Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Organic & Biomolecular Chemistry

RSCPublishing

EDGE ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

The Importance of Chain Conformational Mobility During 5-*Exo*-Cyclizations of *C*-, *N*- and *O*-Centred Radicals[†]

John C. Walton^{*a*}

The reaction coordinates of an archetypical set of 5-exo cyclizations of C-, N- and O-centred radicals were investigated by computational methods. G4 theory, and DFT with the um062x functional, were able to rationalise counterintuitive factors such as the 'normal' order of rate constants being: N-centred < C-centred < O-centred radicals. The access angle between the radical centre and the double bond was identified as a key factor. Examination of its evolution during ring closure implied that rigidity at the N-ends of the chains, and the consequent extra energy needed to attain chair-like transition states, might be the reason for slow aminyl cyclizations. A novel linear correlation between cyclization activation energies and the access angles was discovered. The preference for cis-1,2-disubstituted product formation was also accounted for in terms of interaction between the hyperconjugatively delocalized SOMO and the alkene π^* orbital.

Introduction

It is well established that neutral radicals having alkene acceptor groups at the 5-position with respect to the radical centre (1) regioselectively ring close in the *5-exo-trig* mode to afford 5-member ring containing products (3). This property has been exploited in many organic synthetic procedures,¹ in natural product syntheses,² and in numerous tandem and cascade processes.³ The main characteristics of the reaction were delineated in a seminal article by Beckwith and Ingold in 1980.⁴

The quality of kinetic data for radical ring closures remains rather variable, but a considerable body of such information is now available for *C*-centred hex-5-enyl type radicals^{4,5,6} and more is steadily becoming available for carbonyl radicals,^{7,8} N- centred aminyl^{9,10,11} and iminyl radicals,^{12,13} for a few Ocentred species such as pent-4-enyloxyl^{14,15} and for allyloxycarbonyloxyl radicals.¹⁶ The entropy of activation favors 5-member ring rather than 6-member ring formation, but this factor is too small to account for the much higher 5-exo closure rates in comparison with 6-endo; instead control resides with the activation enthalpy terms. For the C-centred hex-5enyl series, alkyl substituents at either the 1- or 6-positions had only a minor effect on the rate. In sharp contrast, substituents at the 5-position dramatically reduced the 5-exo-rate and often diverted ring closure into the 6-endo-trig mode. Di-substitution at the 2- or 3-positions substantially increased the rate of the 5exo ring closure, thus providing examples of radical gemdialkyl effects. Similarly, replacement of CH₂ with an O-atom at the 3-position also induced a significant increase in cyclization rate. Counterintuitively, hex-5-enyl types with a single methyl substituent at the radical centre yielded mixtures of cis- and trans-disubstituted 5-member ring compounds containing a preponderance of the cis-isomers. The reason for this was suggested to be a secondary attractive interaction in the state (TS), between the radical SOMO transition (hyperconjugatively delocalized to the incipiently cis-Me substituent) and the alkene π^* orbital (see structure **4**).¹⁷

Kinetic and stereo-chemical results from radical ring closures have usually been rationalized by reference to the Beckwith-Houk transition state.^{18,19} For *5-exo*-closures this TS resembles the comparatively strain-free chair conformation of

the cyclohexane ring **2** with the radical centre (X-1) approaching C-5 of the alkene at an angle close to tetrahedral. A number of computational studies of hex-5-enyl ring closures have been reported²⁰⁻²⁴ and these have generally supported Beckwith-Houk type TS models. Computational studies of the ring closures of carbonyl radicals,²⁵ iminyl radicals,¹³ aminyl radicals²⁶ and oxyl radicals¹⁵ have generally focused either on the *exo* vs. *endo* regioselectivity or on details of the stereochemistry induced by substituents.

A recent appraisal of rate constants for 5-exo cyclizations of model *N*-, *C*-, and *O*-centred alkenyl type radicals (k_c/s^{-1} at 300 K in hydrocarbon solutions) showed that they span at least 5 orders of magnitude.²⁷ Intriguingly the magnitude of k_c depended strongly on the nature of the radical-bearing atom. For an archetype set, the *N*-centred species, including aminyl and iminyl, cyclized the slowest ($k_c < 10^4 \text{ s}^{-1}$) *C*-centred, including alkyl and acyl, cyclized at intermediate rates ($10^6 > k_c > 10^5 \text{ s}^{-1}$) and *O*-centred were fastest ($k_c > 10^7 \text{ s}^{-1}$). Values outside these ranges are, of course, possible for radicals with more exotic substituents but the 'normal' order is:

N-centred < C-centred < O-centred

Unexpectedly, these rate constants did not line up according to the sequence of the radical centres in the first row of the Periodic Table (electronegativity order). The results of an investigation to see if current ab initio and DFT theoretical methods could reproduce these counterintuitive trends, and what insights could be obtained into their causes, are reported in this paper.

