
Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Journal Name

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

L-Valine Derived Chiral N-Sulfinamides as Effective Organocatalysts for the Asymmetric Hydrosilylation of N-Alkyl and N-Aryl Protected Ketimines

Chao Wang,* Xinjun Wu, Li Zhou and Jian Sun*

L-Valine derived *N*-sulfinamides have been developed as efficient enantioselective Lewis basic organocatalysts for the asymmetric reduction of *N*-aryl and *N*-alkyl ketimines with trichlorosilane. Catalyst **3c** afforded up to 99% yield and 96% ee in the reduction of *N*-alkyl ketimines and up to 98% yield and 98% ee in the reduction of *N*-aryl ketimines.

Introduction

Chiral amines are fundamentally important structural components of biologically important compounds such as natural products, and agrochemicals. Oganocatalysts catalyzed enantioselective reduction of prochiral imines or enamines with trichlorosilane (HSiCl₃) represents one of the most important methods for preparing chiral amines.¹ Formamide,² picolinamide³ and pyridyl-oxazoline⁴ derivatives have been developed as efficient Lewis base organocatalysts for the asymmetric hydrosilylation of imines and enamines with trichlorosilane (HSiCl₃). In our earlier study, we found L-pipecolinic acid⁵ and L-piperazine-2-carboxylic acid⁶ derived *N*-formamides have unprecedented substrate spectrum and highly enantioselectivities for the hydrosilylation of *N*-aryl ketimines. However, none of these *N*-formamide catalysts is tolerant to *N*-alkyl ketimines as substrate for high enantioselectivity.

Chiral sulfoxides have been well established as efficient and versatile stereocontrollers and have been extensively used as the chirality source of chiral auxiliaries and ligands.⁷ However, the development of chiral sulfoxides as Lewis base organocatalysts has been rarely explored. We reported the first example of chiral sulfoxides to activate trichlorosilane in the asymmetric reduction of N-aryl ketimines with high yield and enantioselectivity.⁸ The Schiral center in these catalysts not only plays a crucial role similar to the carboxamide groups of N-formamide catalysts as Lewis base for the activation of HSiCl₃, but also serves as a source of chirality that the carboxamide group lacks for the asymmetric reduction. Encouraged by this result, we thus became interested in incorporating the dual functional chiral sulfinamide group(s) into an amino acid framework in the hope of getting new organocatalysts that have broad substrate spectrum and highly yield and enantioselectivity in the asymmetric hydrosilylation of ketimines.

We firstly prepared a set of catalysts **1a-f** via incorporating the *tert*-butanesulfiamide group into L-proline amide derivatives. For a wide range of *N*-alkyl ketimines, high yields and enantioselectivities could be obtained when these catalysts were used in the asymmetric hydrosilylation reaction under mild conditions.⁹ Additionally, these catalysts could also be used in the enantioselective hydrosilylation of a broad range of *N*-alkyl β -enamino esters to prepare *N*-alkyl β -

amino acid derivatives with high yields and enantioselectivities.¹⁰ Recently, we found the L-phenyl alanine derived new chiral sulfinamides **2b** could also be used as an efficient and high enantioseletive catalyst to activate trichlorosilane in the asymmetric reduction of 3-aryl-1,4-benzooxazines to prepare the corresponding chiral 3-aryl-3,4-dihydro-2H-1,4-benzooxazine products.¹¹

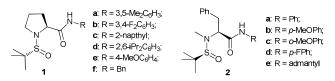
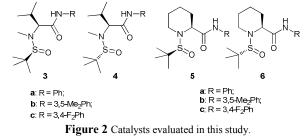
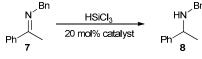



Figure 1 Previously reported catalysts.


Given the novel performance of L-proline and L-phenyl alanine derived *N*-sulfinamides in the asymmetric reduction of imines and enamines with trichlorosilane, it is desirable to search other type of amino acid derived *N*-sulfinaimdes for new catalyst that could be used in the asymmetric hydrosilylation of more practical substrates. As part of our continuing efforts in this field, we have successfully developed catalysts **3-6** derived from L-valine and L-pipecolinic acid that could be used in the asymmetric hydrosilylation of both *N*-alkyl and *N*-aryl ketimines with high yields and enantioselectivities. Herein, we wish to report the results.

