# Organic \& Biomolecular Chemistry 

## Accepted Manuscript



## Organic \& Biomolecular Chemistry



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012,
Accepted 00th January 2012
DOI: 10.1039/x0xx00000x
www.rsc.org/

# Reaction of $\boldsymbol{\beta}$-Enaminones and Acetylene Dicarboxylates: Synthesis of Substituted 1,2Dihydropyridinones $\dagger$ 

Vemu Nagaraju, ${ }^{\text {a }}$ Dalovai Purnachander, ${ }^{\text {a,b }}$ N. S. V. M. Rao Mangina, ${ }^{\text {a,b }}$ Surisetti Suresh, ${ }^{\text {c }}$ Balasubramaniam Sridhar ${ }^{\text {d }}$ and Galla V. Karunakar*a,b

Synthesis of substituted 1,2-dihydropyridinones is described in one pot reaction of $\beta$ enaminones and acetylene dicarboxylates where new $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds were formed. The title compounds were obtained in moderate to good yields.

## Introduction

Among various heterocyclic molecules, nitrogen heterocyclic molecules have proven as potential compounds ${ }^{1}$ in crop protection chemicals, functional materials and medicinal chemistry. ${ }^{2}$ Different methods were developed for synthesis of nitrogen heterocyclic molecules ${ }^{3}$ via metal catalysed ${ }^{4}$ and organocatalysed reactions. ${ }^{5}$

Nitrogen heterocyclic molecules, in particular synthesis ${ }^{6}$ of 2-pyridinones ${ }^{7}$ have received much attention because of their potential applications in various fields (Figure 1). ${ }^{8}$ For example amrinone and milrinone were used as cardiotonics. ${ }^{9}$ Perampanel is identified as an important molecule for the treatment of Parkinson's disease. ${ }^{10}$ 2-Pyridinone derivatives were showing properties like antihypertensive, ${ }^{11}$ antitumor, ${ }^{12}$ antibiotic, ${ }^{13}$ antiviral, ${ }^{14}$ antibacterial, ${ }^{15}$ thrombin inhibition, ${ }^{16}$ tissue factor VIIa inhibition, ${ }^{17}$ human chymase inhibition ${ }^{18}$ and human leukocyte elastase inhibition. ${ }^{19}$ Some of the 2-pyridinone derivatives have been used as dyes. ${ }^{20}$ Significant number of natural products are having 2-pyridinone core unit in their chemical structure. ${ }^{21}$ Most of these molecules are exhibiting interesting biological and pharmacological properties. ${ }^{22}$ Substituted enaminones have been useful for the synthesis of several nitrogen-containing heterocycles. ${ }^{23}$

[^0]Synthesis of nitrogen heterocyclic molecules by exploiting the chemical reactivity of $\beta$-enaminones is of our current interest.


Figure 1 Selected examples of important molecules containing 2pyridinone core skeletons and their applications.

## Results and discussion

Very recently, we have developed two different synthetic methods by exploitation of substituted $\beta$-enaminones. ${ }^{24}$ Azabicyclo[4.1.0]hepta-2,4-dienes were efficiently synthesized in a reaction of $N$-propargylic $\beta$-enaminones with acetylene dicarboxylates by a novel and exceptionally catalyst free conditions. ${ }^{25 a}$ Synthesis of 3-methylene-3,4-dihydro-2 H pyrrolines were achieved by reaction of $N$-propargylic $\beta$ enaminones with arynes via gold-catalysis. ${ }^{25 b}$ In continuation to our efforts towards the exploration of enaminone reactivity, we became interested to test the reactivity of $\beta$-enaminones towards activated alkynes.

Liang et al., reported that the reaction of dialkyl acetylene dicarboxylates and $\beta$-enaminone derivatives in the presence of copper catalyst to give polysubstituted pyrroles (Figure-2 Scheme-a). ${ }^{26 \mathrm{a}}$ It was reported that tandem reaction of primary
amines and acetylene esters gave 2-pyridones featuring carboxylates as substitutents. ${ }^{26 b}$





Figure 2 Transformations of $\beta$-enaminone to nitrogen heterocycles.
Herein, we describe reactivity of substituted $\beta$-enaminones $\mathbf{1}$ on dialkyl acetylene dicarboxylates $\mathbf{2}$ in the presence of base to accesses 1,2-dihydropyridinones 3 (Figure 2, Scheme-b). This reaction offers the synthesis of 2-pyridinones with significant molecular complexity where new $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds were formed without using transition metals.

In an initial experiment, $\beta$-enaminone $1 \mathbf{1 a}$ ( 1 equiv.) reacted with diethyl acetylene dicarboxylate 2a (1 equiv.) in the presence of potassium carbonate ( 1.5 equiv.) in acetonitrile solvent at $70{ }^{\circ} \mathrm{C}$ for 5 h , it was observed that the starting materials were fully consumed, very interestingly $22 \%$ yields of 1,2-dihydropyridinone 3a was isolated (Scheme 1).


Scheme 1 Synthesis of 2-pyridinone 3a by reaction of 1a and 2a.
We have conducted experiments to improve the yield of this transformation by utilizing $\mathbf{1 a}$ and $\mathbf{2 a}$ in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in acetonitrile solvent at $90^{\circ} \mathrm{C}$ for 4 h . The starting material $1 \mathbf{1 a}$ was disappeared (monitored by TLC) but the yield of the product 3a was not improved ( $24 \%$ ). In an another experiment, toluene was used as a solvent the above reaction was performed at $110{ }^{\circ} \mathrm{C}$, the starting material 1a was disappeared (monitored by TLC) but the yield (19\%) of the product 3a was poor.

Based on these observations we have conducted one more experiment by taking $\beta$-enaminone $\mathbf{1 a}$ (1 equiv.) and diethyl acetylene dicarboxylate 2a (1 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}$ solvent at 70 ${ }^{\circ} \mathrm{C}$ for 3 h . It was observed that the both the starting materials were consumed. However, the pyridone 3a was not formed in this reaction. It was observed that the addition product 4 was formed in this reaction in $87 \%$ yield (Scheme 2). We have further conducted a reaction by taking 4 (1 equiv.) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 1.5 equiv.) to check the formation of $\mathbf{3 a}$. Very interestingly, we have isolated $64 \%$ yield of pyridinone derivative 3a as a product (Scheme 2).
Later we thought of conducting this experiment in one pot to obtain the desired pyridone 3a. Accordingly, the substrates 1a and 2a were heated at $70^{\circ} \mathrm{C}$ for 3 h followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $30{ }^{\circ} \mathrm{C}$ and continued the reaction for 16 h . As expected the desired pyridone 3a was formed in good yields (Table 1 , entry 1 ).


Scheme 2 Synthesis of 2-pyridinone (3a) via intermediate 4.
Experiments were conducted using $\beta$-enaminone 1a (1 equiv.) with $\mathbf{2 a}$ (1 equiv.) in the presence of different bases (1 equiv.) such as $\mathrm{Et}_{3} \mathrm{~N}$, pyridine, piperidine, $\mathrm{N}, \mathrm{N}$-diethylamine, and $\mathrm{N}, \mathrm{N}$ diisopropylethylamine in acetonitrile. These conditions did not yield product 3 a (Table 1, entries 2-6). When the reaction was performed by using $\mathbf{1 a}$ with $\mathbf{2 a}$ in the presence of $N, N$-diisopropylamine ( 1 equiv.) and DABCO in acetonitrile solvent for 24 hours the product 3a was isolated in lower yields (Table 1, entry 7-8). Without using any base, this reaction did not yield product $\mathbf{3 a}$ (Table 1, entry 9).
Table 1 Optimization of reaction conditions.


Reaction conditions: 1a ( 0.273 mmol ), 2a ( 0.273 mmol ), solvent ( 3 mL ), All reactions initially conducted at $70^{\circ} \mathrm{C}$ for 3 h then base was added at room temperature; Base ( 0.409 mmol ); pno: product not observed. cm: complex mixture; Yields are for isolated products.

