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Abstract: A straightforward synthesis of novel, 2-heterocyclyl polyhydroxylated pyrrolidines is 

described. Stereocontrolled additions of nucleophiles to cyclic nitrones generated the corresponding 

2,3-trans adducts, allowing the synthesis of the corresponding pyrrolidines via key intermediates 

bearing an alkyne and a nitrile oxide. Three hybrid systems, including a pyrrolidine with two 

isoxazoles and one triazole are efficiently prepared via 1,3-dipolar cycloaddition. Biological testing 

of the product alkaloids showed subtle structural variations to have drastic effects on their inhibitory 

activities against glucosidases. 

 

 

Introduction 

 

A new class of polyhydroxylated pyrrolidines, in which an aryl moiety is directly attached at the C-2 

position of the pyrrolidine ring with a specific 2,3-trans configuration, was recently discovered.
1
 

The variety of biological activities exhibited by molecules containing the 2-aryl pyrrolidine skeleton 

suggests this motif to be a privileged scaffold of potential use in combinatorial chemistry for drug 

discovery.
2
 Members of this class including (–)-codonopsinol, radicamine A, and radicamine B have 

been isolated from plants known for their utility as diuretics, antidotes, hemostats and carcinostatic 

agents, and for the treatment of liver diseases.
3
 They have also been found to inhibit various 

glycosidases, especially α-glucosidases, and some synthetic 2-aryl pyrrolidines were found to exhibit 

better inhibitory potency than natural alkaloids against glycosidases. This interesting biological 
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activity has motivated the development of various methods for their synthesis.
4
 

 

Fig. 1  Examples of bioactive 2-aryl polyhydroxylated pyrrolidines, and the identification of cyclic 

nitrone 1 as a key intermediate for their synthesis. 

In a previous study,
4a

 we reported an efficient preparation of 2-aryl polyhydroxylated 

pyrrolidine alkaloids, in which excellent diastereoselectivity is achieved using a stereocontrolled 

addition of Grignard reagents to cyclic nitrones, and the five-membered chiral cyclic nitrone 1 and its 

enantiomer are key intermediates (Fig. 1). Inspired by many biomolecules containing a 

five-membered heterocycle such as a triazole or isoxazole,
5,6

 we are curious whether we can develop 

a new chemical method to combine two scaffolds, a polyhydroxylated pyrrolidine and a heterocycle, 

to form a hybrid molecule and also increase the molecular diversity.  

Based on our literature search, a nucleophilic addition of organometallic reagents to cyclic 

nitrons has been reported,
7
 but the direct use of heterocyclic lithium reagents

7e
 is not practical for 

our further diversity. In contrast, isoxazoles and 1,2,3-triazoles can be accessed via a 1,3-dipolar 

cycloaddition of alkynes with nitrile oxides and azides, respectively, and the high yield and 

regioselectivity of this ring formation step make it a good choice for the efficient conjugation of two 

diverse fragments or even two molecules.
8
 Therefore, we decided to install desired functional groups 

such as an alkyne and a nitrile oxide on a pyrrolidine skeleton first and then undergo a heterocyclic 

ring formation with concomitant increase in molecular diversity.  

To the best of our knowledge, however, the synthesis of hybrid molecules containing both a 

polyhydroxylated pyrrolidine and a functionalized triazole or isoxazole remains incompletely 

explored. Herein, we report a new approach for the installation of an alkynyl and oxime group at the 

C-2 position of the pyrrolidine ring from a chiral cyclic nitrone (Scheme 1). These alkynes and 

oximes are then elaborated to give functionalized or substituted isoxazole or triazole via 1,3-dipolar 

cycloadditon. Novel polyhydroxylated pyrrolidine heterocycle hybrid molecules were prepared using 

this method, and their inhibitory activities against glycosidases were studied. 
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Scheme 1  General approaches towards the synthesis of polyhydroxylated pyrrolidine heterocycle 

hybrid molecules. 

 

Results and Discussion 

As illustrated in Scheme 2, the synthesis of the desired alkyne 6 commenced with the 

elaboration of enantiopure tri-O-benzyl cyclic nitrone 1, readily available from D-arabinose.
9
 

Nucleophilic addition of ethynyl lithium to cyclic nitrone 1 gave only a single 2,3-trans adduct 2 in 

good yield (90%), which underwent a copper catalyzed ‘click’ reaction with azidobenzene. 

Unexpectedly, a mixture of the triazolyl cyclic nitrones 3 and 4 was obtained, presumably, by 

copper-mediated oxidation.
10

 Cleavage of the N-O bond of 2 using Zn/AcOH conditions gave vinyl 

pyrrolidine 5 instead of the desired alkynyl pyrrolidine 6 (Scheme 2).
11

 

 

 

Scheme 2  Attempts for the preparation of the alkyne and triazoles. Reagents and conditions: (a) 

HC≡C–Li, THF, 0 °C, 3 h, 90%, (b) PhN3, CuSO4, Na ascorbate, t-BuOH, H2O, rt, 14 h, 50%, (c) Zn, 

HOAc, rt, 3 h. 

 

These problems required our synthetic strategy to be re-designed (Scheme 3). Fortunately, the 

TMS-masked acetylene moiety in 7 was found to withstand the Zn/AcOH reductive conditions
12

 and 

the key alkyne 8 was successfully obtained in 81% yield from 7 over three steps. With this 

1,3-dipolarophile 8 in hand, the copper(I)-catalyzed 1,2,3-triazole ring formation between 
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2-azidoanisole and 8 was performed as a model reaction to generate the single adduct 9 in good yield 

(88%) with excellent regioselectivity.
13

 Catalytic hydrogenation [Pd(OH)2/H2] of 9 under acidic 

conditions delivered C-2-triazolyl polyhydroxylated pyrrolidine 10 in good yield (90%). The 
1
H 

NMR spectrum of 10 showed a characteristic peak at 8.3 ppm, corresponding to the methine proton 

on the triazole ring. 