Results and Discussion

Experimental Kinetic Data for 5-exo Cyclizations

Experimental kinetic data is collected in Table 1 for 5-exocyclizations of a set of archetype radicals. This set was chosen because the data, though far from perfect, is amongst the most reliable and because it illustrates the effects of key structural features. Large differences in the entropies of activation are not expected for this set of similar reactions and, where available, the measured $\log[A_c/s^{-1}]$ were all 10±0.5 (see Table 1 and refs. 4-6). In a few cases (Table 1) activation energies were therefore estimated from reported rate constants, assuming $log(A_c)$ of this magnitude. Two types of N-centred radicals, aminyl (5e) and iminyl (6e), are included together with two types of O-centred radicals, alkoxycarbonyloxyl (13e) and alkoxyl (14e). The C-centred types include the archetype hex-5-enyl (7e), plus radical 10e with two methyl substituents at the radical centre, 11e with a 3-oxa-substituent and acyl type 12e. The 5-exo- ring closures of 8e (8e and 9e are, of course, the same open chain radical when extended) were specially chosen to probe the ability of computational methods to rationalize the unexpected faster rate of cis-1,2-disubstituted-5-member ring formation as compared to trans (Table 1).

Cyclization	<i>k</i> _c /s ⁻¹ 298 K ^a	$Log(A_c/s^{-1})$	E [‡] / kJ/mol	Ref.
$ \begin{array}{c} & \longrightarrow & 5TS \longrightarrow & \swarrow \\ & & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & $	3.0×10^{3}	[10.5]	[39.4] ^b	11,6
$ \begin{array}{c} & & & \\ & & & \\ $	1.0×10^{4}	[10.5]	[38.5] ^b	6,13
$ \begin{array}{c} & & \\ & & $	2.3 × 10 ⁵	10.4	28.6	28
$ \begin{array}{c} & & \\ & & $	2.9 × 10 ⁴	9.92	31.1	29
$ \begin{array}{c} & & \\ & & $	1.0×10^{5}	9.79	27.2	29

Table 1. Experimental rate constants and Arrhenius activation parameters for 5-exo cyclizations of hex-5-enyl type radicals.

ARTICLE

Choice of Computational Methods

All calculations used the Gaussian09 suite of programs.³² Initial geometry optimizations were performed using the UB3LYP hybrid density functional with the 6-31+G(d) basis set. Further full geometry optimizations were carried out at every level of theory used. Minima and transition states were confirmed as such by calculating their normal vibrations at each level of theory. All transition states had one imaginary frequency that corresponded to the reaction coordinate. The zero-point energies and thermal corrections to 298 K derived from these calculations were used for the computation of thermodynamic quantities in the standard state [ΔH° , ΔG° etc.]. After annihilation $\langle s^2 \rangle$ values were all 0.750±0.001 and hence quartet contamination was negligible.

For the trial set of cyclizations shown in Table 2, geometries, reaction enthalpies and activation enthalpies were computed with the UB3LYP functional and the 6-311+G(2d,p) basis set, also with Dunning's correlation consistent triple-zeta basis set with added diffuse functions, aug-cc-pvtz^{33,34} and with the CBS-QB3/6-311G(2d,p) complete basis set method.³⁵ Although the B3LYP functional generally gives reasonable agreement with experiment for reactions of radicals based on first-row elements, it usually underestimates activation barriers³⁶ and makes no provision for dispersion forces. Results were therefore also computed with the fourth generation G4 method³⁷ and with the hybrid m062x functional of Truhlar that includes dispersion corrections.³⁸ The trial set (Table 2) was chosen to give a reasonable cross-section of the radical

cyclization processes and so includes an *N*-centred radical (**5e**), a *C*-centred radical (**7e**) and an *O*-centred radical (**14e**) as well as the recently investigated species **13e**. The extended all-*trans* conformations were found to be energy minima for all the radicals and reaction enthalpies and activation energies were calculated relative to these ground states. However, in solution and vacuum, the radicals populate a set of conformations involving partial internal rotations about the backbone C-C bonds. Experimental thermodynamic parameters will relate to an appropriate average and hence the computed values may somewhat overestimate them.

Table 2. Cyclization Enthalpies ($\Delta H^{\circ}/kJ \mod^{-1}$) from a Selection of Computational Methods

Ring Closure	UB3LYP/6- 311+G(2d,p)	UB3LYP/ aug-cc-pvtz	CBS-QB3	um062x/6- 311+G(2d,p)	G4	Zavitsas GA ^a
$5e \rightarrow 5c$	-9.1	-8.7	-41.9	-41.4	-38.9	[-49.7]
$7e \rightarrow 7c$	-40.4	-44.3	-65.6	-61.4	-62.2	-64.0
$13e \rightarrow 13c$	-50.2	-46.9	-73.2	-86.5	-72.9	-
$14e \rightarrow 14c$	-39.1	-39.8	-67.0	-63.1	-63.1	-66.9

^a Empirical Group Additivity values - see text.

All 5 methods predict the *5-exo*-cyclizations of *N*-, *C*- and *O*-centred radicals will be exothermic. The UB3LYP functional, with both the 6-311+G(2d,p) and aug-cc-pvtz basis sets, predicts significantly smaller magnitude Δ H^o values than the more advanced methods. The CBS-QB3, um062x and G4 methods show a consistent picture with the smallest Δ H^o for *N*-centred radical **5e**, an intermediate value for *C*-centred radical

7e and the highest exothermicities for the *O*-centred radicals **13e** and **14e**. This places the cyclizations in the correct order of reactivity.

