text{ (s) cm}^{-1}; \text{ } ^1\text{H NMR (600 MHz, CD}_3\text{OD)} \delta 3.18–3.21 \text{ (m, 1H), } 3.67 \text{ (dd, } J = 5.8, 11.3 \text{ Hz, 1H), } 3.73 \text{ (dd, } J = 3.9, 11.2 \text{ Hz, 1H), } 3.94 \text{ (t, } J = 6.5 \text{ Hz, 1H), } 4.15 \text{ (t, } J = 7.1 \text{ Hz, 1H), } 4.22 \text{ (d, } J = 7.1 \text{ Hz, 1H), } 7.12 \text{ (s, 1H), } 7.38 \text{ (td, } J = 1.7, 8.1 \text{ Hz, 1H), } 7.50 \text{ (td, } J = 1.0, 7.7 \text{ Hz, 1H), } 7.77 \text{ (dd, } J = 1.0, 8.1 \text{ Hz, 1H), } 7.81 \text{ (dd, } J = 1.7, 7.7 \text{ Hz, 1H); } ^{13}\text{C NMR (150 MHz, CD}_3\text{OD)} \delta 169.5, 166.8, 135.6, 132.8, 131.4, 129.8, 129.2, 122.2, 104.1, 83.6, 79.5, 65.2, 63.4, 59.9; \text{ HRMS: calculated for [C}_{14}\text{H}_{15}\text{BrN}_2\text{O}_4\text{+H}^+]}+ 355.0215, found 355.0210.

\((2R,3R,4R,5R)-2-(1-(2-Bromophenyl)-1H-1,2,3-triazol-4-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol\) (22). The title compound 22 was synthesized by the procedure as described for the preparation of compound 8 in 64% yield over three steps. \([\alpha]_D^{20} +12.72 \text{ (c } 0.12 \text{ in MeOH)}; \text{ IR (neat)}: 3318 \text{ (br), } 2949 \text{ (m), } 1493 \text{ (s) cm}^{-1}; \text{ } ^1\text{H NMR (600 MHz, D}_2\text{O)} \delta 3.26–3.28 \text{ (m, 1H), } 3.72 \text{ (dd, } J = 6.2, 11.8 \text{ Hz, 1H), } 3.78 \text{ (dd, } J = 4.3, 11.8 \text{ Hz, 1H), } 3.99–4.01 \text{ (m, 3H), } 4.25 \text{ (d, } J = 8.3 \text{ Hz, 1H), } 4.30 \text{ (t, } J = 8.3 \text{ Hz, 1H), } 4.55–4.56 \text{ (m, 2H), } 8.0 \text{ (s, 1H); } ^{13}\text{C NMR (150 MHz, D}_2\text{O)} \delta 146.1,
124.2, 80.8, 76.9, 61.8, 61.6, 60.1, 55.9, 52.5; HRMS: calculated [C₉H₁₆N₄O₄Na]⁺ 267.1069, found 267.1061.

(2S,3R,4R,5R)-2-(3-(4-Chlorophenyl)isoxazol-5-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol (24). The title compound 24 was synthesized by the procedure as described for the preparation of compound 8 in 54% yield over three steps. [α]D²⁰ +8.03 (c 0.11 in MeOH); IR (neat): 3311 (br), 2925 (m), 1633 (s), 1463 (s) cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 3.16–3.18 (m, 1H), 3.66 (dd, J = 5.4, 11.2 Hz, 1H), 3.73 (dd, J = 3.8, 11.2 Hz, 1H), 3.91 (t, J = 6.7 Hz, 1H), 4.21 (t, J = 6.4 Hz, 1H), 4.26 (d, J = 6.8 Hz, 1H), 6.81 (s, 1H), 7.48 (d, J = 8.6 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H); ¹³C NMR (150 MHz, CD₃OD) δ 175.7, 163.0, 137.3, 130.4, 129.5, 129.2, 100.9, 83.1, 79.3, 65.2, 63.0, 60.2, 50.0; HRMS: calculated [C₁₄H₁₆ClN₄O₄Na]⁺ 311.0720, found 311.0721.

(2R,3R,4R,5S)-5-(Hydroxymethyl)-2-(3-undecylisoxazol-5-yl)pyrrolidine-3,4-diol (25). The title compound 25 was synthesized by the procedure as described for the preparation of compound 8 in 47% yield over three steps. [α]D²⁰ +15.23 (c 0.14 in MeOH); IR (neat): 3329 (br), 2929 (m), 1622 (s), 1459 (s) cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 0.90 (t, J = 6.8 Hz, 3H), 1.29–1.34 (br, 18H), 1.65–1.68 (m, 2H), 2.65 (t, J = 7.4 Hz, 1H), 3.30–3.32 (m, 1H), 3.65 (dd, J = 5.5, 11.4 Hz, 1H), 3.71 (dd, J = 3.8, 11.4 Hz, 1H), 3.89 (t, J = 6.6 Hz, 1H), 4.15 (t, J = 6.5 Hz, 1H), 4.18 (d, J = 7.1 Hz, 1H), 6.32 (s, 1H); ¹³C NMR (150 MHz, CD₃OD) δ 174.1, 165.8, 102.7, 82.8, 79.0, 64.9, 62.8, 59.7, 33.3, 30.9, 30.8, 30.7, 30.6, 29.5, 23.9, 14.7; HRMS: calculated [C₁₉H₃₄N₂O₄H]⁺ 355.2597, found 355.2584.

Assay for glycosidase inhibitory activity

The inhibitory activity of α-glucosidase from *Bacillus stearothermophilus* (Sigma, G3651) and β-glucosidase from almonds (Sigma, G0395) were determined by measuring the absorbance of 4-nitrophenol at 405 nm. For enzymatic reaction of α-glucosidase was consisted of 10 µL of enzyme (1U/mL), 20 µL of synthesized hybrid molecules, 50 µL of 100 mM sodium phosphate buffer (pH 6.8) and 20 µL of 15 mM 4-nitrophenyl-α-D-glucopyranoside, and β-glucosidase was consisted of 10 µL of enzyme (1U/mL), 20 µL of AHHMs, 45 µL of 100 mM sodium citrate buffer (pH 5.2) and 25 µL of 4 mM 4-nitrophenyl-β-D-glucopyranoside. After incubating at 37 °C for 30 minutes, 100 µL of 0.5M glycine buffer (pH 10.2) was added into reaction mixture to stop the reaction. The concentration of inhibitors required for inhibiting 50% of glycosidase activity under the assay
condition was defined as the IC$_{50}$ value. The IC$_{50}$ value was measured graphically by a plot of percent of inhibition versus log of test compound. Km value was determined through Michaelis–Menten kinetics.

Acknowledgement

We thank the Ministry of Science and Technology and Academia Sinica for financial support.

Notes and references

therein.

1993, 47, 1004–1011.