Attempts to react 8 with 4-methylbenzaldehyde oxime and bleach
14

 under biphasic conditions 

were unsatisfactory due to poor yield (<30%). In contrast, treatment of 8 with 

N-hydroxy-4-methylbenzimidoyl chloride (11), prepared by the treatment of 4-methylbenzaldehyde 

oxime with N-chlorosuccinimide (NCS) under basic homogeneous conditions,
15

 afforded 12 in good 

yield (70%) as a single adduct, with excellent regioselectivity. After global deprotection of 12 by 

treatment with BCl3 in CH2Cl2 at –78 °C,
16

 the C-2-isoxazolyl polyhydroxylated pyrrolidine 13 was 

obtained in 73% yield. Notably, catalytic hydrogenation [Pd(OH)2/H2] of 12 did not give 13, 

presumably because the isoxazole ring of 12 was labile under these conditions.
17

 In the 
1
H NMR 

spectrum of 13, the characteristic peak corresponding to the methine proton on the isoxazole ring 

was observed at 6.82 ppm. 

 

 

Scheme 3  Synthesis of 2-triazolyl- and 2-isoxazolyl polyhydroxylated pyrrolidines 10 and 13 from 

alkyne 8. Reagents and conditions: (a) TMSC≡C–Li, THF, –78 °C, 1.5 h, 89%, (b) i. Zn, HOAc, 

DCM, rt, 24 h, ii. TBAF, THF, rt, 2 h, iii. Boc2O, Et3N, DCM, rt, 2 h, 81% over three steps from 7, (c) 

2-azidoanisole, CuSO4, Na ascorbate, t-BuOH, H2O, rt, 14 h, 88%, (d) H2, Pd(OH)2/C, MeOH, HCl, 

rt, 12 h, 90%, (e) N-hydroxy-4-methylbenzimidoyl chloride 11, Et3N, DCM, rt, 12 h, 70%, (f) BCl3, 

DCM, –78 °C, 4 h, 73%. 

 

Next, our attention turned to the development of a new route towards the preparation of 

another type of a C-2-isoxazolyl polyhydroxylated pyrrolidine (Scheme 4). N-Protected aldehyde 15 
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(2,3-trans configuration)
18

 was obtained from cyclic nitrone 1 in an overall yield of 54% over four 

steps via the selective addition of vinylmagnesium bromide, reduction of the N-O bond, N-Boc 

protection, and ozonolysis. Compound 15 was reacted with hydroxylamine hydrochloride in the 

presence of sodium methoxide to give oxime 16 (90%), which was treated with bleach and 

1-bromo-4-ethynylbenzene to afford isoxazole 17 (72%) via in situ generation of the corresponding 

nitrile oxide and 1,3-dipolar cycloaddition at low temperature. To avoid dehalogenation during 

palladium-catalyzed hydrogenation, deprotection of 17 was performed using BCl3 to give pyrrolidine 

18. In the 
1
H NMR spectrum of 18, the characteristic peak for the methine proton on the isoxazole 

ring was observed at 6.9 ppm, which is much more similar to the chemical shift of the methine 

proton in 13 than 10. 

 

 

Scheme 4  Synthesis of the regioisomeric 2-isoxazolyl polyhydroxylated pyrrolidine 18 from oxime 

16. Reagents and conditions: (a) i. VinylMgBr, THF, 0 °C, 2 h, ii. Zn, HOAc, rt, 14 h, iii. Boc2O, 

Et3N, DCM, rt, 2 h; 4. O3, MeOH, –78 °C, 10 min, 54% over four steps, (b) NaOMe, NH2OH-HCl, 

MeOH, rt, 2 h, 90%, (c) NaOCl, Et3N, DCM, H2O, 1-bromo-4-ethynylbenzene, 0 °C, 12 h, 72%, (d) 

BCl3, DCM, –78 °C, 4 h, 65%. 

 

Several different polyhydroxylated pyrrolidine-heterocycle hybrid molecules were synthesized 

using these conditions (Fig. 2), and their inhibitory activity against glucosidases studied (Table 1). 
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Fig. 2  Examples of synthesized hybrid molecules. The specified yield refers to the overall yield 

from the corresponding alkyne 8 or oxime 16. 

 

Biological evaluation 

 

Inhibitory potency and selectivity was found to depend on the type of heterocyclic ring and its 

substituents. For example, compounds 10, 18, 20 and 21 showed significant inhibitory selectivity 

between α-glucosidase and β-glucosidase. Also, 21 and 22, which are similar in overall structure but 

have different heterocyclic rings, had very different biological activities: against α-glucosidase 

(Bacillus), the former, with an isoxazole ring, was approximately 30-fold more potent (IC50 = 0.2 µM) 

than the latter, with a triazole ring (IC50 = 6.5 µM). However, two types of regioisomeric isoxazoles, 

20 and 24 showed similar inhibitory potency of α-glucosidase; their IC50 values were 1.1 and 1.4 µM, 

respectively. Compound 21 was the most potent inhibitor with a Ki value of 67 nM against 

α-glucosidase (Bacillus) (Fig. 3). For comparison purpose, 26 (vs. 20 or 24) and 27 (vs. 21) were 

prepared with an alkyl chain instead of a heterocyclic ring between the pyrrolidine and substituent 

moieties. Obviously, 20 and 24 showed much better activity (>10 fold) than 26 against α-glucosidase. 