The experimental enthalpies of formation $(\Delta_f H^\circ)$ are not available for both reactant and cyclized radicals of the sets in Table 2. However, Group Additivity (GA) schemes deliver this data for hydrocarbon C-centred radicals and a few others. Such schemes have recently been reviewed by Zavitsas³⁹ who recommended a simple relationship for hydrocarbon radicals based on the known $\Delta_t H^\circ$ values of the corresponding hydrocarbons.⁴⁰ The ΔH° obtained from Zavitsas relationship for ring closure of radical 7e is in Table 2 and will be close to the 'true' value (± 3 kJ/mol, see ref. 39) because this relationship is derived from a lot of experimental data. The GA value of ΔH° for the O-centred system 14e should also be reasonably reliable. However, for the N-centred system 5e, very little experimental $\Delta_f H^\circ$ data on aminyl radicals is available, and it all relates to primary aminyl radicals, whereas **5e** is a secondary aminyl radical. It follows that the GA ΔH° in Table 2 for 5e is little better than guesswork. It is clear from Table 2 that the ΔH° values computed by all three CBS-QB3, um062x and G4 methods are in good agreement with the GA values whereas the UB3LYP methods underestimate ΔH° .

Computation of Activation Parameters and Transition States

In view of its good success in the benchmarking described above, the full G4 method was applied to the computation of transition states and activation parameters for all the cyclizations of Table 1. The um062x functional consumed much less computing resources so it was also applied so as to further assess its suitability. The enthalpies of activation (ΔH^{\ddagger}) and reaction enthalpies (ΔH°) obtained from the two methods are displayed in Table 3. There is reasonable agreement between the two computational methods, for both thermodynamic parameters, with the exception of the two Ocentred cyclizations 13e and 14e. The data is shown plotted against the experimental Arrhenius activation energies E^{\ddagger} in Figure 1. On comparing with the line of unit slope it is seen that for both methods the computed ΔH^{\ddagger} values are generally greater than the experimental Arrhenius E^{\ddagger} by averages of 6.5 kJ/mol (G4) and 9.4 kJ/mol (um062x).

The experimental rate parameters were all obtained for solution phase experiments carried out in non-polar benzene or *t*-butylbenzene solvents. Solvent effects were, therefore, expected to be small. To check on this factor, both ΔH° and ΔH^{\dagger} were re-examined for a selection of N-, C- and O-centred radicals using the G4 method with full geometry optimization and the CPCM polarizable conductor calculation model including benzene as solvent (see Table 3, columns 4 and 5). With the exception of the more polar **13e** system, the presence of solvent made < ~ 3 kJ/mol difference to either computed ΔH° or ΔH^{\ddagger} . There was no systematic trend and the larger magnitude of the computed ΔH^{\ddagger} , in comparison with the experimental E^{\ddagger} , could not be attributed to solvent effects

Figure 1(a): Plot of computed ΔH^{\ddagger} vs. experimental Arrhenius activation energies (E^{\ddagger}).

1(b): Plot of ΔH° vs. experimental & computed activation enthalpies $(E^{\ddagger}, \Delta H^{\ddagger})$.

In Figure 1(a): Diamonds: G4 computed values; Crosses: um062x computed values. The full line is that of unit slope.

In Figure 1(b): Squares: G4 computed values vs exptl. E^{\ddagger} ; Crosses um062x computed values vs exptl. E^{\ddagger} ; Circles: G4 computed ΔH° vs G4 computed ΔH^{\ddagger} . In each case blue signifies *N*-centred, red signifies *C*-centred and green signifies *O*-centred radicals.

As mentioned above, a possible factor contributing to the higher ΔH^{\ddagger} is that they were computed relative to the extended conformations of the open chain radicals. Clark and co-workers²² found that for ring closure of the hex-5-enyl radical **7e** the activation enthalpy was lower by ~5 kJ/mol when computed relative to a local minimum "precursor" conformation resembling that of the TS. As a check on this factor, local minimum "precursor" structures were sought and found for most of the radicals using the um062x method. The activation enthalpies relative to these precursor conformations (ΔH^{\ddagger}_{PR}) are also displayed in Table 3. The um062x method for hex-5-enyl found only a lowering 0.4 kJ/mol in activation

enthalpy. For all the other radicals (except **11e**) the difference in ΔH^{\ddagger}_{PR} and ΔH^{\ddagger} was < 5 kJ/mol. In several cases (**8e**, **12e**, **13e** and **14e**) ΔH^{\ddagger}_{PR} was marginally higher than ΔH^{\ddagger} because the precursor conformations were slightly lower in energy than the extended conformations. It follows that the higher computed ΔH^{\ddagger} values can't be simply explained by relating the TSs to the precursor conformations.

Table 3. Reaction Enthalpies (ΔH°) and Activation Enthalpies (ΔH^{\ddagger}) for Radical *5-Exo* Ring Closures Computed with Two Methods

Ring	ΔH°	ΔH^{\dagger}	ΔH°	ΔH^{\dagger}	∆H°	ΔH^{\dagger}	ΔH_{PR}^{\dagger}
Closure	G4	G4	G4(PhH) ^a	G4(PhH) ^a	um062x	um062x	um062x
$5ec \rightarrow 5cc^{b}$	-24.29	42.85	-	-	-32.9	46.52	43.3
$5et \rightarrow 5ct^{c}$	-38.87	56.93	-35.36	58.14	-41.38	62.32	
$6e \rightarrow 6c$	-26.21	51.25	-24.45	50.91	-28.55	56.05	53.8
7e → 7c	-62.24	31.60	-61.11	32.06	-61.57	36.24	35.8
8e → 8c	-63.66	34.78	-	-	-63.16	38.54	39.8
8e → 9c	-57.68	26.96	-	-	-57.64	36.91	
$10e \rightarrow 10c$	-59.94	30.05	-58.90	30.43	-57.73	35.32	31.5
$11e \rightarrow 11c$	-75.37	23.37	-75.11	23.87	-77.33	25.04	9.5
12e → 12c	-48.53	34.69	-50.91	34.15	-53.67	29.97	32.9
13e → 13c	-72.94	24.91	-81.51	17.51	-86.69	15.26	16.1
$14e \rightarrow 14c$	-63.12	19.52	-62.03	19.48	-63.08	27.30	30.7

