This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Anion Effects to Deliver Enhanced Iridium Catalysts for Hydrogen Isotope Exchange Processes†

Alan R. Kennedy, a William J. Kerr,a Rory Moir a and Marc Reid a

Synthesis of a series of iridium(I) complexes of the type [(COD)Ir(IMes)(PPh3)]X (X = BF4, OTf, and BArF) has been established. Application of these species in mild hydrogen isotope exchange processes revealed more efficient catalysis and, further, a wider solvent scope when employing larger, more weakly coordinating counterions.

Ionic transition metal complexes play a central role in catalysis and organic synthesis. Although it is more common to tune the properties of such catalysts via manipulation of the coordinated ligands on the transition metal cation, the past two decades have witnessed a significant increase in studies of the effects of changing the negatively charged counterion.1 In most cases where the counterion plays a spectator role, moving to larger, more weakly coordinating counterions has evidenced a positive influence on catalyst efficiency across various methodologies, with examples spanning palladium,2 rhodium,3 and iridium4 catalyses, among others.2,6–8 Having stated this, there also exist some cases in which the ability of the counterion to coordinate to the inner sphere of the transition metal cation is essential for overall structural stability.9 Furthermore, changing the counterion has also been documented to completely alter reaction pathways in both transition metal complex synthesis6 and organic synthesis.7

Our interest in this field stems from the development of cationic iridium(I) N-heterocyclic carbene (NHC)-phosphine complexes for pharmacologically-relevant hydrogen isotope exchange (HIE) processes.8,9 To date, we have reported on the development and application of several such complexes, all of which bear the hexafluorophosphate counterion.8,9 In this contribution, we report the syntheses and application in HIE of complexes 1b–d, counterion variations of our flagship catalyst, 1a (Fig. 1).9,10 As has been demonstrated by Pfaltz and others in iridium-based catalysis,4 we hypothesised that moving to larger counterions, such as tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (BARF), would enhance the activity and longevity of the proposed new Ir species at lower catalyst loadings. Furthermore, as wider preparative applications of HIE require catalysts operable in a more expansive array of solvent media,6,9,11 we theorised that the more diffuse counterions would enhance the solvent scope of the catalyst beyond that which we have already reported.9 To substantiate these proposals, it was necessary to study complexes bearing counterions both larger and smaller than for catalyst 1a.

We began our studies with the syntheses of novel complexes 1b and 1c, using the general method shown in Table 1. Starting from the chloro-carbene complex, 2,1,2,13 the choice of silver salt used to abstract the chloride ligand simultaneously delivered the counterion of choice (after addition of PPh3). Both complexes were isolated in acceptable yields by simple trituration from ethyl acetate.

In turning our attention to the synthesis of complex 1d, the lack of a commercially available source of AgBARF prompted the search for a silver-free synthetic route. In this regard, it was hypothesised that the chloro-carbene intermediate, 2, may be circumvented if the parent imidazolium salt required to provide the NHC ligand was partnered with a large and weakly coordinating counterion such as BARF. Indeed, this approach has promising literature precedent relating to iridium complexes bearing a chelating carbene-phosphine ligand.14 Accordingly and as detailed in Scheme 1, this approach was successfully realised for...
Table 1 General procedure for the syntheses of complexes 1b and 1c.

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>Catalyst</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BF₆⁻</td>
<td>1b</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>OTf</td>
<td>1c</td>
<td>69</td>
</tr>
</tbody>
</table>

Next, we explored the effective solvent scope of catalyst 1 with different counterions. Previously, we have identified 2-MeTHF, MTBE, and Et₂O as viable alternatives to DCM using catalyst 1a. Therefore, we compared the applicable solvent scope of 1a versus the most non-polar derivative, 1d, across a wider range of solvents than previously explored. Using the same reference reaction as shown in Scheme 2 (5 mol% catalyst, 25 °C), we screened a series of ethereal,
alcoholic, ester, chlorinated, and aromatic solvents. Firstly, we were encouraged to note that the more soluble catalyst, 1d, was generally superior to parent catalyst, 1a, within HIE for the range of ether and carbonate solvents tested (Fig. 3). For dioxane, MTBE, Et2O, and 2-MeTHF both catalysts were shown to perform equally well, with the larger counterion of 1d offering slight improvements to an already efficient deuteration system. However, more significant improvements were recorded on comparing the activities of 1a and 1d in PrOAc, THF, and the recognised green solvents, CPME and dimethyl carbonate.15

Alcohol-derived solvents provided a more varied range of reaction efficiencies (Fig. 4). Notably, in all cases, catalyst 1d displayed greater levels of activity and was more widely applicable than 1a. The most significant reactivity from the alcoholic solvents shown was observed in the most sterically shielded (and presumably least coordinating) alcohol, 1-AlOMe.