And, the inhibition activity of 21 gave approximately 6.5-fold higher than that of 27 against 

α-glucosidase. Notably, though 26 and 27 had moderate inhibition activity against α- and 

β-glucosidases, they dramatically lost their selectivity to distinguish α- and β-glucosidases, possibly 

due to their flexible alkyl spacer. In contrast, our molecules containing a heterocyclic ring exhibited 

not only inhibition potency but also selectivity between α- and β-glucosidases.  

 

Table 1  Inhibitory activities of synthesized alkaloids against glucosidases
a
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Compound 
IC50 (µM) 

α-glucosidase
b
 β-glucosidase

c
 

10 1.4 ± 0.1 NI
d
 

13 5.8 ± 0.6 59 ± 7 

18 1.6 ± 0.2 NI 

20 1.1 ± 0.2 NI 

21 
0.2 ± 0.01 

(Ki = 67 nM)
e
 

50 ± 5 

22 6.5 ± 0.4 75 ± 6 

23 72 ± 6 NI 

24 1.4 ± 0.1 39 ± 2 

26 15 ± 1 6.3 ± 0.5 

27 1.3 ± 0.02 8 ± 1 

a
IC50 and Ki values were measured in triplicate. 

b
From 

Bacillus stearothermophilus. 
c
From almonds. 

d
No inhibition 

(less than 50% inhibition at 400 µM). 
e
Competitive 

inhibition. 

 

 

Fig. 3  Lineweaver-Burk double reciprocal plots of compound 21. 

 

 

Conclusions 

 

In summary, general and flexible synthetic routes towards isoxazolyl and triazolyl polyhydroxylated 

pyrrolidines have been developed via protected pyrrolidines bearing an alkyne or oxime moiety at 

the C-2 position as key intermediates. A [3+2] cycloaddition reaction between alkynes and azides or 
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nitrile oxides conveniently generates structurally diverse adducts in excellent yields and 

regioselectivities. The nature of the heterocyclic ring and its substituents was found to have a 

profound effect on inhibition potency and glycosidase selectivity. This general and flexible chemistry 

should allow easy access to more structurally and stereogenically diverse polyhydroxylated 

pyrrolidine-heterocycle hybrid molecules, and therefore allow more comprehensive studies into their 

biological functions in the future. 

 

 

Experimental 

 

General Information 

 

All solvents and reagents were obtained commercially and used without further purification. 
1
H 

NMR spectra were recorded on a Bruker AVANCE 600 spectrometer in deuterium solvents such as 

chloroform-d (δ = 7.24), methanol-d4 (δ = 3.31), and deuterium oxide (δ = 4.81) at ambient 

temperature. 
13

C NMR spectra were obtained with Bruker AVANCE 600 spectrometer and were 

assigned according to chloroform-d (δ = 77.0 ppm of central line). Chemical shifts are given in ppm 

(δ) and coupling constants (J) are given in Hz. The splitting patterns are reported as s (singlet), d 

(doublet), t (triplet), q (quartet), m (multiplet), and dd (double of doublets). High resolution mass 

spectra were obtained on a Bruker Daltonics BioTOF III spectrometer (ESI-MS). Analytical HPLC 

spectra were recorded at 220 nm on a HITACHI L-2450 equipped with photodiode array detector and 

a Mightysil column (ZORBOX XDB-C-18, 2.1 × 50 mm, 5 µm) gradiently eluted with 90% 

H2O/10% CH3OH to 10% H2O/90% CH3OH with flow rate = 0.2 mL/min. Flash column 

chromatography was carried out using Merck Kieselgel Si60 (40–63 µm). IR spectra were recorded 

with a Theremo Nicolet380. Optical rotations were measured with a Perkin-Elmer Model 341 

polarimeter. Thin-layer chromatography (TLC) plates visualized by exposure to ultraviolet light at 

254 nm and/or immersion in a staining solution (phosphomolybdic acid, ninhydrin or potassium 

permanganate) followed by heating on a hot plate. Ozonolysis was performed on an ozone generator 

(Fischer Technology OZ 502/10). Reactions were monitored by analytical thin-layer chromatography 

(TLC) in silica gel 60 F254 plates and visualized under UV (254 nm) and by staining with 

p-anisaldehyde or acidic ninhydrin or phosphomolybdic acid. Concentration refers to rotary 

evaporation. 

 

Synthesis 
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(2R,3R,4R)-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyrrole 1-oxide (1). 

The cyclic nitrone 1 was prepared as a white solid in an overall yield of 56% over five steps 

following the known method. 
1
H NMR (600 MHz, CDCl3) δ 3.73 (dd, J = 2.9, 10.2 Hz, 1H), 4.02 (br, 

1H), 4.05 (dd, J = 5.0, 10.2 Hz, 1H), 4.35 (t, J = 3.2 Hz, 1H), 4.50–4.53 (m, 5H), 4.60 (d, J = 12 Hz, 

1H), 4.64 (br, 1H), 6.90 (s, 1H), 7.27–7.36 (m, 15H); 
13

C NMR (150 MHz, CDCl3) δ 137.6, 137.2, 

137.1, 132.8, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 82.7, 80.3, 77.5, 73.5, 71.9, 71.6, 

66.0; HRMS: calculated for [C26H27NO4+H]
+
 418.2044, found 418.2049. 