^a G4 computation with the CPCM polarizable conductor calculation model and benzene as solvent. ^b Cyclization of *N*-methylpent-4-en-1-aminyl **5e** via a chair TS with the *N*-Me and CH₂ *cis*. ^c Cyclization of *N*-methylpent-4-en-1-aminyl to yield *N*-methylpyrrolidinylmethyl radical **5c** as the *trans*-isomer.

Figure 1 shows that both computational methods sorted the ring closure rates in the correct, counterintuitive, order with N-centred slower than C-centred slower than O-centred (see Figure 1) with only one exception (**11e**). In view of this these computed results seemed a satisfactory basis for deeper analysis. Linear regression gave the following relationships:

$\Delta H^{\ddagger}(\text{G4}) = 1.15E^{\ddagger} + 2.38 (\text{R}^2)$	$^{2} = 0.831$)	(1)
$\Delta H^{\ddagger}(\text{um062x}) = 1.24E^{\ddagger} + 2.63$	$(R^2 = 0.725)$	(2)

The correlation of ΔH^{\ddagger}_{PR} with E^{\ddagger} was significantly poorer. It appeared from Figure 1a that the G4 method handled the *N*-centred and the *O*-centred radicals somewhat more adequately than the um062x functional.

Reaction enthalpies play an important role in controlling many types of radical processes. To check on this factor, the experimental data was plotted against the computed ΔH° values with the result shown in Figure 1(b). This reveals a rough trend in which the more exothermic cyclizations tend to have lower activation energies. Again both computational methods correctly sort the processes into zones for each type of radical (circled in blue, red and green for *N*-, *C*- and *O*-centred) with the exception of **11e**. In case the scatter was due to errors in the experimental rate data, a plot of the computed ΔH^{\ddagger} vs the computed ΔH° values is included in Figure 1(b) (circles). It is clear from this that the scatter cannot be attributed to large experimental error limits because theory also predicts no simple Evans-Polanyi type relationship for *5-exo* cyclizations. Correlations of experimental with computed activation parameters have been noted previously^{41,42} for radical and nucleophilic ring closures. In these studies derivations of intrinsic activation energies via Marcus Theory suggested that deviations from such correlations usually indicate the presence of specific TS-stabilizing effects.

Transition State and Reaction Coordinate Properties

The structures and frontier orbitals (alpha SOMOs) of the TSs of selected radicals, computed with the G4 method, are shown in Figure 2 (see ESI for a complete set of structures). The structures for N-centred aminyl (5TS), C-centred 7TS - 11TS and acyl 12TS, as well as O-centred alkoxyl 14TS all resemble the cyclohexane chair-like form of the Beckwith-Houk model (2). The exceptions are, of course, for the iminyl (TS6) and alkoxycarbonyloxyl (13TS) which show flattening of the ring in the region of their double bonds. The radical centres are strategically placed above the alkene double bonds with approach angles not greatly different from tetrahedral. The TS SOMOs show moderate interaction of the π - or σ -orbital of the radical centre with the alkene π -system. The latter retain much of their π -character in the TSs. Some key structural parameters for each TS and each 5-member ring product radical are listed in Table 4.

Figure 2. Structures and SOMOs of Selected Transition States Computed at the G4 level.

Table 4. G4 computed structural parameters for 5-exo TSs, precursor conformations (PR) and 5-member ring product radicals.^a

4 5 CH_2 4 7 CH_2 0 CH_2 3 2 XR_2 1

	1	1	1	-	1	1	1	1
Species	d _{1,5}	$\delta d_{1,5}$	d _{5,6}	$\delta d_{5,6}$	d _{1,2}	$\delta d_{1,2}$	θ	$\delta \theta_{\rm T}$
5TS(cis)	2.014		1.382		1.446		109.4	
5PR(cis)	2.925		1.326		1.442		106.0	
5TS(trans)	2.050		1.376		1.447		110.7	
5PR(trans)	3.090		1.325		1.440		140.8	
5c(trans)	1.468	0.546	1.485	0.103	1.458	0.012	112.4	3.0
6TS	2.042		1.378				109.6	
6PR	3.273		1.324				82.4	
6c	1.477	0.565	1.487	0.109			111.8	2.2
7TS	2.262		1.367		1.499		109.5	
7PR	3.063		1.326		1.488		105.3	
7c	1.549	0.714	1.484	0.117	1.547	0.048	115.0	5.5
8TS	2.240		1.369		1.501		110.0	
8PR	3.034		1.326		1.491		104.6	
8c	1.560	0.680	1.484	0.115	1.539	0.038	115.2	5.2
9TS	2.234		1.371		1.502		110.4	
9c	1.570	0.680	1.484	0.113	1.540	0.038	116.6	6.2
10TS	2.211		1.375		1.512		110.8	
10c	1.579	0.632	1.483	0.108	1.545	0.033	116.6	5.7
11TS	2.284		1.361		1.495		111.2	
11PR	3.002		1.325		1.486		109.8	
11c	1.551	0.733	1.482	0.121	1.539	0.044	115.3	4.1
12TS	2.219		1.367		1.518		107.7	
12PR	2.989		1.325		1.522		96.3	
12c	1.567	0.652	1.480	0.113	1.531	0.013	114.0	6.4
13TS	2.121		1.358		1.355		104.2	
13PR	3.264		1.323				85.8	
13c	1.45	0.671	1.477	0.119	1.358	0.003	111.1	6.7
14TS	2.041		1.369		1.385		99.3	
14PR	2.781		1.326		1.373		95.6	
14c	1.435	0.606	1.481	0.112	1.428	0.043	109.9	10.6