Further experiments were conducted by utilizing 1a and 2a in acetonitrile solvent in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, the product $\mathbf{3 a}$ yield ( $73 \%$ ) was improved (Table 1, entry 10). Reaction of $\mathbf{1 a}$ with 2a by utilizing bases such as $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaOH}$ and KOH in acetonitrile solvent, these conditions gave product 3a in lower yields (Table 1, entries 11-13). Having these results in hand, we
have further screened for solvent choice. Reaction of 1a and 2a in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ different solvents were used to get better yields of product 3a. In the presence of water this reaction did not yield the desired product 3a (Table 1, entry 14). Two reactions were performed by using 1a and $\mathbf{2 a}$ in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in polar solvents like methanol and DMF, the product 3a was isolated in poor yields (Table 1, entries 15 16). We have next performed the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF, 1,4-dioxane, toluene and chloroform, good yields of the product 3a was observed (Table 1 , entries 17-20).

Based on the best optimized reaction conditions (Table 1, entry 10), various substituted $\beta$-enaminones $\mathbf{1 a - u}$ and substituted acetylenedicarboxylates $\mathbf{2 a}$ and $\mathbf{2 b}$ were employed. The results are summarized in Table 2. When substituted $\beta$ enaminone 1b reacted with diethyl acetylenedicoaroxylate 2a gave $\mathbf{3 b}$ in $76 \%$ yield (Table 2, entry 2). Substrate $\mathbf{1 c}$ which is having electron donating group (4-OMe- $\mathrm{C}_{6} \mathrm{H}_{4}$ ) in the $\mathrm{R}^{3}$ position reacted with 2a gave $63 \%$ yield of $\mathbf{3 c}$ (Table 2, entry 3). Electron withdrawing substrate like $4-F-\mathrm{C}_{6} \mathrm{H}_{4}$ at $\mathrm{R}^{3}$ position 1d reacted with 2a gave $74 \%$ yield of 3d (Table 2, entry 4). $\beta$ Enaminone substrate that contain both electron donating ( $\mathrm{R}^{2}: 4$ -$\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$ ) group and withdrawing ( $\mathrm{R}^{3}: 4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ ) group like $\mathbf{1 e}$ reacted with $\mathbf{2 a}$ to give $71 \%$ yield of $\mathbf{3 e}$ (Table 2, entry 5 ). In the case of $\mathbf{1 f}$ reaction with 2 a , the corresponding pyridone $\mathbf{3 f}$ was isolated in $75 \%$ yield (Table 2, entry 6 ). The structure of the product $3 \mathbf{f}$ was further confirmed by single crystal X-ray analysis (Figure 3).


Figure 3 ORTEP representation of 1,2-dihydropyridinones (3f: CCDC 1004429)

Substrates which are having electron withdrawing groups like $\mathbf{1 g}$ $\left(\mathrm{R}^{3}: 4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathbf{1 h}\left(\mathrm{R}^{3}: 4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ reacted with 2a gave $70 \%$ and $65 \%$ yields of $\mathbf{3 g}$ and $\mathbf{3 h}$, respectively (Table 2, entries 7-8). Cyclohexyl substituted $\beta$-enaminone 1i reaction with 2a gave 73\% yield of product $\mathbf{3 i}$ (Table 2 , entry 9 ). $\beta$-Enaminone $\mathbf{1} \mathbf{j}$ reacted with 2a gave $63 \%$ yield of $\mathbf{3 j}$ (Table 2, entry 10). Electron donating functional groups at $\mathrm{R}^{2}\left(\mathrm{R}^{2}: 4-M e-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathrm{R}^{3}\left(\mathrm{R}^{3}: 4-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ positions derived $\beta$-enaminone like 1 k reacted with $\mathbf{2 a}$ gave $64 \%$ yield of $\mathbf{3 k}$ (Table 2, entry 11). Reaction of $1 \mathbf{l}$ with 2a gave $72 \%$ yield of $\mathbf{3 1}$ (Table 2, entry 12). The substituted $\beta$-enaminone having $n$-propane at $\mathrm{R}^{1}$ position and withdrawing group at $\mathrm{R}^{3}\left(\mathrm{R}^{3}: 4-F-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ position like $\mathbf{1 m}$ reacted with 2a gave $67 \%$ yield of product $\mathbf{3 m}$ (Table 2, entry 13). $\beta$-Enaminone derivative containing withdrawing groups at $\mathrm{R}^{2}\left(\mathrm{R}^{2}: 4-F-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathrm{R}^{3}\left(\mathrm{R}^{3}: 4-C F_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ positions like $\mathbf{1 n}$ reacted with 2a gave $75 \%$ yield of product $\mathbf{3 n}$ (Table 2, entry no. 14).

Table 2 Scope of the synthesis of 1,2-dihydropyridinones.

(Table 2 Contd.)

(Table 2 Contd.)


Reaction conditions: 1a ( 0.273 mmol ), 2a ( 0.273 mmol ) $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$; All reactions initially conducted at $70{ }^{\circ} \mathrm{C}$ for 3 h then base was added at room temperature; $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 0.409 mmol ); Yields are for isolated products.
$\beta$-Enaminone substituted at $\mathrm{R}^{2}\left(\mathrm{R}^{2}: 4-M e-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathrm{R}^{3}\left(4{ }^{-} \mathrm{B} u\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}$ ) positions like 10 reaction with 2 a gave $70 \%$ yields of product 3 O (Table 2, entry 15 ). In case of $\beta$-enaminone $\mathbf{1 b}$ reaction with diterterybutyl acetylene dicarboxylate 2b gave $74 \%$ yield of $\mathbf{3 p}$ (Table 2, entry 16). $\beta$-Enaminone $\mathbf{1 f}$ reacted with $\mathbf{2 b}$ gave $72 \%$ yield of $\mathbf{3 q}$ (Table 2, entry 17). $\beta$-Enaminone derivative containing $n$-alkyl group at $\mathrm{R}^{2}\left(\mathrm{R}^{2}: \mathrm{C}_{6} \mathrm{H}_{13}\right)$ position like $\mathbf{1 p}$ reaction with $\mathbf{2 a}$ gave $73 \%$ yield of $\mathbf{3 r}$ (Table 2, entry 18). The substrate $\beta$-Enaminone which is having substitutions
at $\mathrm{R}^{1}$ position (tert-butyl(ethoxy)dimethylsilane), $\mathrm{R}^{2}$ position $\left(4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathrm{R}^{3}$ position ( $4-\mathrm{CMe}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$ ) like $\mathbf{1 q}$ reacted with 2a and 2b gave highly functionalised 2-pyridinones $\mathbf{3 s}$ and 3t in $68 \%$ and $72 \%$ yields, respectively (Table 2, entries 19-20). $\beta$-Enaminone derivative $\mathbf{1 r}$ that contain tertbutyl(ethoxy)dimethylsilane at $\mathrm{R}^{1}$ position and electron withdrawing group at $\mathrm{R}^{2}\left(\mathrm{R}^{2}: 4-F-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ position reacted with $\mathbf{2 a}$ and $\mathbf{2 b}$ gave $78 \%$ and $75 \%$ yields of products $\mathbf{3 u}$ and $\mathbf{3 v}$, respectively (Table 2 , entries 21-22). $\beta$-Enaminone $\mathbf{1 s}$, containing electron withdrawing substitutions at $\mathrm{R}^{3}\left(\mathrm{R}^{3}: 2,3\right.$-di $\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{3}$ ) position, reacted with 2b gave $69 \%$ yield of product 3w (Table 2, entry 23). $\beta$-Enamine derived from 1,4-diketone like $\mathbf{1 t}$ reacted with $\mathbf{2 a}$ and $\mathbf{2 b}$ gave the products $\mathbf{3 x}$ and $\mathbf{3 y}$ in $65 \%$ and $68 \%$ yields, respectively (Table 2 , entries $24-25$ ). $\beta$ Enaminone derivative that contain acetate substitution at $R^{1}\left(R^{1}\right.$ $=-\mathrm{CH}_{2}-\mathrm{COOEt}$ ) position like $\mathbf{1 u}$ reacted with 2a gave product $\mathbf{3 z}$ in $71 \%$ yield (Table 2, entry 26 ).
We have further tested the scope of this transformation using $\beta$ enamino esters instead of $\beta$-enaminones. $\beta$-Enamino ester 5a reacted with $2 \mathbf{a}$ and $2 \mathbf{b}$ gave products $\mathbf{6 a}$ and $\mathbf{6 b}$ in $63 \%$ and $65 \%$ yields, respectively (Table 3, entries 1-2).

Table 3 Scope of the synthesis of 1, 2-dihydropyridinones.