(2R,3R,4R,5R)-3,4-bis(Benzyloxy)-5-((benzyloxy)methyl)-2-((trimethylsilyl)ethynyl) 

pyrrolidin-1-ol (7). Compound 1 (5.0 g, 12.0 mmol) was dissolved in anhydrous tetrahydrofuran (10 

mL) and then ((trimethylsilyl)ethynyl)lithium (3 equiv) was added dropwise at –78
 
°C under argon. 

After stirring for 1.5 h, the reaction mixture was quenched with a saturated aqueous solution of 

ammonium chloride, extracted with ethyl acetate (15 mL × 3), dried over anhydrous magnesium 

sulfate, and concentrated. The crude product was purified by column chromatography (20% ethyl 

acetate in hexanes, silica gel) to give the title compound 7 (5.6 g, 89%) as a colorless oil. 
1
H NMR 

(600 MHz, CDCl3) δ 0.18 (s, 9H), 3.35 (q, J = 4.3 Hz, 1H), 3.69 (qd, J = 4.4, 10.2 Hz, 2H), 3.94 (dd, 

J = 2.7, 6.4 Hz, 1H), 4.10 (t, J = 2.7 Hz, 1H), 4.23 (d, J = 2.7 Hz, 1H), 4.44–4.66 (m, 6H), 5.20 (br, 

1H), 7.22–7.34 (m, 15H); 
13

C NMR (150 MHz, CDCl3) δ 138.3, 138.2, 137.6, 128.6, 128.5, 128.4, 

128.3, 128.0, 127.99, 127.92, 127.8, 127.7, 86.5, 82.9, 73.6, 72.2, 72.0, 69.5, 68.0, 62.8, 0.2; HRMS: 

calculated for [C31H37NO4Si+H]
+
 516.7153, found 516.7141. 

(2R,3R,4R,5R)-tert-Butyl-4-bis(benzyloxy)-5-((benzyloxy)methyl)-2-ethynylpyrrolidine 

-1-carboxylate (8). Zinc dust (2.75 g, 10 equiv) was suspended in acetic acid (10 mL).  The 

mixture was stirred at room temperature for 15 min, after which the color of the solution turned to 

brown. A solution of compound 7 (2.18 g, 4.23 mmol) in dichloromethane (10 mL) was added. After 

stirring at room temperature for 24 h, acetic acid was removed under reduced pressure, and the 

solution was adjusted to pH = 7 with saturated sodium bicarbonate aqueous solution and filtered 

through a pad of Celite. The filtrate was washed with ethyl acetate, dried over anhydrous magnesium 

sulfate, and concentrated to give the crude product, which was treated with tetrabutylammonium 

fluoride (1M solution in tetrahydrofuran, 4.9 mL, 1.17 equiv). The mixture was stirred at room 

temperature for 2 h. The reaction mixture was concentrated and purified by column chromatography 

(33% ethyl acetate in hexanes, silica gel) to give the pyrrolidine (1.5 g, 92%) as a colorless oil. The 

pyrrolidine (1.50 g, 3.51 mmol) was reacted with di-tert-butyl dicarbonate (1.11 mL, 1.3 equiv) in 

dichloromethane (7 mL) in the presence of triethylamine (660 µL) at room temperature. After stirring 

for 2 h, water was added to the reaction mixture, followed by extraction with dichloromethane, dried 

over anhydrous magnesium sulfate, and concentrated. The crude mixture was purified by column 

chromatography (10% ethyl acetate in hexanes, silica gel) to give the title compound 8 (1.63 g, 88%) 
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as a colorless oil;
 1

H NMR (600 MHz, CDCl3; rotamers were observed) δ 1.45 + 1.50 (s s, 9H), 2.36 

+ 2.42 (s s, 1H), 3.45 (t, J = 9.6 Hz, 1H), 3.75 + 3.92 (dd dd, J = 3.6, 8.4 Hz, J = 3.6, 8.4 Hz, 1H), 

4.12–4.29 (m, 3H), 4.40–4.67 (m, 7H), 7.20–7.37 (m, 15H);
 13

C NMR (150 MHz, CDCl3; rotamers 

were observed) δ 154.1 + 153.6, 138.6 + 138.3, 138.0 + 138.9, 137.2, 128.6, 128.5, 128.4, 128.1, 

127.9, 127.8, 127.7, 127.6, 86.4 + 85.3, 82.9, 81.6 + 81.5, 80.8, 80.7, 80.6, 73.1, 72.3, 71.8, 71.7, 

71.6, 71.2, 71.0, 68.7 + 68.3, 62.8 + 62.5, 54.6 + 54.0, 28.5; HRMS: calculated [C33H37NO5+H]
+
 

528.2672, found 528.2672. 

(2R,3R,4R,5R)-tert-Butyl 3,4-bis(benzyloxy)-5-((benzyloxy)methyl)-2-(1-(2-methoxy 

phenyl)-1H-1,2,3-triazol-4-yl)pyrrolidine-1-carboxylate (9). To a solution of compound 8 (60 mg, 

0.11 mmol) and 2-azidoanisole (0.5M solution in tert-butyl methyl ether, 0.29 mL, 1.09 equiv) in 

tert-butanol (2 mL) was added copper(II) sulfate pentahydrate (2.8 mg, 0.1 equiv), sodium ascorbate 