Results and discussion

Kočovský and the coworkers proved that the N-methyl L-valine derived N-formamide catalysts are superior to those prepared from proline in the catalytic reduction of imine with trichlorosilane. However, they reported that the N-methyl L-valine derived tertbutanesulfiamide catalyst is less efficient to activate HSiCl₃ in the asymmetric reduction of ketimines, and no more than 50% ee could be obtained.¹² We thought this problem may be caused by the mismatch between the S-chiral center and the C-chiral center of the catalyst since catalyst 1 and 2 shows dramatically diffident performance in enantioselectivity when R/S chiral tertbutanesulfiamide group was incorporated into the amino acid backbones, respectively. In order to verify our hypotheses, catalysts 3a and 4a have been prepared according to reported procedure. We observed catalyst 3a exhibited significantly higher reactivity and selectivity than 4a in the reduction of N-benzyl ketimine 7a with HSiCl₃. This observation prompted us to prepare compound **3-6**. Starting from L-valine and L-pipecolinic acid, compounds **3b**, **3c**, 5a-c and their diastereomers 4b, 4c and 6a-c were easily synthesized as a mixture which could be separated by column chromatography. The stereochemistry of the chiral sulfur centers in 3c and 4c were determined by single-crystal x-ray diffraction analysis.¹³ For the other catalysts, the stereochemistry on the sulphur atom was established by a clear analogy of their ¹H NMR profiles to those of **3c** and **4c**.

Table 1. Asymmetric reduction of ketimines 7a.^[a]

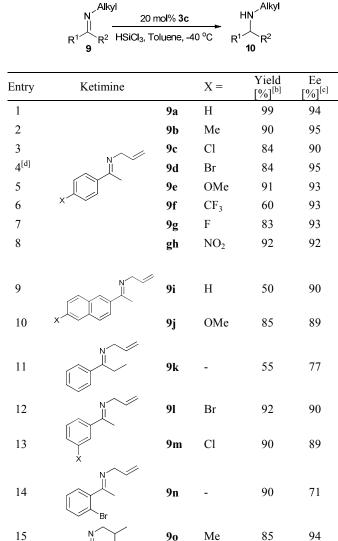
			*** * *	
Catalyst	Solvent		Yield	Ee
euluryst				[%] ^[c]
3a		-20	95	75
4 a		-20	62	15
3b	CH_2Cl_2	-20	70	79
4b	CH_2Cl_2	-20	60	9
3c	CH_2Cl_2	-20	80	82
4c	CH_2Cl_2	-20	80	5
5a	CH_2Cl_2	-20	91	89
6a	CH_2Cl_2	-20	80	87
5b	CH_2Cl_2	-20	91	90
6b	CH_2Cl_2	-20	90	80
5c	CH ₂ Cl ₂	-20	93	83
6c		-20	85	81
3c	THF	-20	50	52
3c	Toluene	-20	80	88
3c	CHCl ₃	-20	45	85
3c	DCE	-20	50	83
3c	CCl_4	-20	80	90
7c		-20	65	65
3c	Toluene	-40	80	93
5a	Toluene	-20	65	23
	CCl_4	-20	40	15
		-40	70	71
		-40		93
3c		-40	60	78
	4a 3b 4b 3c 4c 5a 6a 5b 6b 5c 6c 3c 3c 3c 3c 3c 5a 5a 5a 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CatalystSolvent $[^{\circ}C]$ $[^{\otimes}]^{[b]}$ 3a CH_2Cl_2 -2095 4a CH_2Cl_2 -2062 3b CH_2Cl_2 -2060 3c CH_2Cl_2 -2080 4c CH_2Cl_2 -2080 4c CH_2Cl_2 -2080 5a CH_2Cl_2 -2091 6a CH_2Cl_2 -2091 6a CH_2Cl_2 -2090 5c CH_2Cl_2 -2093 6c CH_2Cl_2 -2093 6c CH_2Cl_2 -2085 3c THF -2050 3c DCE -2080 3c DCE -2080 7c CH_3CN -2065 3c $Toluene$ -4080 5a $Colume$ -4080 5a $Colume$ -2040 5a Ch_2Cl_2 -4070 3c $Toluene$ -2065 5a Ccl_4 -2040 5a Ch_2Cl_2 -4070 3c $Toluene$ -4095