2a


2a

40
47
45
48

Reaction conditions: 5 ( 0.355 mmol ), 2 ( 0.355 mmol ) $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$; All reactions initially conducted at $70{ }^{\circ} \mathrm{C}$ for 3 h then base was added at room temperature; $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 0.533 mmol ); Yields are for isolated products.
$\beta$-Enamino ester derivative having alkyl substitutions at $\mathrm{R}^{1}$ and $R^{2}$ positions and like 5b reacted with 2a gave moderate yield of product $\mathbf{6 c}$ (Table 3, entry 3 ). Reaction of $\mathbf{5 c}$ with 2a gave $47 \%$ yield of product $\mathbf{6 d}$ (Table 3, entry 4). Enamines derived from acetylene diesters like 5d and 5e reacted with 2a gave $45 \%$ and $48 \%$ yields of highly functionalised 2-pyridones 6e and $\mathbf{6 f}$, respectively (Table 3 , entries 5-6). $\beta$-Enaminone derivative having alkyl substitution at $\mathrm{R}^{3}$ position and aromatic group at $\mathrm{R}^{2}$ position like $5 \mathbf{f}$ reacted with 2 a gave very poor yield of product 6 g (Scheme 3). This reaction clearly indicate that the $\beta$ enaminone derivative containing alkyl substitution at $R^{3}$ position leads to produce very poor yield of 2-pyridinone $(\mathbf{6 g})$.


Scheme 3 Synthesis of 2-pyridinone $\mathbf{6 g}$ by reaction of $\mathbf{5 f}$ and $\mathbf{2 a}$.

A possible reaction mechanism may be explained for the formation of 1,2-dihydropyridinones (Scheme 3). Initially, nucleophilic addition of $\beta$-enaminones $\mathbf{1}$ to the electrophile 2 would take place to give intermediate I. The enolate II of intermediate I would give intermediate III. Then the intermediate III undergo cyclisation to give pyridinones $\mathbf{3}$. We have isolated an analogue of this intermediate I, for example compound 4 which was further converted to pyridone 3a (Scheme 4).


Scheme 4 A possible reaction mechanism.

## Conclusions

In conclusion, we have developed a straightforward and efficient method for synthesis of dihydropyridone derivatives having significant molecular complexity with good yields. Importantly, this transformation was achieved in one pot without using transition metals or catalysts. Current research is focused on further exploitation of the reactivity of substituted $\beta$-enaminone derivatives.

## Experimental

## General information

All the reactions were carried out in oven dried reaction flasks under nitrogen atmosphere and also solvents and reagents were transferred by oven-dried syringes to ambient temperature. TLC was performed on Merck silica gel aluminium sheets using UV as a visualizing agent and a $0.5 \%$ aqueous potassium permanganate solution and heat
as developing agents. Solvents were removed under reduced pressure. Columns were packed as slurry of silica gel in hexane and ethyl acetate solvent mixture. The elution was assisted by applying pressure with an air pump. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 75 and 125 MHz spectrometers. ${ }^{1}$ HNMR spectra were recorded on 300 and 500 MHz spectrometers in appropriate solvents using TMS as internal standard. The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. All reactions were performed under nitrogen atmosphere with freshly distilled and dried solvents and solvents were distilled using standard procedures. Unless otherwise noted, reagents were obtained from Aldrich, Alfa Aesar, and TCI used without further purification. Substituted $\beta$-enaminones ( $\mathbf{1} \mathbf{a}-\mathbf{u}$ ) were prepared by following the reported procedure. ${ }^{27}$

X-ray Crystallography: X-ray data for the compound was collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA)$ with $\omega$-scan method. ${ }^{28}$ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames. Unit cell dimensions were determined using 6371 reflections in the range of $2.51 \square<\theta<23.79^{\circ}$ for $\mathbf{3 f}$. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{28}$ The structure was solved by direct methods using SHELXS $97^{29}$ and refinement was carried out by full-matrix least-squares technique using SHELXL97. ${ }^{29}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. H atoms were positioned geometrically and treated as riding on their parent C atoms [ $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $\left.1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})\right]$. The crystal was found to be twinned and the exact twin matrix was identified by the integration program as $-1.00200 .004,0-10,0.80101 .002$. The structure was refined using the hklf 5 routine with all reflections, resulting in a BASF value of 0.178 (2).

## General procedure for Synthesis of 1,2-dihydropyridinones

 (3a)In a 25 mL round-bottomed two-neck flask compound enaminone $1 \mathrm{a}(0.1 \mathrm{~g}, 0.273 \mathrm{mmol}$, 1 equiv.) was taken then dissolved in acetonitrile ( 2 mL ) to this reaction mixture compound 2a ( $0.046 \mathrm{~g} 0.273 \mathrm{mmol}, 1$ equiv.) was added and allowed to stir at $70{ }^{\circ} \mathrm{C}$ for 3 h under nitrogen atmosphere ( yellow colour reaction mass was observed in the reaction flask). This reaction mixture was allowed to room temperature. Progress of the reaction was monitored by TLC. Then $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.133 \mathrm{~g}, 0.409 \mathrm{mmol}, 1.5$ equiv.) was added portion wise at room temperature to this reaction mixture. Reaction mixture colour was changed from yellow to brown colour. This reaction mixture was allowed to stir at room temperature for 9 h . Progress of the reaction was monitored by TLC. After completion of the reaction, 3 mL of water was added to the reaction mixture. Reaction mass was extracted with ethyl acetate ( $3 \times 5 \mathrm{~mL}$ ). The combined organic layers were washed with aqueous brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/3) to give pure 1,2-dihydropyridine-4-carboxylates 3a. The similar procedure was followed for the synthesis of all 2-pyridinone derivatives (3a-z).

Ethyl 1-(2-(1H-indol-3-yl)ethyl)-5-benzoyl-2-oxo-6-phenyl-1,2-dihydropyridine-4-carboxylate (3a)
$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 73\%; light brown colour solid; Melting Point: $143-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 7.96($ brs, 1 H$), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.32-7.27 (m. 3H), 7.25-7.23 (brs, 2H), 7.16-7.10 (m, 3H), 6.95-6.86 $(\mathrm{m}, 4 \mathrm{H}), 6.84(\mathrm{brs}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 194.0,164.4$, 162.0, 148.6, 140.2, 138.1, 136.0, 132.6, 131.5, 129.6, 129.3, 128.7, 128.1, 127.1, 122.3, 121.9, 121.4, 119.2, 118.4, 111.8, 111.0, 62.2, 47.3, 23.9, 13.5; HRMS (ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 491.1965; found 491.1975.

## Ethyl 1-(2-(1H-indol-3-yl)ethyl)-5-(2-naphthoyl)-2-ox0-6-phenyl-1,2-dihydropyridine-4-carboxylate (3b)

$\mathrm{R}_{\mathrm{f}}$ : 0.3 ; Hexane: Ethyl acetate mixture (10:3); Yield: $76 \%$; orange colour solid; Melting Point: $190-194{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.04-7.95($ brs, 2 H$), 7.89-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.66-7.45 (m, 3H), 7.37-7.16 (m, 3H), 7.16-7.03 (m, 3H), 7.02-6.81 $(\mathrm{m}, 5 \mathrm{H}), 4.17-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 193.8,164.4,162.0,148.7$, $140.2,135.9,135.5,135.3,132.1,131.5,130.7,129.5,129.4,128.4$, 128.2, 127.7, 127.1, 126.6, 124.1, 122.2, 121.9, 121.5, 119.3, 118.4, 111.8, 111.0, 62.0, 47.3, 24.0, 13.5; HRMS (ESI): calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 541.2121$; found 541.2131.

## Ethyl 1-(2-(1H-indol-3-yl)ethyl)-5-(4-methoxybenzoyl)-2-oxo-6-

 phenyl-1,2-dihydropyridine-4-carboxylate (3c)$\mathrm{R}_{\mathrm{f}}: 0.2$; Hexane: Ethyl acetate mixture (10:3); Yield: $63 \%$; pale orange colour semisolid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.13$ (brs, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 3 \mathrm{H})$, 6.94-6.86 (m, 4H), $6.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.13-4.06 (m, 4H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 192.5,164.4,163.1$, 162.0, 148.3, 140.0, 135.9, 131.6, 131.2, 131.1, 129.5, 129.3, 128.1, 127.1, 122.4, 121.8, 121.3, 119.2, 118.5, 118.4, 113.3, 111.8, 111.0, 62.1, 55.3, 47.3, 23.9, 13.5; HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 521.2071$; found 521.2065.