(2.2 mg, 0.1 equiv), and water (1 mL). The mixture was stirred at 40 °C for 12 h.  The mixture was 

then diluted with water and extracted with ethyl acetate (10 mL × 3). The combined organic layers 

were dried over anhydrous magnesium sulfate, and concentrated. The crude mixture was purified by 

column chromatography (10% ethyl acetate in hexanes, silica gel) to give the title compound 9 (69 

mg, 88%) as yellow oil. 
 1

H NMR (600 MHz, CDCl3; rotamers were observed) δ 1.23 + 1.40 (s s, 

1H), 3.64 (m , 1H), 3.66 + 3.37 (s s, 1H), 3.98 (dd, J = 4.2, 8.8 Hz, 1H), 4.17 + 4.18 (s s, 1H), 4.24 + 

4.26 (s s, 1H), 4.35–4.63 (m, 6 H), 4.65 + 4.75 (d d, J = 5.1 Hz, J = 11.7 Hz, 1H), 5.27 + 5.34 (s s, 

1H), 6.89–7.15 (m, 7H), 7.24–7.39 (m, 13 H), 7.58 + 7.22 (dd br, J = 1.3, 7.9 Hz, 1H), 7.82 + 7.86 (s 

s, 1H); 
13

C NMR (150 MHz, CDCl3; rotamers were observed) δ 154.3, 151.5, 148.6, 138.8, 137.8, 

137.7, 130.2, 129.9, 128.7, 128.64, 128.60, 128.5, 128.4, 128.0, 127.9, 127.8, 127.76, 127.73, 126.6, 

125.9, 125.6, 124.2, 121.3 + 121.2, 112.4 + 112.2, 87.0 + 86.6, 84.9 + 83.6, 82.6 + 80.3, 73.3, 

71.9+71.8, 71.1, 68.9 + 68.3, 63.9 + 63.5, 61.3 + 60.6, 56.0 + 55.8, 28.6 + 28.3; HRMS: calculated 

for [C40H44N4O6+H]
+
 676.3261, found 676.3251. 

(2R,3R,4R,5R)-5-(Hydroxymethyl)-2-(1-(2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)pyrrolid

ine-3,4-diol (10). A mixture of compound 9 (68 mg, 0.1 mmol), concentrated hydrochloric acid (5 

drops), and Pd(OH)2 (5 mg, 0.01 equiv) in methanol (4 mL) was stirred at room temperature under 

hydrogen. After 12 h, the reaction mixture was filtered through a pad of Celite and concentrated. The 

crude product was purified by column chromatography (10% methanol in dichloromethane, silica gel) 

to give the title compound 10 (28 mg, 90%) as a white solid. [α]D
20

 +10.16 (c 0.16 in MeOH); IR 

(neat): 3313 (br), 2934 (m), 1658 (m), 1475 (m) cm
–1

; 
 1

H NMR (600 MHz, CD3OD) δ 3.27 (dd, J = 

6.1,10.4 Hz, 1H), 3.70 (dd, J = 3.7, 11.3 Hz, 1H), 3.76 (dd, J = 4.0, 11.3 Hz, 1H), 3.90 (s, 3H), 3.97 

(t, J = 6.5 Hz, 1H), 4.27 (t, J = 6.1 Hz, 1H), 4.30 (d, J = 7.3 Hz, 1H); 
13

C NMR (150 MHz, CD3OD) 

δ 153.4, 148.5, 132.1, 127.5, 126.8, 126.2, 122.2, 113.9, 83.5, 79.4, 65.2, 63.2, 59.3, 56.7; HRMS: 

calculated for [C14H18N4O4+H]
+
 307.1401 found 307.1402. 
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(2R,3R,4R,5S)-5-(Hydroxymethyl)-2-(3-(p-tolyl)isoxazol-5-yl)pyrrolidine-3,4-diol (13). A 

mixture of compound 8 (60 mg, 0.12 mmol), N-hydroxy-4-methylbenzimidoyl chloride 11 (1M 

solution in dichloromethane, 150 µL, 3 equiv) and triethylamine (20 µL, 1.17 equiv) in 

dichloromethane (3 mL) was stirred at room temperature for 12 h. The mixture was evaporated and 

then water was added. The aqueous layer was extracted with ethyl acetate (10 mL × 3).  The 

combined organic layer was dried over anhydrous magnesium sulfate, and concentrated. The crude 

mixture was dissolved in dry dichloromethane under argon atmosphere at –78
 
°C. Boron trichloride 

(1M solution in hexanes, 1.8 mL, 15 equiv) was added dropwise at the same temperature. The 

reaction mixture was allowed to warm up to 0
 
°C and stirred for 4 h. The reaction mixture was 

quenched with methanol, and concentrated. The crude mixture was purified by column 

chromatography (10% methanol in dichloromethane, silica gel) to give the title compound 13. [α]D
20

 

+11.90 (c 0.13 in MeOH); IR (neat): 3313 (br), 2955 (m), 2924 (s), 1612 (m), 1403 (s) cm
–1

; 
1
H 

NMR (600 MHz, CD3OD) δ 2.39 (s, 3 H), 3.16–3.18 (m, 1H), 3.66 (dd, J = 5.2, 11.2 Hz, 1H), 3.70 

(dd, J = 4.5, 11.2 Hz, 1H), 4.01 (t, J = 5.0 Hz, 1H), 4.16 (t, J = 5.8 Hz, 1H), 4.34 (d, J = 6.5 Hz, 1H), 

6.82 (s, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H); 
13

C (150 MHz, CD3OD) δ 174.7, 

163.9, 141.8, 130.8, 127.9, 127.5, 101.1, 77.3, 73.7, 66.6, 63.7, 60.6, 21.5; HRMS: calculated for 

[C15H18N2O4+H]
+ 

291.1267, found 291.1262. 