pipecolinic acid derivatives 5 and 6 showed higher stereoselectivity and activity than L-valine derivatives 3 and 4 in the testing reaction. Up to 91% yield and 90% ee could be obtained when catalyst 5b was used in the reduction of imine 7a in the presence of 20 mol% catalyst in dichloromethane at -20 °C for 24 h (entry 9, table 1). Interestingly, 88% ee could be reached for catalyst 3c when the reaction solvent was changed from dichloromethane to toluene under the testing reaction conditions (entry 14, table 1). The ee of the reaction could be further increased to 95% by decreasing the reaction temperature to -40 °C (entry 19, table 1). In contrast, for catalyst 5a, the ee fallen to 23% from 89% when the solvent was changed from dichloromethane to toluene under the testing reaction conditions (entries 7 and 20, table 1). And the ee decreased to 71% when the reaction temperature goes down to -40 °C in dichloromethane (entry 22, table 1). The obvious difference of enantioselectivity between catalysts 3c and 5a under identical reaction conditions, indicating the pivotal role of the amino acid framework in the transition state to furnish the asymmetric reaction of imine 7a.

Table 2. Asymmetric reduction of *N*-Bn ketimines 7 with catalyst $3c.^{[a]}$

, Bn	HSiCl ₃ 20 mol% 3c	Bn HŅ́	
R ¹ R ² 7	Toluene, -40 °C	R ¹ R ² 8	

Entry	Ketimine		X =	Yield [%] ^[b]	Ee [%] ^[c]
1	NBn	7a	Н	95	93
2		7b	Me	60	95
3 ^[d]		7c	Cl	85	93
4 ^[d]		7d	Br	82	93
5	Í Í Ì	7e	OMe	40	92
6 ^[d]	X' 😒	7f	CF ₃	80	92
7		7g	F	80	94
8 ^[d]		7h	NO_2	80	93
9	X NBn	7i	Н	20	91
10		7j	OMe	30	92
11	NBn	7k	-	89	77
12	NBn	71	Br	85	90
13	×	7m	Cl	50	84
14	NBn	7n	-	20	57


^[a] Reactions were carried out with 2.0 equiv. of HSiCl₃ on a 0.1 mmol scale in 0.5 mL solvent for 24 h. ^[b] Isolated yield based on imine. ^[c] The ee values were determined using chiral HPLC. ^[d] The reaction time is 48 h. ^[e] The catalyst loading is 10 mol%.

With the catalysts in hand, their ability to catalyse the asymmetric hydrosilylation of ketimines was evaluated. We found L-

^[a] Reactions were carried out with 20 mol% catalyst **3c** and with 2.0 equiv. of HSiCl₃ on a 0.1 mmol scale in 0.5 mL of solvent at -40 °C for 48 h. ^[b] Isolated yield based on the imine. ^[c] The ee values were determined using chiral HPLC. ^[d] Reaction was carried out in dichloromethane.

With the optimized reaction conditions in hand, the substrate scope of catalyst 3c was explored. A wide variety of aromatic Nbenzyl ketimines (7a-n) were reduced with HSiCl₃ in the presence of 20 mol% catalyst 3c in toluene at -40 °C for 48 h. As illustrated in table 2, all the tested methyl ketimines 7 could be reduced to the corresponding products. Both the electron rich and electron deficient aromatic methyl ketimines 7a-h reacted well to give the corresponding products 8 with moderate to good yields and high enantioselectivities (40-95% yield, 90-96% ee). However, for some substrates higher enantioselectivities and yields could be obtained when switch the solvent from toluene to dichloromethane. The steric hindrance of the aromatic groups of the ketimines played a pivotal role in the reaction activity, only 20-30% yields could be obtained when substrates 7i and 7j were reduced by the current system. The stereoselectivity of the reaction is sensitive to both the position of the substitutes on the aromatic group and the steric hindrance of R^2 (entries 9-14, table 2).