^a Distances in Å; angles in degrees. All parameters computed by the G4 method except for those of the #PR structures which were optimized at the um062x level.

0.958):

Interestingly, the structures of the "precursor" conformations were all quite chair like and resembled the TSs except that the $d_{1,5}$ distances were longer, the $d_{1,2}$ lengths were shorter (essentially unchanged double bonds) and the access angles varied. The distances from the radical centre X to C-5 of the alkene $(d_{1,5})$ in the TSs are in the range from 2.01 to 2.28 Å. The differences $(\delta d_{1,5})$ between $d_{1,5}$ in the TS and the analogous distances in the cyclized 5-member ring radicals are shown in column 3. The $d_{1,5}$ distances are somewhat longer for the Ccentred radicals than for the N-centred and O-centred. Thus the slower cyclization rates of the N-centred radicals are not directly related to this aspect of orbital overlap. Similarly, there is no simple relationship between reactivity and the $d_{5,6}$ or $d_{1,2}$ structural parameters. The "access" angles θ_T vary from 104 to 111° in the TSs. The differences ($\delta \theta_T$) between θ_T in the TSs and the analogous angle in the cyclized radicals are listed in column 9 of Table 4. Intriguingly, a good linear correlation between $\delta \theta_{\rm T}$ and the experimental activation parameters E^{\ddagger} was observed (Figure 3). There was one notable outlying point for the **11e** system. A similar correlation was obtained with $\delta \theta_{\rm T}$ values derived from the um062x computations. G4 computed $\delta \theta_T$ values also gave a reasonably linear correlation with the computed activation enthalpies (ΔH^{\ddagger}) (see green circles in

 E^{\ddagger} (kJ mol⁻¹) = -3.50× $\delta\theta_{\rm T}$ + 47.70 (3)

Figure 3) so the relationship has theoretical support. Excluding

the outlier, the following relationship was obtained (R^2 =

Figure 3. Plots of G4 computed $\delta \theta_T$ vs. activation parameters

Equation (3) shows that large $\delta\theta_T$ correspond to fast cyclizations and small $\delta\theta_T$ to slow cyclizations with high activation energies. Naive analysis would expect the opposite, because small $\delta\theta_T$ might indicate the direction of approach of X[•] in the TS would be favorable for overlap of the orbital on X with the alkene π -system. Evidently $\delta\theta_T$ represents some factor other than orbital overlap. A possibility was that small $\delta\theta_T$

could be indicative of chain stiffness and inflexibility with consequent slow molecular re-organization.

The 1-methylhex-5-envl cyclizations $8e (= 9e) \rightarrow 8c(trans)$ + 9c(cis) are particularly interesting. The data in Table 3 demonstrate that both the G4 and um062x methods correctly yielded smaller ΔH^{\ddagger} values for formation of **9c**(*cis*) even though this is more sterically crowded than 8c(trans). The ΔH^{\ddagger} values of the G4 method in particular were within the error limits of the experimental data (compare with Table 1). The computed SOMO for 9TS in Figure 2 strikingly illustrates that an extra attractive interaction between the alkene π -system and two of the methyl H-atoms is in operation in the TS of the cissystem. Thus the G4 (and um062x) computations gave some support for the idea of interaction between the hyperconjugatively delocalized SOMO and the alkene π^* orbital as depicted in structure 4 and originally proposed by Beckwith and co-workers.17

This result naturally shifts attention to the N-methyl-pent-5envlaminyl radical 5e which contains a similar cis/trans structural feature to 8e (= 9e). The product 1-methylpyrrolidin-2-yl-methyl radical 5c has, in principle, trans- and cis-isomeric forms. However, the pyramidyl N-atom undergoes rapid inversion at room temperature such that two isomers cannot be experimentally distinguished. The TS for cyclization of 5e could adopt a *cis*- or *trans*-conformation. By analogy with **8e**, an extra attractive interaction between two of the N-Me Hatoms and the alkene π -system was anticipated for the *cis*-The computed activation enthalpies for conformation. cvclization of 5e in Table 3 confirm this; the trans-TS was found to be 14 and 16 kJ mol⁻¹ higher in energy than the *cis*-TS by the G4 and um062x methods respectively. Furthermore, the SOMO of the 5TS(cis) (compare with 9TS in Figure 2) also illustrates the extension of the SOMO from the alkene π -system to the N-Me H-atoms rather well. The product radical 5c will be undergoing rapid inversion of the N-atom, however, steric interaction between the 1,2-substituents will probably favor the transoid structure. In deriving the thermodynamic parameters for comparison with experiment it was assumed that the cyclization goes via the cis-TS to the transoid product radical.