Ethyl 1-(2-(1H-indol-3-yl)ethyl)-5-(4-fluorobenzoyl)-2-oxo-6-phenyl-1,2-dihydropyridine-4-carboxylate (3d)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $74 \%$; orange colour semisolid; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.09$ (brs, 1 H ), 7.45 ( $\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{q}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{q}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$ , 6.98-6.79 (m, 7H), 4.19-4.04 (m, 4H), $3.06(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.12 (t, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 192.6$, 166.2, 164.4, 161.9, 148.4, 140.0, 135.9, 134.6, 131.4, 131.3, 131.2, $129.5,129.4,128.1,127.2,122.4,122.0,121.6,119.3,118.4,115.3$, 115.1, 111.0, 62.2, 47.4, 23.8, 13.6; HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$509.1871; found 509.1885.

Ethyl 1-(2-(1H-indol-3-yl)ethyl)-5-(4-nitrobenzoyl)-2-oxo-6-p-tolyl-1,2-dihydropyridine-4-carboxylate (3e)
$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 71\%; light brown colour solid; Melting Point: $150-154{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.10-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.5(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.82(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.22-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.18$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 192.7,164.3$, 162.0, 149.6, 149.1, 142.7, 140.0, 139.8, 136.0, 129.4, 128.9, 128.0, 127.2, 123.2, 122.5, 121.9, 121.6, 119.2, 118.3, 117.5, 111.8, 111.1, 62.4, 47.3, 23.6, 21.1, 13.7; HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 572.1792$; found 572.1795 .

## Ethyl 5-benzoyl-2-ox0-1-phenethyl-6-phenyl-1,2-

 dihydropyridine-4-carboxylate (3f)$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 75\%; light orange colour solid; Melting Point: 140-144 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}$, $4 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 2 \mathrm{H})$, $4.10(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), $1.08(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 193.8$, 164.3, 161.7, 148.4, 140.1, 138.0, 137.6, 132.7, 131.3, 129.5, 129.4, 128.7, 128.4, 128.2, 128.1, 126.5, 121.4, 118.4, 62.2, 47.9, 34.1, 13.5; HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 474.1675$; found; 474.1673.

Crystal data for 3f: $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{4}, M=451.50$, colorless block, 0.21 x $0.17 \times 0.09 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=$ 8.1432(16), $b=15.506(3), c=19.315(4) \AA, \square \beta=99.992(3)^{\circ}, V=$ 2401.8(8) $\AA^{3}, Z=4, D_{\mathrm{c}}=1.249 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=952$, Bruker SMART APEX CCD area-detector, MoK $\alpha$ radiation, $\square \lambda=0.71073 \AA, \quad T=$ $294(2) \mathrm{K}, 2 \theta_{\max }=50.0^{\circ}$, 21908 reflections collected, 21908 unique $\left(\mathrm{R}_{\text {int }}=0.0000\right)$. Final GooF $=1.051, R 1=0.0604, w R 2=0.1685, R$ indices based on 15095 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on $F^{2}$ ), 309 parameters, 0 restraints, $\mu=0.083 \mathrm{~mm}^{-1}$. CCDC 1004429 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223336 033; email: deposit@ccdc.cam.ac.uk.

## Ethyl 1-benzyl-5-(4-fluorobenzoyl)-2-ox0-6-phenyl-1,2-

 dihydropyridine-4-carboxylate ( 3 g )$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 70\%; brown liquid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}$, $1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H})$, 6.85-6.80 (m, 4H), 5.11 (brs, 2 H ), $4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 192.4,166.2,164.3$, $162.1,148.6,140.4,136.0,134.5,131.3,131.2,131.1,129.5,128.3$, 127.9, 127.4, 126.8, 121.8, 118.4, 115.3, 115.1, 62.3, 48.9, 13.6; HRMS (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 456.1605$; Found 456.1611.

## Ethyl 1-benzyl-5-(4-nitrobenzoyl)-2-oxo-6-phenyl-1,2-dihydropyridine-4-carboxylate (3h)

$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $65 \%$; brown colour liquid; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.08$ (d, $J=9.0 \mathrm{~Hz}$, 2H), 7.65 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.33 (s, 1H), 7.24-7.14 (m, 4H), 7.06 $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 4 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 192.6, 164.2, 162.1, 149.6, 148.9, 142.6, 140.2, 135.8, 130.7, 129.9, 129.6, 129.3, 128.4, 128.1, 127.5, 126.8, 123.2, 122.0, 117.8, 62.5, 48.9, 13.7; HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 505.1370; found 505.1375.

## Ethyl 1-cyclohexyl-5-(4-fluorobenzoyl)-2-oxo-6-phenyl-1,2-

 dihydropyridine-4-carboxylate (3i)$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: 73\%; yellow colour solid; Melting Point: $170-174{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.93-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 6.7(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H})$, 2.36-2.18 (m, 2H), 1.80-1.48 (m, 8H), $1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 189.5,168.1,166.1,165.1,156.3,137.3$,
$134.7,131.4,131.3,130.3,128.6,128.5,121.2,115.2,115.0,60.9$, 55.2, 29.7, 25.9, 24.8, 13.7; HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{FNO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 448.1918$; found 448.1927 .

Ethyl 5-(1-naphthoyl)-1-butyl-2-oxo-6-phenyl-1,2-dihydropyridine-4-carboxylate (3j)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $63 \%$; orange colour solid; Melting Point: $98-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ); $\delta 8.42-8.34(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.87(\mathrm{~m}, 5 \mathrm{H}), 4.07(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.00(\mathrm{~m}$, $3 \mathrm{H}), 0.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 195.3,165.3, 161.7.149.6, 141.7, 135.8, 133.3, 132.9, 131.5, 130.2, $129.0,128.7,127.9,127.8,127.4,126.1,125.5,123.7,120.5,62.1$, 45.9, 30.3, 19.7, 13.5, 13.1; HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$454.2012; found 454.2015.

Tert-butyl 1-butyl-5-(4-methoxybenzoyl)-2-oxo-6-p-tolyl-1,2-dihydropyridine-4-carboxylate (3k)
$\mathrm{R}_{\mathrm{f}}: 0.2$; Hexane: Ethyl acetate mixture (10:3); Yield: $64 \%$; pale orange semisolid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.71(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 192.2, 163.5, 163.2, 162.0, 148.4, $141.5,139.3,131.2,129.1,128.7,126.0,120.6,118.3,113.3,83.5$, $55.3,46.0,30.4,27.3,21.2,19.8,13.3$; HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 476.2431$; found 476.2433.

## Ethyl <br> 1-butyl-5-(4-nitrobenzoyl)-2-oxo-6-phenyl-1,2-dihydropyridine-4-carboxylate (31)

$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: $72 \%$; brown colour liquid; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2$ H), $7.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.17$ (q, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) 3.82-3.72(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 2 \mathrm{H})$, 1.21-1.03 (m, 5H), $0.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 192.8,164.3,161.7,149.6,148.6,142.7,139.7,131.1$, $129.9,129.5,129.4,128.3,123.2,121.7,117.5,62.4,46.1,30.3$, 19.8, 13.7, 13.2; HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 449.1707; found 449.1713.

Ethyl 5-(4-fluorobenzoyl)-2-oxo-6-phenyl-1-propyl-1,2-dihydropyridine-4-carboxylate (3m)
$\mathrm{R}_{\mathrm{f}}: 0.2$; Hexane: Ethyl acetate mixture (10:3); Yield: $67 \%$; brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 7.59-7.54(\mathrm{~m}, 2 \mathrm{H})$, $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.6-1.5$ $(\mathrm{m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 192.6, 166.3, 161.8, 148.3, 139.8, $134.6,131.4,131.3,131.2,129.6,129.4,128.2,121.5,118.1,115.3$, 115.2, 62.2, 47.8, 21.8, 13.6, 11.0,; HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 408.1605$; found 408.1603.