Table 3. Asymmetric reduction fo *N*-alkyl ketimines 9 with catalyst 3c.^[a]

^[a] Reactions were carried out with 20 mol% catalyst **3c** and with 2.0 equiv. of HSiCl₃ on a 0.1 mmol scale in 0.5 mL of solvent at -40 °C for 48 h. ^[b] Isolated

9p

Εt

60

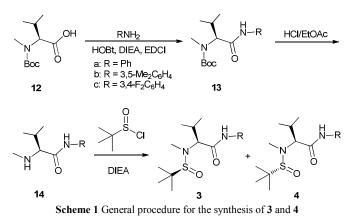
79

Additionally, we found the aforementioned reduction system could also be used in the asymmetric hydrosilylation of other aromatic *N*-alkyl ketimines **9**. Good to high yields and enantioselectivities could be obtained when *N*-allyl ketimines were reduced and the reaction activity and the stereoselectivity were not sensitive to the electronic property of the substitute group on the aromatic ring (entries 1-8, table 3). Toluene was the proper solvent for most of the substrates. Only one substrate could get higher ee when switch the solvent from toluene to dichloromethane (entry 4, table 3). Again we found the steric hindrance of the R¹ and R² group was import both for the reactivity and the stereoselectivity of the reaction. Increasing the steric hindrance of R¹ or R² would cause a lower yield and ee.

Table 4. Asymmetric reduction fo *N*-aryl ketimines 11 with catalyst 3c.^[a]

,Ary	1	Aryl
N [´]	20 mo l% 3c	
$R^1 \xrightarrow{\mu} R^2$	HSiCl ₃ , DCM, -20 °C	$R^1 + R^2$

Entry	Ketimine		X =.	Yield [%] ^[b]	Ee [%] ^[c]
1 ^[d]		11a	Me	92	93
2	NPh 	11a	Me	90	96
3	Ph X	11b	Et	40	96
4		11c	<i>n</i> -Pr	40	95
5	×	11d	p-NO ₂	56	92
6	N	11e	<i>p</i> -OMe	95	96
7	Ph	11f	<i>p</i> -Cl	60	96
8		11g	Н	98	97
9	OMe	11h	p-Cl	90	97
10	Ň	11i	p-NO ₂	75	95
11	\triangleleft	11j	<i>p</i> -OMe	45	98
12		11k	<i>p</i> -F	92	97
13	 X	111	<i>p</i> -Me	43	96
14	Meo	11m	-	62	97


^[a] Reactions were carried out with 20 mol% catalyst **3c** and with 2.0 equiv. of HSiCl₃ on a 0.1 mmol scale in 0.5 mL of solvent at -20 °C for 48 h. ^[b] Isolated yield based on the imine. ^[c] The ee values were determined using chiral HPLC. ^[d] Reaction was carried out in toluene.

Moreover, the catalyst 3c could be used in the reduction of *N*aryl ketimines with highly enantioselectivitives and moderate to good yields. In the testing reduction of 11a in the presence of 20 mol% catalyst 3c at -20 °C, 96% ee could be achieved when dichloromethane was used as the reaction solvent. However, the ee dropped to 93% when toluene was used (entries 1 and 2, table 2). Thus a broad range of *N*-aryl ketimines was reduced with HSiCl₃ in

16

dichloromethane. As shown in table 4, ketimines with relatively bulky R, including Et, ⁿPr were all found to be good substrates for catalyst **3c**, affording excellent enantioselectivities (entries 2-4, table 4). More significantly, ketimines **11d-f** with both electron rich and electron deficient anilines reacted well to give the desired products in moderate yields and high enantiselectivities (entries 5-7, table 4). Furthermore, 95-98% ee could be achieved for those ketimines derived from *o*-methoxyaniline (entries 8-14, table 4). To the best of our knowledge, such substrate profile has not been previously reported in the asymmetric hydrosilylaiton of *N*-protected ketimines.

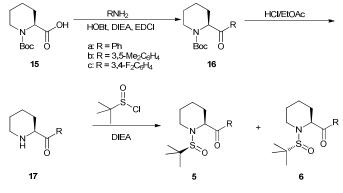
Experimental section

To a stirred solution of *N*-Me-*N*-Boc-L-valine (2.31 g, 10.0 mmol) in DCM (50 mL) was added aniline (1.1 mL, 12.0 mmol), HOBt (1.62 g, 12.0 mmol), DIEA (4.0 mL, 24.0 mmol), and EDCI (2.35 g, 12.0 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 12 h, and then concentrated under vacuum. The residue was diluted with EtOAc (200 mL), washed with 1N aqueous HCl, saturated aqueous NaHCO₃ (15 mL) and brine, and then dried over anhydrous MgSO₄. Solvents were evaporated under vacuum. The residue was purified by column chromatography (silica gel, hexane:EtOAc = 10:1) to give compound **13**.