Plots of the total energies computed at the um062x level vs the X·····C=C distance ($d_{1,5}$), are shown in Figure 4 for a selection *C*-, *N*- and *O*-centred radicals. These plots indicate that the activation barriers for the *N*-centred **5e** and **6e** are broader as well as higher than for the *C*-centred **7e**; as is that for the *O*-centred **13e**. For each cyclization a minimum was found in the region 2.8 to 3.4 Å corresponding to the "precursor" conformations of the open chain radicals. Figure 4 shows that for aminyl radical **5e** this precursor is situated further from the TS (larger $d_{1,5}$) and is higher in energy than for the archetypes **7e** and **14e**. This is an indication that the conformational re-organization of the chain of **5e**, so as to attain the chair Beckwith-Houk TS, may require more energy than for archetype **7e** or **14e**.

Figure 4. Plot of relative E(UHF) computed with the um062x functional vs. $d_{1.5}$

Red; hex-5-enyl system **7e**. Blue; aminyl system **5e**. Purple; iminyl system **6e**. Dark green; pentenyloxyl **14e**. Light green; allyloxycarbonyloxyl system **13e**.

Figure 5a and b show plots of the evolution along the reaction coordinate of the C=C bond lengths ($d_{5,6}$) and the $\angle X \cdots C=C = \theta$ "access" angles of a selection of *5-exo* cyclizations. Examination of Figure 5(a) reveals that the alkene bond $d_{5,6}$ changes little for a good portion of the cyclization process for all the radicals.

For the *C*-centred radicals **7e** and **11e** interaction sets in at about 2.55 Å separation, for the *N*-centred radicals **5e** at about 2.35 Å and for the *O*-centred **14e** at about 2.33 Å. Since C-C bonds are intrinsically longer than C-N bonds which are longer than C-O bonds, the conclusion is that all three types behave in a similar, uniform manner. This, and their similar curvatures, implies that once the radical centre X[•] begins its interaction with the alkene, in effect is "captured" by the C=C double bond, all the radicals behave in an equivalent way in terms of overlap of the orbital on X with the π -system. It follows that this orbital overlap, or any other types of interaction of X• with the alkene, are not responsible for the higher and broader barriers of the N-centred species.

Figure 5(b), which charts the evolution of the "access" angle (θ), is very revealing in that most of the change is at longer d_{1,5} distances where Figure 5(a) showed tranquility! For the *N*-centred radical **5e** the change in θ is "out of phase" with the alkene bond changes. The same is true of *N*-centred radical **6e** except that the trend is in the opposite direction. This is possibly related to imine-like character of the latter. The nearly horizontal red line for the *C*-centred **7e** (and **11e**) shows they maintain θ close to 109° even at distances where interaction with the π -system is negligible. Thus **7e** and **11e** are able to attain the conformation for optimum overlap with comparative ease.

Figures 5(a) and (b). Graph (a) shows the evolution of the

C=C bond length $(d_{5,6})$ as a function of the reaction coordinate $(d_{1,5})$. Graph (b) shows the evolution of the access X····C=C

The crosses on Figure 5(b) mark the positions of the TSs. The transitions from full (or dashed) lines to dotted lines at longer $d_{1,5}$ mark the positions of the "precursor" conformations of the ring open radicals.

The blue lines for 5e(cis) and 5e(trans) indicate extensive conformational reorganization is required for these N-centred species. The N-centre approaches along a comparatively flat trajectory suggesting inflexibility of the chain at the C-N end and that energy needs to be expended during this stage of the reaction coordinate. This would certainly contribute to the higher and wider activation barrier found for the N-centred radical cyclizations. The light blue line for the iminyl radical trajectory (6e) indicates it approaches at large $d_{1.5}$ at comparatively acute angle; though again energy needs to be expended to attain the chair TS conformation. Its C=N bond is responsible for the inflexibility at the N-end of the chain and the acute angle is needed because iminyls are σ -radicals with their orbitals in the plane of the C=N π -system. An acute approach corresponds to roughly parallel π -systems of the C=N and C=C bonds which is conducive to overlap of the radical orbital which projects perpendicular to the C=N π -system.

The conformational inflexibility at the *N*-radical end of **5e** can probably be attributed to the availability of the extra pair of electrons on N as compared to CH_2^{\bullet} . These electrons are to be found in the penultimate occupied molecular orbital (POMO) which is shown for **5TS**, and compared with the *C*-centred **7TS** POMO in Figure 6.

Figure 6. Penultimate Occupied MOs for 5TS and 7TS Computed at the G4 level

Even though **5TS** occurs at short $d_{1.5}$, after the majority of the chain conformational reorganization, the POMO still shows a bonding lobe between N and C such that flexibility at this end of the chain will be restricted. A similar bonding lobe is present in the POMO of the GS open chain radical 5e. The POMO for 7TS on the other hand shows a node between the C-radical centre and the adjacent C-atom indicating free unrestricted conformational motion. It is worth mentioning that although the O-centred radical 14e has four extra electrons the POMO for 14TS doesn't show a bonding lobe between O and the adjacent C-atom (see ESI) so its conformational motion is not restricted in this way. The evolution of θ for O-centred radical 14e (green line in Figure 5b) is comparatively level at longer d_{1.5} consistent with little expenditure of energy on conformational reorganization.