Ethyl
6-(4-fluorophenyl)-2-oxo-1-propyl-5-(4-(trifluoromethyl)benzoyl)-1,2-dihydropyridine-4-carboxylate (3n)
$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 75\%; pale yellow semisolid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.67$ (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (s, 1H), 7.11-7.06 (m, 2H),
$6.94(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 2 \mathrm{H})$, $1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 193.0,164.6,164.1,161.7,147.4$, 140.7, 139.6, 131.5, 131.4, 128.7, 125.3, 125.2, 121.9, 115.7, 115.4, 62.3, 47.8, 21.8, 13.5, 11.0; HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 476.1479$; found 476.1466 .

Ethyl 5-(4-tert-butylbenzoyl)-1-methyl-2-oxo-6-p-tolyl-1,2-dihydropyridine-4-carboxylate (30)
$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 70\%; yellow colour semisolid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.98 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.07 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.29 (s, 3H), 2.26 $(\mathrm{s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 193.3,164.4,162.3,156.3,149.0,140.3,139.5,135.4$, 129.1, 129.0, 128.7, 128.6, 124.9, 120.2,118.4, 62.0, 34.8, 34.1, 30.8, 21.1, 13.3; HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 432.2169 ; found 432.2153 .

Tert-butyl 1-(2-(1H-indol-3-yl)ethyl)-5-(2-naphthoyl)-2-ox0-6-phenyl-1,2-dihydropyridine-4-carboxylate (3p)
$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 74\%; pale orange colour solid; Melting Point: $185-188^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-7.04 (m, 3H), 7.00-6.93 (m, 2H), 6.92-6.82 (m, 3H), 4.11 (t, $J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 193.6,163.6,162.1,148.7,142.0,136.0,135.6$, $135.2,132.1,131.7,130.8,129.5,129.3,128.4,128.1,127.6,127.1$, 123.6, 124.2, 122.3, 121.9, 121.0, 119.2, 118.4, 118.3, 111.8, 111.0, 83.8, 47.2, 27.3, 24.0; HRMS (ESI): calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 569.2434; found; 569.2435 .

## Tert-butyl 5-benzoyl-2-ox0-1-phenethyl-6-phenyl-1,2-dihydropyridine-4-carboxylate (3q)

$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: 72\%; pale yellow colour solid; Melting Point: 167-170 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 3 \mathrm{H})$, 7.24-7.10 (m, 6H), $6.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.97$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.5,163.5,161.9,148.4,141.9,138.3$, 137.7, 132.7, 131.6, 129.4, 128.9, 128.7, 128.4, 128.1, 126.5, 121.0, 118.2, 83.8, 47.8, 34.2, 27.3; HRMS (ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 480.2169$; found; 480.2171 .

Ethyl 1-(2-(1H-indol-3-yl)ethyl)-5-(2-naphthoyl)-6-hexyl-2-oxo-1,2-dihydropyridine-4-carboxylate (3r)
$\mathrm{R}_{\mathrm{f}}: 0.2$; Hexane: Ethyl acetate mixture (10:3); Yield: 73\%; red colour solid; Melting Point: 140-144 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 8.17-8.07,(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}$, $2 \mathrm{H}), 7.06(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.9(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.56(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 2 \mathrm{H})$, 1.47-1.35 (m, 2H), 1.18-0.97 (m, 6H), 0.82-0.69 (m, 6H), ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.7,168.5,165.2,160.3,137.4,136.4$, $136.2,135.3,132.3,129.9,129.4,128.3,128.2,127.6,127.1,126.6$, $124.5,122.3,120.2,119.7,118.3,112.1,111.5,111.4,60.7,41.7$, 31.0, 29.1, 28.5, 25.8, 24.9, 22.3, 13.8, 13.4; HRMS (ESI): calcd. for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$549.2747; found 549.2753.

Ethyl 5-(4-tert-butylbenzoyl)-1-(2-(tert-butyldimethylsilyloxy)ethyl)-2-oxo-6-p-tolyl-1,2-dihydropyridine-4-carboxylate (3s)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $68 \%$; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.55$ (d, $J=$ $8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=3.20 \mathrm{~Hz}, 3 \mathrm{H}), 7.08(\mathrm{q}, J=7.93 \mathrm{~Hz}, 4 \mathrm{H})$, $4.18(\mathrm{q}, J=7.01 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=6.25$ $\mathrm{Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 193.6,164.5,162.0,156.2,149.5,139.3$, 135.7, 129.8, 128.74, 128.7, 128.6, 128.4, 124.9, 120.7, 118.7, 62.0, 59.4, 47.9, 34.9, 30.9, 25.8, 25.7, 21.1, 13.4, -5.5; HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 576.3141$; found 576.3141.

## Tert-butyl 5-(4-tert-butylbenzoyl)-1-(2-(tert-butyldimethylsilyloxy)ethyl)-2-oxo-6-p-tolyl-1,2-dihydropyridine-4-Carboxylate (3t)

$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: 72\%; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.65$ (d, $J=$ $8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H})$, $4.11(\mathrm{t}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.44$ (s, 9H), $1.34(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 193.0,163.6,162.0,156.3,149.4,142.1,139.2,135.7$, $129.5,128.8,128.7,128.5,124.9,120.1,118.3,83.4,59.4,47.7$, $34.8,30.8,27.1,25.7,21.0,18.1,-5.6$; HRMS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$604.3452; found 604.3455.

Ethyl 1-(2-(tert-butyldimethylsilyloxy)ethyl)-5-(4-fluorobenzoyl)-2-oxo-6-phenyl-1,2-dihydropyridine-4-carboxylate (3u)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: 78\%; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.63-7.58$ $(\mathrm{m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H})$, $6.97(\mathrm{t}, J=8.54 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.17 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 192.7,166.2$, $164.4,161.9,149.0,140.2,134.6,131.2,130.0,129.5,128.0,121.3$, 118.2, 115.2, 115.1, 62.2, 59.3, 48.1, 29.6, 25.8, 13.5, -5.4. HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{NFSi}[\mathrm{M}+\mathrm{H}]^{+} 524.2260$; found 524.2260 .

## Tert-butyl 1-(2-(tert-butyldimethylsilyloxy)ethyl)-5-(4-fluorobenzoyl)-2-ox0-6-phenyl-1,2-dihydropyridine-4carboxylate (3v)

$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture(10:3); Yield: 75\%; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.57-7.51$ (m, 2H), 7.25-7.20 (m,1H), $7.18(\mathrm{t}, J=7.93 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 192.3,166.2,163.4,161.9$, 148.9, 141.9, 134.7, 131.5, 131.3, 129.9, 129.4, 128.0, 120.8, 118.0, 115.2, 83.7, 59.4, 47.9, 27.3, 25.8, 18.2, -5.4. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{NFSi}[\mathrm{M}+\mathrm{H}]^{+} 552.2548$; found 552.2550 .

## Tert-butyl 1-(2-(tert-butyldimethylsilyloxy)ethyl)-5-(2,3-dichlorobenzoyl)-2-oxo-6-phenyl-1,2-dihydropyridine-4carboxylate (3w)

$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $69 \%$; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.34-7.31$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.17 \mathrm{~Hz}$, $2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=6.25$ $\mathrm{Hz}, 2 \mathrm{H}), 1.43$ (s, 9H), 0.79 (s, 9H), 0.06 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.6,164.4,162.0,149.8,143.7,139.5,133.9$,
$132.4,131.3,130.8,129.5,129.2,128.2,126.4,120.4,83.6,59.4$, $47.8,31.8,27.7,25.8,14.0,-5.4$. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{NCl}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$602.1914; found 602.1890.

Ethyl 5,6-dibenzoyl-1-benzyl-2-oxo-1,2-dihydropyridine-4carboxylate (3x)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: 65\%; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.58-7.37$ (m, 6H), 7.32 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.24-7.14 (m, 3H), 7.07 (s, 5 H ), 5.23 (brs, 2H), $3.91(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 191.9,189.3,164.2,161.3,147.6,141.5$, 137.3, 135.2, 134.8, 134.4, 133.2, 129.4, 128.8, 128.4, 128.3, 128.1, 127.8, 122.3, 116.7, 62.4, 48.6, 13.4; HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$466.1624; found 466.1624.

Tert-butyl 5,6-dibenzoyl-1-benzyl-2-oxo-1,2-dihydropyridine-4carboxylate (3y)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $68 \%$; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.54-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 3 \mathrm{H})$, 7.00 (s, 5H), 5.15 (brs, 2H), 1.08 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 191.7,189.4,163.2,161.4,147.3,142.9,137.4,135.2$, $134.9,134.4,133.2,129.4,128.9,128.4,128.3,128.1,127.7$, 122.1, 116.7, 84.1, 48.5, 27.1; HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 494.1934; found 494.1934 .

