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2-Allyl-substituted thiophenes and furans are synthesised 

efficiently in a direct procedure using 2-heteroaryllithium 

reagents and allyl bromides and chlorides catalysed by 

ligand-free copper (I). The reactions take place under mild 

conditions, with excellent α-selectivity, high functional group 

tolerance and good yields for the SN2 products. 

Introduction 

 

Heteroarenes such as thiophene and furan have attracted great 

attention in the last decades, due to their versatility in synthesis and 

specific properties.1 These heterocyclic compounds have been used 

extensively in material science for organic dyes and electronic 

devices,2 in agriculture and pharmaceutical chemistry3 or as 

intermediates for the synthesis of natural products or flavours.4 

Therefore, the functionalization of  furans and thiophenes at C2 

represents an important target for organic synthesis.1 In this context, 

the allylic substitution is a very convenient reaction,5 due to the fact 

that the incorporated olefin motif may serve as a latent group for 

further transformations. There are a number of methods for allylic 

substitutions with heterocycles (Scheme 1). For example, the 

Friedel-Crafts6 reaction represents a straightforward manner to 

access to 2-allylheteroarenes, but usually this transformation suffers 

from a lack of regioselectivity, both in the heteroarene and in the 

allyl electrophile, especially when thiophene is used as a 

nucleophile.7 On the other hand, several successful cross-coupling 

reactions catalysed by palladium8 and copper9 have been described, 

but in these cases a pre-functionalised thiophene or furan is needed. 

Usually, a boronic, organotin or organosilicon reagent is used in 

these cross-coupling reactions. As part of our continuing efforts to 

employ organolithium10 reagents in asymmetric allylic 

substitutions11 and palladium cross-coupling reactions,12,13 we were 

interested in the direct allylic alkylation of 2-heteroaryl lithium 

reagents. Herein, we present an α-selective allylic alkylation of 2-

heteroaromatic lithium reagents using copper as a catalyst.14 In this 

way, the initial functionalization of the organometallic reagent is 

avoided, wich allows the synthesis of 2-allyl-substituted heterocycles 

in an efficient and straightforward procedure. 
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Scheme 1 Different methodologies for allylic alkylation of thiophene.

 

 

Results and discusion 

 

Our studies began with the reaction of the 2-thienyllithium15 

and cinnamyl bromide, both commercially available. Different 

solvents, temperatures and copper sources were evaluated 

(Table 1). Initially, solvents such as toluene, TBME and THF 

(entries 1-3,  respectively), using CuBr·SMe2 as a catalyst at -

80 °C, were tested. Gratifyingly, full conversion and complete 

SN2 selectivity (99:1, linear:branched) was achieved when THF 

was used as a solvent. This copper (I) catalysed allylic 
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alkylation reaction shows high regioselective to the α-

substituted product, independently of the absence or presence 

of a ligand.16 Importantly, when copper(I) was not used the 

conversion dropped significantly (entry 4). We decided for 

practical reasons to carry out the reaction at higher temperature, 

therefore the allylic alkylation was tested at 0 °C. A screening 

of different copper (I) salts  (entries 5-7) revealed that 

CuBr·SMe2 is the most efficient catalyst for this 

transformation. When the reaction was run at 0 °C, a small 

amount of homocoupling product 4 was still formed (entry 5). 

Finally, when the reaction was performed at -5 °C in THF and 

using CuBr·SMe2, full conversion was achieved (86% isolated 

yield of 3a) without the presence of product 4. When the 

reaction was carried out at room temperature, a complex 

mixture was obtained and the 1H NMR of the crude mixture 

was difficult to analyse. Interestingly, when cinnamyl chloride 

was used (entry 12, table 1), full conversion and high 

regioselectivity to the linear product were also observed and the 

corresponding product 3a was obtained in 93% yield.  

 

Table 1 Optimization of the reaction conditions.a 

 
Entry Solvent  copper  T (°C) Conv.b 

(%) 

3a+3a’b (l:b)c 

(yield)d 

4 (%)b 

1 Toluene CuBr·SMe2 -80 95 90% (99:1) 5 

2 TBME CuBr·SMe2 -80 90  80% (99:1) 10 

3 THF CuBr·SMe2 -80 Full Full (99:1) 0 

4 THF  - -80 35 25% (99:1) 10 

5 THF CuBr·SMe2 0 Full 94% (97:3) 6 

6 THF CuCl 0 55 50% (98:2) 5 

7 THF CuI 0 80 60% (98:2) 20 

8 THF - 0 80 60% (98:2) 20 

9 THF CuBr·SMe2 -5 Full Full (98:2) (86%) 0 

10e THF CuBr·SMe2 -5 Full Full (98:2) (93%) 0 

a Reaction conditions: copper salt (0.01 mmol, 5 mol%), 1.5 eq. of 1a and 0.2 

mmol of 2a in 2 mL of solvent. b Conversions were determined by 1H NMR. c 

linear:branched ratio was determined by GC. d Isolated yield after column 

chromatography. e cinnamyl chloride was used as a allylic reagent.  

 

With the optimised conditions in hand (Table1, entry 9), the scope of 

this reaction was investigated (Scheme 2). It should be emphasized 

that high functional group tolerance was observed and cinnamyl 

bromides with different substituents, such as methyl ester, 

bromide,17 NO2 or CF3 groups in para position at the aromatic ring 

can be present, affording the corresponding products 3b-3e, in good 

to high yields with excellent levels of regioselectivity. Other 

functional groups such as benzyl ether or a dioxalane ring were 

allowed and the corresponding products 3f and 3g, were obtained in 

78 and 90% yield, respectively. Also, the presence of N-Ts-protected 

amines was tolerated, but in this case 1.1 eq. of organolithium 

reagent was used in order to obtain good yield. Furthermore, 

multiple coupling of 1a is shown in the twofold alkylation of (E)-

1,4-dibromobut-2-ene, providing the corresponding dialkylated 

product 3j in 70% isolated yield. Next, different heteroaryllithium 

reagents were tested. For example benzo[b]thiophen-2-yllithium, 

easily prepared by direct metallation with n-BuLi,18 was successfully 

coupled with (E)-N-allyl-N-(4-bromobut-2-en-1-yl)-4-

methylbenzenesulfonamide and 3-bromocyclohexene, affording the 

corresponding products 3k (78%) and 3l (81%) in high yields. 2-

Furanyllithium and 2-benzofuranyllithium, freshly prepared by 

direct metallation, were also suitable partners for this reaction, 

resulting in products 3m-3o, with high regioselectivity and good 

yields. 

 

 

Scheme 2 Scope of copper(I)-catalysed allylic alkylation. Reaction conditions: 

allyl bromide 2 (0.2 mmol) was added to a stirred solution of CuBr·SMe2 (0.01 

mmol) in 2 mL of dry THF at -5 °C; 2-heteroaryllithium reagent 1 (0.3 mmol) was 

added dropwise over 1h. Isolated yield after column chromatography. 

Linear:branched ratio determined by GC. 
a
 1.1 eq. of 2-heteroaryllithium reagent 

1 was used. 
b
1,2-addition to the carbonyl group was also observed as a side 

reaction. 

 

Conclusions 

In summary, we have developed a highly regioselective ligand-

free copper(I) catalysed allylic alkylation using directly 2-

heteroarylithium reagents. The corresponding α-substituted 

products are obtained in good to excellent yields (up to 94%). 

The reaction takes place under mild conditions and tolerates a 

wide range of functional groups and offers a method for direct 

access to various C2-substituted heterocycles. 
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