The access angles θ_T of the TSs evidently reflect the conformational inflexibility/mobility at the radical end of the chains and this is manifested in the linear correlation obtained for $\delta \theta_{\rm T}$ versus activation energy (Figure 3). The cyclization of the allyloxyethyl radical **11e** provides a very interesting test case. The O-substituent in this radical undoubtedly affects chain conformational mobility, but it is in the middle of the chain, away from the radical centre. The structure of the Cradical end of **11e** is virtually the same as for the archetype **7e** and, as Figure 5b shows (compare the red and orange lines), the evolution of θ with d_{1.5} is very similar for the two species. For 11e θ is too remote from the O-substituent to reflect its undoubted influence on the chain conformational reorganization. Thus $\delta \theta_T$ for **11e** does not measure this and the anomaly of the outlying point for 11e in the correlations of Figure 3 is easily understood.

Conclusions

G4 theory, and DFT theory with the um062x functional, gave good accounts of the 5-exo cyclizations of radicals centred on first row elements. That N-centred radicals ring close more slowly than C-centred and O-centred was correctly predicted. Both methods also predict, in agreement with experiment, that 1-methyl-hex-5-enyl radicals (8e, 9e) and N-methyl-pent-5enylaminyls (5e) will preferentially ring close to give cis-1,2disubstituted rings. The "access" angles $\angle X \cdots C = C = \theta$ were discovered to be critical parameters. Plots of the evolution of θ with the double bond extension $(d_{5.6})$ along the reaction coordinate, showed the two were "out of phase" for N-centred radicals. This, and other evidence, supported the conclusion that the comparatively slow ring closure of the N-centred radicals was due to lack of flexibility at the N-ends of their chains. This meant that extra energy was expended in attaining their chair-like TSs with consequent increases in the width and height of the activation barriers. Interestingly, the access angle in the TS (θ_T) reflected this factor such that linear correlations of $\delta \theta_T$ with both experimental Arrhenius activation energies and computed activation enthalpies were observed. These only held true, however, of radicals with all-methylene chains.

Acknowledgements

I thank the EPSRC (grant EP/I003479/1) and EaStCHEM for funding. I am grateful to Dr. Herbert Fruchtl and Prof. Michael Bühl for help with the computing.

Notes and references

^a University of St. Andrews, EaStCHEM School of Chemistry, St. Andrews, Fife, UK, KY16 9ST. E-mail: jcw@st-and.ac.uk; Tel. 44 (0)1334 463864; Fax 44 (0)1334 463808.

† Electronic Supplementary Information (ESI) available: graphics of SOMOs of principal species, Cartesian coordinates of optimised GS and TS structures. See DOI: 10.1039/b000000x/

- For reviews see: (a) P. Renaud and M. P. Sibi, eds. Radicals in Organic Synthesis; Wiley-VCH: Weinheim, 2001; (b) C. Chatgilialoglu and A. Studer, eds. Encyclopedia of Radicals in Chemistry Biology and Materials; Volume 2, Synthetic Strategies and Applications; Wiley, 2012, DOI: 10.1002/9781119953678 available online: http://onlinelibrary.wiley.com/book/10.1002/9781119953678 (accessed 21/05/2014); (c) A. G. Fallis and I. M. Brinza, Tetrahedron, 1997, 53, 17543
- (a) C. P. Jasperse, D. P. Curran and T. L. Fevig, *Chem. Rev.* 1991, 91, 1237;
 (b) W. R. Bowman, C. F. Edge and P. Brookes, *Chem. Soc. Rev.* 2000, 1;
 (c) D. J. Hart, In *Radicals in Organic Synthesis*; P. Renaud and M. P. Sibi, Eds.; Wiley-VCH: Weinheim, 2001; Volume 2, pp 279-302;
 (d) E. Lee, In *Radicals in Organic Synthesis*; P. Renaud and M. P. Sibi, Eds.; Wiley-VCH: Weinheim, 2001; Volume 2, pp. 303;
 (e) T. Taniguchi and H. Ishibashi, *Heterocycles*, 2013, 87, 527.
- (a) R. A. Bunce, *Tetrahedron*, 1995, **51**, 13102; (b) A. J. McCarroll and J. C. Walton, *Angew. Chem. Int. Ed.* 2001, **40**, 2224; (c) M.

Albert, L. Fensterbank, E. Lacote and M. Malacria, *Top. Curr. Chem.* 2006, **264**, 1; (d) A. Baralle, A. Baroudi, M. Daniel, L. Fensterbank, J.-P. Goddard, E. Lacote, M.-H. Larraufie, G. Maestri, M. Malacria and C. Ollivier, In *Encyclopedia of Radicals in Chemistry, Biology and Materials*, Volume 2, *Synthetic Strategies and Applications;* C. Chatgilialoglu and A. Studer, Eds.; Wiley, 2012, **2**, 729-765; available online:

http://onlinelibrary.wiley.com/book/10.1002/9781119953678 (accessed 21/05/2014).