A similar pattern of reactivity was observed for ester solvents, and accompanied with higher overall levels of deuterium incorporation (Fig. 4). Again, the combination of catalyst 1d and the most sterically encumbered solvent (PrOAc over EtOAc) proved most effective. Chlorinated solvents DCM and DCE evidenced no difference in catalysts 1a and 1d, with both producing almost quantitative D- incorporation. In contrast, a stark difference in deuterium labelling efficiency was recorded between 1a and 1d when using toluene as the solvent. Again, catalyst 1d was superior to the less soluble catalyst, 1a. Finally, it is also worth noting that more polar solvents DMSO and DMF were tested under the same reaction conditions with complex 1d, however, only very low levels of deuteration in acetophenone were detected (see ESI for results).

As stated in the introduction, owing to the highly variable solubility profile of different drug classes, HIE processes with drug candidates require a flexible solvent choice. To explore the potential benefits of expanded solvent scope with catalyst 1d over 1a, we next turned our attention to the deuterium labelling of drug molecule, Niclosamide, 8. Using catalyst 1a or 1d in DCM, similarly moderate to good deuterium incorporation was achieved across all four possible labelling sites (Table 2, Entries 1 and 2). This is presumed to be due to the relative insolubility of 8 in DCM. On moving to 2-MeTHF as an alternative solvent (able to fully solubilise all reactants), catalyst 1a showed suppressed deuteration in positions o-c, and enhanced deuteration at position d (Entry 3).17 Pleasingly and to excellently exemplify the effectiveness of the larger anionic counterion, especially with more demanding pharmaceutically-related substrates, catalyst 1d in 2-MeTHF showed improved labelling in all four positions over all other conditions tested (Entry 4 versus 1-3).

Table 2 Improved deuterium labelling of Niclosamide with 1d.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>X</th>
<th>Solvent</th>
<th>%D_{o}</th>
<th>%D_{c}</th>
<th>%D_{a}</th>
<th>%D_{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>PF_{6}</td>
<td>DCM</td>
<td>65</td>
<td>53</td>
<td>41</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1d</td>
<td>BArF</td>
<td>DCM</td>
<td>71</td>
<td>57</td>
<td>18</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>1a</td>
<td>PF_{6}</td>
<td>2-MeTHF</td>
<td>51</td>
<td>11</td>
<td>4</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>BArF</td>
<td>2-MeTHF</td>
<td>97</td>
<td>96</td>
<td>65</td>
<td>96</td>
</tr>
</tbody>
</table>

4 Percent deuteration determined by ^{1}H NMR.

Conclusions

In summary, we have reported on the syntheses of three novel complexes of the type [(COD)Ir(IMes)(PPh_{3})X (X = BF_{6}, OTf, and BArF), with the BArF complex having been accessed by a modified and more direct preparative process. Application of these complexes as catalysts in hydrogen isotope exchange has demonstrated improved catalytic activity at lower catalyst loadings in the order X = BArF $>$ OTf $>$ PF_{6}. Relative to the parent complex (1a, X = PF_{6}), 1d (X = BArF) possesses a superior solubility profile and applicable solvent scope in HIE processes. This is of fundamental importance to the delivery of labelled drug candidates for use in absorption, distribution, metabolism, excretion, and toxicology (ADMET) studies. Accordingly, the complex 1d now provides a catalyst system of wider potential applicability and effectiveness, in particular, within pharmaceutical settings. Further and in relation to this, the utility of improved solvent...
scope has been demonstrated through improved global deuterium labelling of the drug molecule Niclosamide in 2-MeTHF. Our on-going efforts in this area are focused on the further application of optimal catalyst, 1d, in labelling processes and to alternative C-H activation methodologies beyond HIE. We would like to thank the Carnegie Trust (M.R) for funding. Mass spectrometry data were acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Notes and references

Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, Scotland, United Kingdom; Tel: (+44)-141-548-2959; Fax: (+44)-141-548-4822; E-mail: w.kerr@strath.ac.uk.† Electronic Supplementary Information (ESI) available: Details of all experimental procedures (catalyst syntheses and deuterium labelling) are provided. For crystallographic data in CIF or other electronic format, see DOI: 10.1039/c000000xs/¶ Crystallographic data (excluding structure factors) for the new complexes reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC 1001847 (1b), 1001848 (1c), 1001849 (1d), and 1001850 (4). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223 336-033; email: deposit@ccdc.cam.ac.uk) or via www.ccdc.cam.ac.uk/data_request/cif.

10 Catalyst 1a is available commercially from Strem Chemicals, Ltd.

17 The increased selectivity for position d when using 1a in 2-MeTHF may be based on the increased polarity of the solvent relative to DCM and the resultant increase in competition between substrate and solvent for coordination to iridium. Coordination of the amide carbonyl and labelling via a 5-membered metallacycle (position d) is more facile than via the 6-membered metallacycle (position c; see ref. 9 for details). Additionally, coordination through the nitro group (for labelling at a and b) is presumed to be weaker than for the amide. For a recent discussion on the use of coordinating additives to increase reaction chemoselectivity, see: R. M. Drost, T. Bouwens, N. P. van Leest, B. de Bruin and C. J. Elsevier, ACS Catal., 2014, 4, 1349.