(2R,3R,4R,5R)-tert-Butyl 

3,4-bis(benzyloxy)-5-((benzyloxy)methyl)-2-((hydroxyimino)methyl)pyrrolidine-1-carboxylate 

(16). Compound 1 (2 g, 5 mmol) was dissolved in tetrahydrofuran (20 mL) and then vinyl 

magnesium bromide (1M solution in tetrahydrofuran, 14 mL, 3 equiv) was added dropwise at 0 °C 

under argon atmosphere. After 14 h, the reaction mixture was quenched with saturated ammonium 

chloride aqueous solution, extracted with dichloromethane (20 mL × 3), dried over anhydrous 

magnesium sulfate, and concentrated. The crude mixture was purified by column chromatography 

(25% ethyl acetate in hexanes, silica gel) to give the hydroxylamine (1.91 g, 90%) as a brown solid. 

A mixture of the hydroxylamine (170 mg, 0.38 mmol) and zinc dust (248 mg, 10 equiv) in acetic 

acid (3 mL) was stirred at room temperature overnight. The reaction mixture was filtered through a 

pad of Celite and the filtrate was neutralized with saturated sodium bicarbonate aqueous solution, 

and extracted with dichloromethane (5 mL × 3). The combined organic layers were dried over 

anhydrous magnesium sulfate, concentrated, and then reacted directly with di-tert-butyl dicarbonate 

(437 µL, 5 equiv) and triethylamine (265 µL, 5 equiv) in dichloromethane (4 mL) at room 

temperature. After stirring for 2 h, water (20 mL) was added to the reaction mixture, which was then 

extracted with dichloromethane, dried over anhydrous magnesium sulfate, and concentrated to give a 

crude tert-butoxycarbonyl-protected product. After the ozonolysis of the crude 

tert-butoxycarbonyl-protected product in methanol (20 mL) at –78 °C for 10 min, the crude aldehyde 
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was reacted with hydroxylamine hydrochloride (132 mg, 5 equiv) and sodium methoxide (5.4M 

solution in methanol, 352 µL, 5 equiv) for 2 h. The solvent was evaporated and after addition of 

water, the aqueous layer was extracted with ethyl acetate (5 mL × 3). The combined organic layers 

were dried over anhydrous magnesium sulfate, concentrated, and purified by column 

chromatography (25% ethyl acetate in hexanes, silica gel) to give compound 16 (112 mg, 54% over 

four steps) as a white solid. 
1
H NMR (600 MHz, CDCl3; rotamers were observed) δ 1.47 (s, 13H), 

3.61 + 3.69 (m, 1H), 3.67 (m, 1H), 4.02 (m, 1H), 4.03–4.37 (m, 3H), 4.44 (m, 1H), 4.47–4.80 (m, 

9H), 5.12 + 5.24 (d d, J = 4.8, 5.2 Hz), 6.75 + 6.76 (s s, 1H), 7.31–7.51 (m, 23H), 8.99 + 9.10 (s s, 

1H), 9.45 + 9.49 (s s, 1H); 
13

C NMR (150 MHz, CDCl3; rotamers were observed) δ 154.2, 153.2, 

154.0, 153.9, 152.4, 152.3, 150.8, 150.7, 138.6, 138.5, 138.3, 138.2, 137.9, 137.8, 137.6, 137.5, 

137.3, 137.2, 128.6, 128.5, 128.47, 128.44, 128.41, 128.3, 128.0, 127.9, 127.8, 127.7, 127.68, 127.65, 

127.59, 127.56, 127.4, 85.9, 84.7, 84.6, 83.3, 82.4, 82.2, 81.1, 80.7, 80.67, 80.63, 73.1, 71.64, 71.62, 

71.60, 71.2, 71.1, 71.0, 70.9, 68.5, 67.9, 63.3, 63.1, 63.0, 62.7, 62.6, 59.2, 59.1, 28.5, 28.4; HRMS: 

calculated for [C32H38N2O6+H]
+
 547.2730, found 547.2731. 

(2R,3R,4R,5R)-2-(5-(4-Bromophenyl)isoxazol-3-yl)-5-(hydroxymethyl)pyrrolidine-3,4-dio

l (18). A mixture of the oxime 16 (700 mg, 1.3 mmol) and 4-bromo-1-ethynylbenzene (1 g, 4.2 equiv) 

in dichloromethane (6 mL) was stirred at 0
 
°C, and then a mixture of bleach (18 mL, 12 equiv) and 

water (26 mL) was added dropwise. The reaction mixture was warmed up to room temperature. After 

12 h, the reaction mixture was quenched with saturated ammonium chloride aqueous solution, 

extracted with dichloromethane, dried over anhydrous magnesium sulfate, and concentrated. The 

crude product without purification was directly used in the next step. The crude material was 

dissolved in dichloromethane (80 mL) at –78
 
°C and then boron trichloride (20 mL, 15 equiv) was 

added dropwise under argon atmosphere. After stirring for 4 h, the mixture was quenched with 

methanol. Solvents were removed under reduced pressure and the residue was purified by column 

chromatography (10 % methanol in dichloromethane) to give the title compound 18 (218 mg, 47%) 

as a white solid. [α]D
20

 +17.05 (c 0.13 in MeOH); IR (neat): 3305 (br), 3124 (m), 2919 (m), 1610 (s), 

1465 (s) cm
–1

; 
1
H NMR (600 MHz, CD3OD) δ 3.18–3.20 (m, 1H), 3.67 (dd, J = 5.8, 11.2 Hz, 1H), 

3.74 (dd, J = 3.9, 11,2 Hz, 1H), 3.93 (t, J = 6.7 Hz, 1H), 4.13 (t, J = 6.7 Hz, 1H), 4.18 (d, J = 7.3 Hz, 

1H), 4.6 (s, 1H), 6.90 (s, 1H), 7.67 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H);
 13

C NMR (150 MHz, 

CD3OD) δ 170.5, 167.4, 133.6, 128.6, 127.9, 125.6, 100.0, 83.6, 79.4, 65.2, 63.4, 59.8; HRMS: 

calculated for [C14H15BrN2O4+H]
+
 356.1839, found 356.1829. 