- 4. A. L. J. Beckwith and K. U. Ingold, In *Rearrangements in Ground and Excited States*, F. de Mayo, Ed.; Academic Press: New York, 1980, Vol. 1, 161.
- 5. M. Newcomb, Tetrahedron, 1993, 49, 1151.
- M. Newcomb, In Encyclopedia of Radicals in Chemistry, Biology and Materials, Volume 2, Synthetic Strategies and Applications; C. Chatgilialoglu and A. Studer, Eds.; Wiley, 2012, available online: http://onlinelibrary.wiley.com/book/10.1002/9781119953678 (accessed 21/05/2014).
- C. E. Brown, A. G. Neville, D. M. Rayner, K. U. Ingold and J. Lusztyk, Aust. J. Chem. 1995, 48, 363.
- C. Chatigilialoglu, C. Ferreri, M. Lucarini, A. Venturini and A. A. Zavitsas, *Chem. Eur. J.* 1997, 3, 376.
- O. M. Musa, J. H. Horner, H. Shahin and M. Newcomb, J. Am. Chem. Soc. 1996, 118, 3862.
- 10 M. Newcomb, O. M. Musa, F. M. Martinez and J. H. Horner, J. Am. Chem. Soc. 1997, 119, 4569.
- 11. R. T. McBurney and J. C. Walton, J. Am. Chem. Soc. 2013, 135, 7349.
- M.-H. Le Tadic-Biadatti, A.-C. Callier-Dublanchet, J. H. Horner, B. Quiclet-Sire, S. Z. Zard and M. Newcomb, *J. Org. Chem.* 1997, 62, 559.
- F. Portela-Cubillo, R. Alonso-Ruiz, D. Sampedro and J. C. Walton, J. Phys. Chem. A 2009, 113, 10005.
- 14. J. Hartung and F. Gallou, J. Org. Chem. 1995, 60, 6706.
- J. Hartung, K. Daniel, C. Rummey and G. Bringmann, Org. Biomol. Chem. 2006, 4, 4089.
- 16. R. T. McBurney, A. D. Harper, A. M. Z. Slawin and J. C. Walton, *Chem. Sci.* 2012, **3**, 3436.
- A. L. J. Beckwith, I. Blair and G. Phillipou, J. Am. Chem. Soc. 1974, 96, 1613.
- 18. A. L. J. Beckwith and C. H. Schiesser, Tetrahedron 1985, 41, 3925.
- 19. D. C. Spellmeyer and K. N. Houk, J. Org. Chem. 1987, 52, 959.
- 20. A. H. C. Horn and T. Clark, J. Am. Chem. Soc. 2003, 125, 2809.
- P. d'Antuno, A. Fritsch, L. Ducasse, F. Castet, P. James and Y. Landais, J. Phys. Chem. A, 2006, 110, 3714.
- 22. C. M. Jäger, M. Hennemann, A. Mieszała and T. Clark, *J. Org. Chem.* 2008, **73**, 1536.
- 23. A. R. Matlin and M. C. Leyden, Int. J. Org. Chem. 2013, 3, 169.
- 24. J. A. R. Luft, T. Winkler, F. M. Kessabi and K. N. Houk, J. Org. Chem. 2008, 73, 8175.
- 25. A. N. Hancock and C. H. Schiesser, Chem. Sci. 2014, 5, 1967.
- 26. F. Liu, K. Liu, X. Yuan and C. Li, J. Org. Chem. 2007, 72, 10231.
- 27. J. C. Walton, Acc. Chem. Res. 2014, 47, 1406.
- 28. C. Chatgilialoglu, K. U. Ingold and J. C Scaiano, J. Am. Chem. Soc. 1981, 103, 7739.

- J. Lusztyk, B. Maillard, S. Deycard, D. A. Lindsay and K. U. Ingold, J. Org. Chem. 1987, 52, 3509.
- 30. A. L. J. Beckwith and S. Glover, Aust. J. Chem. 1987, 40, 157.
- C. Chatgilialoglu, D. Crich, M. Komatsu and I. Ryu, *Chem. Rev.* 1999, **99**, 1991.
- M. J. Frisch, et al. Gaussian 09, Revision C 1, Gaussian, Inc., Wallingford CT, 2009 (See ESI for full citation).
- 33. T. H. Dunning, Jr. J. Chem. Phys. 1989, 90 1007.
- 34. R. A Kendall, T. H. Dunning, Jr. and R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
- J. A. Montgomery, Jr. M. J. Frisch, J. W. Ochterski and G. A. Petersson, J. Chem. Phys. 2000, 112, 6532.
- 36. Y. Zhao, N. González-Garcia and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 2012.
- L. A. Curtiss, P. C. Redfern and K. Raghavachari, J. Chem. Phys. 2007, 126, 084108-1-084108-12.
- 38. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 39. A. A. Zavitsas, In Encyclopedia of Radicals in Chemistry, Biology and Materials, Volume 2, Synthetic Strategies and Applications; C. Chatgilialoglu and A. Studer, Eds.; Wiley, 2012, 1, available online: http://onlinelibrary.wiley.com/book/10.1002/9781119953678 (accessed 21/05/2014).
- 40. A. A. Zavitsas, N. Matsunaga and D. W. Rogers, J. Phys. Chem. A, 2008, 112, 5734.
- 41. I. A. Alubagin and M. Manoharan, J. Am. Chem. Soc. 2005, 127, 12583.
- 42. I. A. Alabugin, K. Gilmore and M. Manoharan, J. Am. Chem. Soc. 2011, **133**, 12608.