Ethyl 1-(2-ethoxy-2-oxoethyl)-6-(4-fluorophenyl)-2-oxo-5-(4-(trifluoromethyl)benzoyl)-1,2-dihydropyridine-4-carboxylate (3z)

Rf: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 71\%; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.71$ (d, $J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}$, $2 \mathrm{H}), 6.92(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 4 \mathrm{H}), 1.23$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta, 192.6,167.3,163.9,161.5,161.4,147.2,140.4,131.5$, $131.4,128.8,126.7,125.3,121.9,118.1,116.0,115.8,62.5,61.9$, 47.4, 13.9, 13.5; HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{NF}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 520.1405; found 520.1377.

## General procedure for Synthesis of intermediate (4)

In a 25 mL round-bottomed two-neck flask compound $\mathbf{1 a}(0.1 \mathrm{~g}$, 0.273 mmol , 1 equiv.) was taken then dissolved in acetonitrile ( 2 mL ) after that compound 2a ( 0.046 gm 0.273 mmol , 1 equiv.) was added and allowed to stir the reaction mixture at 70 ${ }^{\circ} \mathrm{C}$ for 3 h . Progress of the reaction was monitored by TLC. After completion of the reaction, acetonitrile solvent was removed in vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/2) to give (87\%) pure addition product 4.

## Diethyl 2-(1-(2-(1H-indol-3-yl)ethylamino)-3-oxo-1,3-diphenylprop-1-en-2-yl)maleate (4)

$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture(10:1); Yield: $82 \%$; brown colour semisolid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 12.26$ (brs, 1 H ), 8.15 (brs, 1H), 7.44-7.34 (m, 2H), 7.33-7.10 (m, 10H), 7.08-6.93 (m, $3 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 192.5$, 166.1, 165.3, 145.2, 142.2, 136.2, 133.0, 129.0, 128.9, 128.6, 128.3, 127.9, 127.4, 127.1, 121.7, 119.1, 118.1, 111.6, 111.2, 101.7, 61.2,
60.2, 45.3, 26.5, 14.0, 13.8; HRMS (ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$537.2378; found 537.2384.

## General procedure for Synthesis of 1,2-dihydropyridinones

 (6a)In a 25 mL round-bottomed two-neck flask compound carboxylate substituted enaminone $\mathbf{5 a}(0.1 \mathrm{~g}, 0.355 \mathrm{mmol}, 1$ equiv.) was taken then dissolved in acetonitrile ( 2 mL ) to this reaction mixture compound $\mathbf{2 a}$ ( $0.06 \mathrm{~g} 0.355 \mathrm{mmol}, 1$ equiv.) was added and allowed to stir at $70^{\circ} \mathrm{C}$ for 3 h ( yellow colour reaction mass was observed in the reaction flask). This reaction mixture was allowed to room temperature. Progress of the reaction was monitored by TLC. Then $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.173 \mathrm{~g}, 0.533$ $\mathrm{mmol}, 1.5$ equiv.) was added portion wise at room temperature to this reaction mixture. Reaction mixture colour was changed from yellow to brown colour. This reaction mixture was allowed to stir at room temperature for 9 h . Progress of the reaction was monitored by TLC. After completion of the reaction, 3 mL of water was added to the reaction mixture. Reaction mass was extracted with ethyl acetate ( $3 \times 5 \mathrm{~mL}$ ). The combined organic layers were washed with aqueous brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/3) to give pure 1,2-dihydropyridine-4-carboxylates 6a. The similar procedure was followed for the synthesis of all 2-pyridinone derivatives ( $\mathbf{6 a - f}$ ).

Diethyl 1-benzyl-6-oxo-2-phenyl-1,6-dihydropyridine-3,4dicarboxylate (6a)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $63 \%$; semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 6.84-6.76 (m, 2H), 5.08 (brs, 2H), 4.35 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.85(\mathrm{t}, \mathrm{J}=7.17 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 165.6,164.6,162.0,149.9,140.2,136.0$, 132.0, 129.6, 129.0, 128.3, 128.0, 127.3, 126.7, 120.9, 113.0, 62.2, 61.2, 49.0, 13.9, 13.3; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 406.1652; found 406.1653.

4-Tert-butyl $\underset{\text { dihydropyridine- }}{\text { 3-4-dicarboxylate }}$ ( $\mathbf{6 b}$ )
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $65 \%$; semi solid; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.19-7.15 (m 3H), $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 6.82-6.78 (m, 2H), 5.07 (brs, 2H), 3.86 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.55(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $165.8,163.6,162.1,149.5,141.5,136.0,132.0,129.6,129.0,128.3$, 128.0, 127.3, 126.7, 120.7, 113.3, 83.4, 61.2, 48.9, 27.7, 13.3; HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$434.1943; found 434.1941.

Diethyl 1-butyl-2-methyl-6-oxo-1,6-dihydropyridine-3,4dicarboxylate (6c)
$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: $40 \%$; pale brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.84$ (s, $1 \mathrm{H}), 4.30(\mathrm{~m}, 4 \mathrm{H}), 4.17-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.59(\mathrm{~m}$, $2 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.7,165.1,161.8,147.4,140.3,118.6,111.0$, 61.9, 61.6, 44.8, 30.1, 20.1, 17.1, 13.8, 13.5, HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 310.1635$; found 310.1637.

Diethyl 2-methyl-6-oxo-1-phenyl-1,6-dihydropyridine-3,4dicarboxylate (6d)
$\mathrm{R}_{\mathrm{f}}: 0.4$; Hexane: Ethyl acetate mixture (10:3); Yield: $47 \%$; solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H})$, $7.16(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.3,165.0,162.2,148.5$, $141.5,137.7,129.9,129.1,127.4,119.3,110.5,62.0,61.6,19.1$, 13.8, 13.7; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 330.1340$; found 330.1339 .

## Triethyl 1-benzyl-6-oxo-1,6-dihydropyridine-2,3,4-tricarboxylate (6e)

$\mathrm{R}_{\mathrm{f}}: 0.3$; Hexane: Ethyl acetate mixture (10:3); Yield: $45 \%$; semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.40-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.14$ $(\mathrm{m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.24(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 165.1,163.3,161.5,160.7,144.5,142.7$, $134.9,128.5,127.8,127.3,120.8,63.0,62.2,62.0,48.8,29.6,13.9$, 13.8, 13.2; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 402.1556$; found 402.1556 .

## Triethyl 1-butyl-6-oxo-1,6-dihydropyridine-2,3,4-tricarboxylate (6f)

$\mathrm{R}_{\mathrm{f}}$ : 0.4 ; Hexane: Ethyl acetate mixture (10:3); Yield: 48\%; pale brown colour semi solid ; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.71$ (s, $1 \mathrm{H}), 4.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.9(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-$ $1.66(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) 1.30(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 165.4,163.3,161.7,160.4,145.2,142.9,120.1,106.9,63.2,62.2$, 62.0, 47.4, 30.6, 20.0, 13.9, 13.8, 13.7, 13.5; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{NNa}[\mathrm{M}+\mathrm{H}]^{+} 368.1690$; found 368.1688.

## Ethyl 5-acetyl-1-benzyl-2-oxo-6-phenyl-1,2-dihydropyridine-4carboxylate (6g)

$\mathrm{R}_{\mathrm{f}}$ : 0.4 ; Hexane: Ethyl acetate mixture (10:3); Yield: $11 \%$; brown colour semi solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.81(\mathrm{~d}, J=7.78$ $\mathrm{Hz}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.78 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.47 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H})$, $4.05(\mathrm{q}, J=7.17 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.17 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 194.6,164.3,162.5,146.2,140.4,137.7$, $135.2,133.4,128.9,128.8,127.6,126.3,119.7,117.1,62.1,47.6$, 18.0, 13.5; HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]+376.1543$; found 376.1542 .

## Acknowledgements

We thank Department of Science and Technology (DST) India for Fast track grant-No: SR/FT/CS-146/2010 and CSIR, New Delhi for financial support as part of XII Five Year plan under title ORIGIN (CSC-0108). We also thank V. J. Rao and GS for their support. VN thanks to DST for Project Fellowship and DP thanks UGC-JRF, NSVMRM thanks to UGC-SRF and also thank to AcSIR.