(2R,3R,4R,5R)-5-(Hydroxymethyl)-2-(5-phenylisoxazol-3-yl)pyrrolidine-3,4-diol (19). The 

title compound 19 was synthesized by the procedure as described for the preparation of compound 16 

in 49% yield over three steps. [α]D
20

 +11.43 (c 0.12 in MeOH); IR (neat): 3310 (br), 2927 (m), 1610 

(m), 1463 (s) cm
–1

; 
1
H NMR (600 MHz, CD3OD) δ 3.21 (br, 1H), 3.67 (dd, J = 5.8, 11.2 Hz, 1H), 
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3.74 (dd, J = 3.2, 11.2 Hz, 1H), 3.94 (t, J = 6.4 Hz, 1H), 4.15 (t, J = 6.4 Hz, 1H), 4.18 (d, J = 6.9 Hz, 

1H), 6.86 (s, 1H), 7.46–7.51 (m, 3H), 7.82 (d, J = 7.6 Hz, 1H); 
13

C NMR (150 MHz, CD3OD) δ 

171.7, 167.1, 131.6, 130.4, 128.9, 126.9, 99.4, 83.6, 79.5, 65.2, 63.4, 59.8; HRMS: calculated 

[C14H16N2O4+H]
+
 276.1110, found 276.1111. 

(2R,3R,4R,5R)-2-(5-(4-Chlorophenyl)isoxazol-3-yl)-5-(hydroxymethyl)pyrrolidine-3,4-dio

l (20). The title compound 20 was synthesized by the procedure as described for the preparation of 

compound 16 in 53% yield over three steps. [α]D
20

 +9.76 (c 0.04 in MeOH); IR (neat): 3307 (br), 

2924 (m), 1613 (m), 1466 (m) cm
–1

; 
1
H NMR (600 MHz, CD3OD) δ 3.18–3.20 (m, 1H), 3.67 (dd, J 

= 5.8, 11.2 Hz, 1H), 3.73 (dd, J = 3.9, 11,2 Hz, 1H), 3.93 (t, J = 6.5 Hz, 1H), 4.13 (t, J = 6.4 Hz, 1H), 

4.17 (d, J = 7.3 Hz, 1H), 7.51–7.53 (m, 2H), 7.81–7.83 (m, 2H); 
13

C NMR (150 MHz, CD3OD) δ 

170.4, 167.4, 137.5, 130.6, 128.5, 127.6, 99.9, 83.6, 79.4, 65.2, 63.4, 59.8; HRMS: calculated for 

[C14H15ClN2O4+H]
+

 311.0720, found 311.0711. 

(2R,3R,4R,5R)-2-(5-(2-Bromophenyl)isoxazol-3-yl)-5-(hydroxymethyl)pyrrolidine-3,4-dio

l (21). The title compound 21 was synthesized by the procedure as described for the preparation of 

compound 16 in 50% yield over three steps. [α]D
20

 -7.10 (c 0.18 in MeOH); IR (neat): 3317 (br), 

2925 (m), 1601 (s), 1435 (s) cm
–1

; 
1
H NMR (600 MHz, CD3OD) δ 3.18–3.21 (m, 1H), 3.67 (dd, J = 

5.8, 11.3 Hz, 1H), 3.75 (dd, J = 4.0, 11.3 Hz, 1H), 3.94 (t, J = 6.5 Hz, 1H), 4.15 (t, J = 7.1 Hz, 1H), 

4.22 (d, J = 7.1 Hz, 1H), 7.12 (s, 1H), 7.38 (td, J = 1.7, 8.1 Hz, 1H), 7.50 (td, J = 1.0, 7.7 Hz, 1H), 

7.77 (dd, J = 1.0, 8.1 Hz, 1H), 7.81 (dd, J = 1.7, 7.7 Hz, 1H); 
13

C NMR (150 MHz, CD3OD) δ 169.5, 

166.8, 135.6, 132.8, 131.4, 129.8, 129.2, 122.2, 104.1, 83.6, 79.5, 65.2, 63.4, 59.9; HRMS: 

calculated for [C14H15BrN2O4+H]
+
 355.0215, found 355.0210. 

(2R,3R,4R,5R)-2-(1-(2-Bromophenyl)-1H-1,2,3-triazol-4-yl)-5-(hydroxymethyl) 

pyrrolidine-3,4-diol (22). The title compound 22 was synthesized by the procedure as described for 

the preparation of compound 8 in 64% yield over three steps. [α]D
20

 +12.72 (c 0.12 in MeOH); IR 

(neat): 3318 (br), 2923 (m), 1493 (s) cm
–1

; 
1
H NMR (600 MHz, CD3OD) δ 3.26 (br, 1H), 3.71 (br, 

1H), 3.77 (br, 1H), 3.96 (br, 1H), 4.27 (br, 1H), 4.32 (br, 1H), 7.50–7.53 (m ,1H), 7.57–7.60 (m, 2H), 

7.86 (d, J = 8.2 Hz, 1H), 8.27 (s, 1H); 
13

C NMR (150 MHz, CD3OD) δ 149.2, 138.1, 135.2, 133.1, 

130.1, 129.7, 126.3, 120.2, 83.7, 79.6, 65.2, 63.3, 59.4; HRMS: calculated for [C13H15BrN4O3+H]
+
 

355.0328, found 355.0377. 

(2R,3R,4R,5R)-2-(1-(2-Hydroxyethyl)-1H-1,2,3-triazol-4-yl)-5-(hydroxymethyl)pyrrolidin

e-3,4-diol (23). The title compound 23 was synthesized by the procedure as described for the 

preparation of compound 8 in 71% yield over three steps. [α]D
20

 +37.16 (c 0.22 in MeOH); IR (neat): 

3285 (br), 2949 (m), 1616 (m), 1425 (m) cm
–1

; 
1
H NMR (600 MHz, D2O) δ 3.26–3.28 (m, 1H), 3.72 

(dd, J = 6.2, 11.8 Hz, 1H), 3.78 (dd, J = 4.3, 11.8 Hz, 1H), 3.99–4.01 (m, 3H), 4.25 (d, J = 8.3 Hz, 

1H), 4.30 (t, J = 8.3 Hz, 1H), 4.55–4.56 (m, 2H), 8.0 (s, 1H); 
13

C NMR (150 MHz, D2O) δ 146.1, 
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124.2, 80.8, 76.9, 61.8, 61.6, 60.1, 55.9, 52.5; HRMS: calculated [C9H16N4O4+Na]
+
 267.1069, found 

267.1061. 

(2S,3R,4R,5R)-2-(3-(4-Chlorophenyl)isoxazol-5-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol 

(24). The title compound 24 was synthesized by the procedure as described for the preparation of 

compound 8 in 54% yield over three steps. [α]D
20

 +8.03 (c 0.11 in MeOH); IR (neat): 3311 (br), (m), 

2925 (m), 1633 (s), 1463 (s) cm
–1

; 
1
H NMR (600 MHz, CD3OD) δ 3.16–3.18 (m, 1H), 3.66 (dd, J = 

5.4, 11.2 Hz, 1H), 3.73 (dd, J = 3.8, 11.2 Hz, 1H), 3.91 (t, J = 6.7 Hz, 1H), 4.21 (t, J = 6.4 Hz, 1H), 

4.26 (d, J = 6.8 Hz, 1H), 6,81 (s, 1H), 7.48 (d, J = 8.6 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H); 
13

C NMR 

(150 MHz, CD3OD) δ 175.7, 163.0, 137.3, 130.4, 129.5, 129.2, 100.9, 83.1, 79.3, 65.2, 63.0, 60.2, 

50.0; ; HRMS: calculated [C14H15ClN2O4+H]
+
 311.0720, found 311.0721. 

(2R,3R,4R,5S)-5-(Hydroxymethyl)-2-(3-undecylisoxazol-5-yl)pyrrolidine-3,4-diol (25). 

The title compound 25 was synthesized by the procedure as described for the preparation of 

compound 8 in 47% yield over three steps. [α]D
20

 +15.23 (c 0.14 in MeOH); IR (neat): 3329 (br), 

2929 (m), 1622 (s), 1459 (s) cm
–1

; 
1
H NMR (600 MHz, CD3OD) δ 0.90 (t, J = 6.8 Hz, 3H), 

1.29–1.34 (br, 18H), 1.65–1.68 (m, 2H), 2.65 (t, J = 7.4 Hz, 1H), 3.30–3.32 (m, 1H), 3.65 (dd, J = 

5.5, 11.4 Hz, 1H), 3.71 (dd, J = 3.8, 11.4 Hz, 1H), 3.89 (t, J = 6.6 Hz, 1H), 4.15 (t, J = 6.5 Hz, 1H), 

4.18 (d, J = 7.1 Hz, 1H), 6.32 (s, 1H); 
13

C NMR (150 MHz, CD3OD) δ 174.1, 165.8, 102.7, 82.8, 

79.0, 64.9, 62.8, 59.7, 33.3, 30.9, 30.8, 30.7, 30.6, 30.4, 29.5, 23.9, 14.7; HRMS: calculated 

[C19H34N2O4+H]
+
 355.2597, found 355.2584. 

 

Assay for glycosidase inhibitory activity
19

  

 

The inhibitory activity of α-glucosidase from Bacillus stearothermophilu (Sigma, G3651) and 

β-glucosidase from almonds (Sigma, G0395) were determined by measuring the absorbance of 

4-nitrophenol at 405 nm. For enzymatic reaction of α-glucosidase was consisted of 10 µL of enzyme 

(1U/mL), 20 µL of synthesized hybrid molecules, 50 µL of 100 mM sodium phosphate buffer (pH 

6.8) and 20 µL of 15 mM 4-nitrophenyl-α-D-glucopyranoside, and β-glucosidase was consisted of 10 

µL of enzyme (1U/mL), 20 µL of AHHMs, 45 µL of 100 mM sodium citrate buffer (pH 5.2) and 25 

µL of 4 mM 4-nitrophenyl-β-D-glucopyranoside. After incubating at 37 °C for 30 minutes, 100 µL of 

0.5M glycine buffer (pH 10.2) was added into reaction mixture to stop the reaction. The 

concentration of inhibitors required for inhibiting 50% of glycosidase activity under the assay 
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condition was defined as the IC50 value. The IC50 value was measured graphically by a plot of 

percent of inhibition versus log of test compound. Km value was determined through 

Michaelis–Menten kinetics. 
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