## Notes and references

1 (a) Comprehensive Heterocyclic Chemistry II; eds., A. R. Katritzky, C. W. Ress and E. F. V Scriven. Pergamon: Oxford, U. K., 1996; Vol. 1-9; (b) D. Ayres and J. D. Loike, Chemistry and pharmacology of natural products. Lignans: chemical, biological and clinical
properties, Cambridge University Press, Cambridge, 1990; (c) T. Eicher and S. Hauptmann, The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, Wiley-VCH, Weinheim, Germany, 2nd edn., 2003; (d) M. Saleem, H. J. Kim, M. S. Ali and Y. S. Lee, Nat. Prod. Rep., 2005, 22, 696; (e) G. M. Cragg and D. J. Newman, Expert Opin. Investg. Drugs, 2000, 9, 2783.
2 (a) Refer special "Insight" on plant defence in Nature, 2001, 411, 825; (b) L. M.-Sanz and F. Susanne, J. Med. Chem., 2012, 55, 4062; (c) A. Thomas, Angew. Chem., Int. Ed., 2010, 49, 8328.

3 (a) Comprehensive Heterocyclic Chemistry III; eds., A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven and R. J. K. Taylor. Pergamon: Oxford, U. K., 2008; Vol. 1-13; (b) E. J. Kang and E. Lee, Chem. Rev., 2005, 105, 4348; (c) A. Bermejo, B. Figadere, M.-C. ZafraPolo, I. Barrachina, E. Estornell and D. Cortes, Nat. Prod. Rep., 2005, 22, 269; (d) E. G. Brown, Ring Nitrogen and Key Biomolecules: The Biochemistry of N-heterocycles, Kluwer Academic, Boston, 1998; (e) K. C. Majumdar, G. V. Karunakar and B. Sinha, Synthesis, 2012, 44, 2475; (f) J. W. Daly, T. F. Spande and H. M. Garraffo, J. Nat. Prod., 2005, 68, 1556; (g) Z. Ye, L. Shi, X. Shao, X. Xu, Z. Xu and Z. Li, J. Agric. Food Chem., 2013, 61, 312.
4 Selected references on metal catalysis: (a) A. S. K. Hashmi, Acc. Chem. Res., 2014, 47, 864; (b) M. P. Muňoz; Chem. Soc. Rev., 2014, 43, 3164; (c) F. López and J. L. Mascareňas, Chem. Soc. Rev., 2014, 43, 2904; (d) J. Bariwal and E. V. D. Eycken, Chem. Soc. Rev., 2013, 42, 9283; (e) C. -L. Sun, B. -J. Li, and Z. -J. Shi, Chem. Rev., 2011, 111, 1293; (f) I. P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011, 111, 1596; (g) B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A.-M. Resmerita, N. K. Garg, and V. Percec, Chem. Rev., 2011, 111, 1346; (h) S. Cacchi and G. Fabrizi, Chem. Rev., 2011, 111, 215; (i) X. -F. Wu, H. Neumann, and M. Beller, Chem. Rev., 2013, 113, 1; (j) G. Zeni and R. C. Larock, Chem. Rev., 2006, 106, 4644; (k) M. Rudolph and A. S. K. Hashmi, Chem. Commun., 2011, 47, 6536; (1) L. Fensterbank and M. Malacria, Acc. Chem. Res., 2014, 47, 953; (m) X. -F. Wu, X. Fang, L. Wu, R. Jackstell, H. Neumann, and M. Beller, Acc. Chem. Res., 2014, 47, 1041; (n) J. Ye and S. Ma, Acc. Chem. Res., 2014, 47, 989; (o) J. Mahatthananchai and J. W. Bode, Acc. Chem. Res., 2014, 47, 696; (p) A. Fürstner, Acc. Chem. Res., 2014, 47, 925; (q) C. Obradors and A. M. Echavarren, Acc. Chem. Res., 2014, 47, 902.

5 Selected references on organocatalysis: (a) M. Fèvre, J. Pinaud, Y. Gnanou, J. Vignolle and D. Taton, Chem. Soc. Rev., 2013, 42, 2142; (b) M. P. Carroll and P. J. Guiry, Chem. Soc. Rev., 2014, 43, 819; (c) A. Moyano and R. Rios, Chem. Rev., 2011, 111, 4703; (d) G. Desimoni, G. Faita, and K. A. Jørgensen, Chem. Rev., 2011, 111, 284; (e) M. Bartók, Chem. Rev., 2010, 110, 1663; (f) T. B. Poulsen and K. A. Jørgensen, Chem. Rev., 2008, 108, 2903; (g) Y. Wei and M. Shi, Chem. Rev., 2013, 113, 6659; (h) E. G. -Urdiales, I. Alfonso and V. Gotor, Chem. Rev., 2005, 105, 313; (i) D. -F. Chen, Z. -Y. Han, X. -L. Zhou and L. -Z. Gong, Acc. Chem. Res., 2014, 47, 2365; (j) L. Pu, Acc. Chem. Res., 2014, 47, 1523; (k) From Biomimetic Concepts to Applications in Asymmetric Synthesis; eds., A. Berkessel and H. Gröger, Wiley-VCH: Weinheim, 2005; (1) Enantioselective Organocatalysis; P. I. Dalko, Ed.; Wiley-VCH: Weinheim, 2007; (m) M Terada and N. Momiyama in Science of synthesis: Asymetric organocatalysis ed. K Markova, Georg Thieme Verlag, stuttgart, 2012, vol 2, p 219; (n) P. I. Dalko and L. Moisan, Angew. Chem., Int. Ed., 2004, 43, 5138.
6 (a) B. H. Patel, A. M. Mason and A. G. M. Barrett, Org. Lett. 2011, 13, 5156; (b) T. Hondo, M. Warizaya, T. Niimi, I. Namatame, T. Yamaguchi, K. Nakanishi, T. Hamajima, K. Harada, H. Sakashita, Y. Matsumoto, M. Orita, and M. Takeuchi, J. Med. Chem. 2013, 56, 3582; (c) E. Knovenagel, A. Fries, Chem. Ber. 1898, 31, 767; (d) E. Ziegler, F. Hradetzky, Monatsh. Chem. 1964, 95, 1247; (e) S. N. Huckin, L. Weiler, Can. J. Chem. 1974, 52, 1343; (f) T. Kato, Y. Kubota, M. Tanaka, H. Takahashi, T. Chiba, Heterocycles 1978, 9, 841; (g) K. Ito, S. Miyajima, J. Heterocyclic Chem. 1992, 29, 1037.
7. (a) L. V. Reis, A. M. Lobo and S. Prabhakar, Tetrahedron Lett., 1994, 35, 2747; (b) P. Sanna, A. Nuvole, P. A. Sequi and G. Paglietti, Heterocycles, 1993, 36, 259; (c) A. Z. A. Elassar and A. A. El-Khair, Tetrahedron, 2003, 59, 8463; (d) S. M. Riyadh, I. A. Abdelhamid, H. M. Al-Matar, N. M. Hilmy and M. H. Elnagdi, Heterocycles, 2008, 75, 1849.

8 (a) Q. Li, L. A. Mitscher and L. L. Shen, Med. Res. Rev., 2000, 20, 231; (b) N. R. Irlapati, J. E. Baldwin, R. M. Adlington, G. J. Pritchard and A. R. Cowley, Tetrahedron, 2006, 62, 4603; (c) H. Miyadera, K. Shiomi, H. Ui, Y. Yamaguchi, R. Masuma, H. Tomoda, H. Miyoshi, A. Osanai, K. Kita and S. Omura, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 473; (d) C. J. Cowden and I. Paterson, Org. React., 1997, 51, 1; (e) P. Wipf and H. Jahn, Tetrahedron, 1996, 52, 12853.
9 (a) A. E. Farah and A. A. Alousi, Life Sci., 1978, 1139; (b) A. A. Alousi, J. M. Canter, M. J. Monterano, D. J. Fort and R. A. Ferrari, J. Cardiovasc Pharmacol., 1983, 5, 1139.
10 (a) C. J. McElhinny, F. I. Carroll and A. H. Lewin, Synthesis, 2012, 44, 57; (b) M. A. Rogawski, Epilepsy Currents, 2011, 11, 56; (c) O. Rascol, P. Barone, M. Behari, M. Emre, N. Giladi, C. W. Olanow, E. Ruzicka, F. Bibbiani, D. Squillacote, A. Patten and E. Tolosa, Clin. Neuropharmacol., 2012, 35, 15.
11 (a) K. Paulvannan and T. Chen, J. Org. Chem., 2000, 65, 6160; (b) Source: MDL Drug Data registry, by MDL information systems, Inc.; San Leandro, CA.
12 (a) N. Hirano, J. Kohno, S. Tsunoda, M. Nishio, N. Kishi, T. Okuda, K. Kawano, S. Komatsubara and N. Nakanishi, J. Antibiot., 2001, 54, 42; (b) L. A. Hasvold, W. Wang, S. L. Gwaltney, II, T. W. Rockway, L. T. J. Nelson, R. A. Mantei, S. A. Fakhoury, G. M. Sullivan, Q. Li, N.-H. Lin, L. Wang, H. Zhang, J. Cohen, W. -Z. Gu, K. Marsh, J. Bauch, S. Rosenberg and H. L. Sham, Bioorg. Med. Chem. Lett., 2003, 13, 4001.
13 (a) V. Åberg and F. Almqvist, Org. Biomol. Chem., 2007, 5, 1827; (b) L. Cegelski, J.S. Pinkner, N.D. Hammer, C.K. Cusumano, C.S. Hung, E. Chorell, V. Åberg, J.N. Walker, P.C. Seed, F. Almqvist, M.R. Chapman and S.J. Hultgren, Nat. Chem. Biol., 2009, 5, 913.

14 P. S. Dragovich, T. J. Prins, R. Zhou, E. L. Brown, F. C. Maldonado, S. A. Fuhrman, L. S. Zalman, T. Tuntland, C. A. Lee, A. K. Patick, D. A. Matthews, T. F. Hendrickson, M. B. Kosa, B. Liu, M. R. Batugo, J.-P. R. Gleeson, S. K. Sakata, L. Chen, M. C. Guzman, J. W. Meador, III, R. A. Ferre, and S. T. Worland, J. Med. Chem., 2002, 45, 1607.
15 Q. Li, L. A. Mitscher, L. L. Shen, Med. Res. Rev., 2000, 20, 231.
16 (a) P. E. J. Sanderson, D. L. Dyer, A. M. Naylor-Olsen, J. P. Vacca, S. J. Gardell, S. D. Lewis, B. J. Jr. Lucas, E. A. Lyle, J. J. Lynch, Jr.; A. M. Mulichak, Bioorg. Med. Chem. Lett., 1997, 7, 1497; (b) S. Y. Tamura, J. E. Semple, J. E. Reiner, E. A. Goldman, T. K. Brunck, M. S. Lim-Wilby, S. H. Carpenter, W. E. Rote, G. L. Oldeshulte, B. M. Richard, R. F. Nutt, W. C. Ripka, Bioorg. Med. Chem. Lett., 1997, 7, 1543.

17 J. J. Parlow, R. G. Kurumbail, R. A. Stegeman, A. M. Stevens, W. C. Stallings and M. S. South, J. Med. Chem., 2003, 46, 4696.

18 T. Shimatani, N. Hosotani, M. Ohnishi, K. Kumagai, I. Saji, J. Antibiot., 2006, 59, 29.
19 (a) L. G. Beholz, P. Benovsky, D. L. Ward, N. S. Barta, J. R. Stille, J. Org. Chem., 1997, 62, 1033; (b) P. R. Bernstein, B. C. Gomes, B. J. Kosmider, E. P. Vacek, J. C. Williams, J. Med. Chem., 1995, 38, 212.

20 (a) D. Ž. Mijin, G. S. Ušćumlić, N. V. Valentić, A. D. Marinković, Hem. Ind., 2011, 65, 517; (b) V. P. Litvinov, S. G. Krivokolysko, and V. D. Dyachenko, Chemistry of Heterocyclic Compounds, Vol.35, No. 5, 1999.
21 (a) H. J. Jessen and K. Gademann, Nat. Prod. Rep., 2010, 27, 1168; (b) W. A. Loughlin, J. D. A. Tyndall, M. P. Glenn, and D. P. Fairlie, Chem. Rev., 2004, 104, 6085.
22 (a) D. Ž. Mijin, J. M. Marković, D. V. Brković, A. D. Marinković, Hem. Ind., 2014, 68, 1; (b) G. Jones, Pyridines and their benzo derivatives: synthesis. In: A. McKillop (Ed.), Comprehensive heterocyclic chemistry II, Pergamon Press, Oxford, 1996, p. 167; (c) G. Jones, Pyridines and their benzo derivatives: synthesis. In: Boulton A, A. McKillop (Ed.), Comprehensive heterocyclic chemistry, Pergamon Press, Oxford, 1984, p. 395; (d) H. Tieckelmann, In Hetrocyclic Compounds, Pyridine and Its Derivatives, Supplement Part Three; Abramovitch, R. A., Ed.; WileyInterscience: New York, 1974, p 597.
23 Literature on enaminones: (a) R. V. Edwankar, C. R. Edwankar, O. A. Namjoshi, J. R. Deschamps and J. M. Cook, J. Nat. Prod., 2012, 75, 181; (b) T. Miura, Y. Funakoshi, M. Morimoto, T. Biyajima and M. Murakami, J. Am. Chem. Soc., 2012, 134, 17440; (c) B. Stanovnik and J. Svete, Chem. Rev., 2004, 104, 2433;

24 The Chemistry of Enamines; Z. Rappoport, ed.; John Wiley \& Sons, New York, 1994, Part 1, 525; (e) A. Saito, T. Konishi and Y. Hanzawa, Org Lett., 2010, 12, 372; (f) S. Cacchi, G. Fabrizi and E. Filisti, Org Lett., 2008, 10, 2629; (g) Z. Chen, J. Zhu, H. Xie, S. Li, Y. Wu and Y. Gong, Chem. Commun., 2010, 46, 2145; (h) R. -L. Yan, J. Luo, C. -X. Wang, C. -W. Ma, G. -S. Huang and Y. -M. Liang, J. Org. Chem., 2010, 75, 5395; (i) M. Rudolph and A. S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448.
25 (a) K. Goutham, V. Nagaraju, S. Suresh, P. Raghavaiah and G. V. Karunakar, RSC Adv., 2014, 4, 21054; (b) K. Goutham, N. S. V. M. Rao. Mangina, S. Suresh, P. Raghavaiah and G. V. Karunakar, Org. Biomol. Chem., 2014, 12, 2869.
26 (a) R. -L. Yan, J. Luo, C. -X. Wang, C. -W. Ma, G.-S. Huang and Y. -M. Liang, J. Org. Chem., 2010, 75, 5395; (b) I. Yavari and M. J. Bayat, Tetrahedron Lett., 2011, 52, 6649.
27 (a) A. S. Karpov and T. J. J. Müller, Org. Lett., 2003, 5, 3451; (b) A. S. Karpov and T. J. J. Müller, Synthesis, 2003, 2815; (c) H. Yamamoto and K. Maruoka, J. Am. Chem. Soc. 1981, 103, 6133; (d) T. Naka and K. Koide, Tetrahedron Lett.; 2003, 44, 443; (e) R. J. Cox, D. J. Ritson, T. A. Dane, J. Berge, J. P. H Charmant and A. Kantacha, Chem.Commun., 2005, 1037; (f) G. -W. Wang and C. -B. Miao, Green Chem., 2006, 8, 1080.
28 Bruker (2001). SAINT (Version 6.28a) \& SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
29 G. M. Sheldrick, Acta Crystallogr, 2008, A64, 112.


[^0]:    ${ }^{a}$ Crop Protection Chemicals Division,
    CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. gallavk@iict.res.in
    ${ }^{b}$ Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
    ${ }^{c}$ Organic and Biomolecular Chemistry Division,
    CSIR-Indian Institute of Chemical Technology,
    Hyderabad, 500007, India.
    ${ }^{d}$ Center for X-ray Crystallography,
    CSIR-Indian Institute of Chemical Technology,

    ## Hyderabad, 500007, India.

    $\dagger$ Electronic Supplementary Information (ESI) available: CCDC 1004429. For ESI and crystallographic data CIF or other electronic format see DOI:10.1039/c000000x/