Compound **13** (2.30 g, 7.2 mmol) was charged in a 50 mL round flask. A solution of HCl/EtOAc (4 mol/L, 10 mL) was then added. The mixture was stirred at room temperature until **13** disappeared completely. The volatiles were removed under vacuum. The residue was diluted with EtOAc, washed with saturated aqueous NaHCO₃ and brine, and then dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum to give compound **14**.

To a stirred solution of *tert*-butyl sulfinyl chloride¹⁴ (3.16 g, 22.5 mmol) in THF (80 mL) was added triethylamine (3.1 mL, 22.5 mmol) and **14** (1.49 g, 6.8 mmol) at 0 °C. The mixture was stirred at room temperature for 12 h, and then concentrated under vacuum. The residue was diluted with EtOAc, washed with saturated NaHCO₃ and brine, and then dried over anhydrous Na₂SO₄. Solvents were evaporated under vacuum. The residue was purified by column chromatography (silica gel, hexane:EtOAc = 5:1) to give pure 3 and 4.

(3a): White solid; yield: 25%; $[\alpha]_D^{20} = -50$ (c = 0.10, CHCl₃); mp 147-148 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.02 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 2H), 7.25 (t, *J* = 7.9 Hz, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 3.70 (d, *J* = 8.0 Hz, 1H), 2.68 (s, 3H), 2.5-2.45 (m, 1H), 1.30 (s, 9H), 1.05 (d, *J* = 6.6 Hz, 3H), 1.01 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.1, 138.0, 128.8, 124.2, 119.8, 75.5, 59.7, 28.8, 28.5 24.3, 21.1, 19.8; ESI HRMS exact mass calcd. for (C₁₆H₂₆N₂O₂S₁ + Na)⁺ requires m/z 333.1607, found m/z 333.1611.


(4a): White solid; yield: 30%; $[\alpha]_D^{20} = -94$ (c = 0.10, CHCl₃); mp 205-208 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.41 (s, 1H), 7.61-7.57 (m, 2H), 7.33-7.26 (m, 2H), 7.11-7.06 (m, 1H), 3.64 (d, J = 10.4 Hz, 1H), 2.77 (s, 3H), 2.58-2.50 (m, 1H), 1.26 (s, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.04 (d, J = 6.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.0, 138.1, 128.9, 128.8, 124.0, 119.6, 119.5, 59.2, 26.5, 22.8, 19.9, 19.5; ESI HRMS exact mass calcd. for (C₁₆H₂₆N₂O₂S₁ + Na)⁺ requires m/z 333.1607, found m/z 333.1595.

(**3b**): White solid; yield: 32%; $[\alpha]_D^{20} = -65$ (c = 0.10, CHCl₃); mp 158-160 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.82 (s, 1H), 7.24 (s, 2H), 6.73 (s, 1H), 3.73 (d, J = 7.6 Hz, 1H), 2.67 (s, 3H), 2.53-2.46 (m, 1H), 2.28 (s, 6H), 1.26 (s, 9H), 1.07 (d, J = 6.6 Hz, 3H), 1.02 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.1, 138.5, 137.9, 125.9, 117.4, 75.4, 59.7, 28.9, 28.6, 24.3, 21.3, 21.1, 19.8; ESI HRMS exact mass calcd. for (C₁₈H₃₀N₂O₂S₁ + Na)⁺ requires m/z 361.1920, found m/z 361.1904.

(**4b**): White solid; yield: 35%; $[\alpha]_D^{20} = -103$ (c = 0.10, CHCl₃); mp 181-183 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.27 (s, 1H), 7.24 (s, 2H), 6.73 (s, 1H), 3.61 (d, J = 10.3 Hz, 1H), 2.76 (s, 3H), 2.57-2.49 (m, 1H), 2.28 (s, 6H), 1.26 (s, 9H), 1.07 (d, J = 6.4 Hz, 3H), 1.03 (d, J = 6.4 Hz, 3H); ¹³C NMR(75MHz, CDCl₃): δ (ppm) 167.9, 138.6, 138.0, 125.7, 117.2, 66.2, 59.2, 26.6, 22.8, 21.3, 20.5, 20.0; ESI HRMS exact mass calcd. for (C₁₈H₃₀N₂O₂S₁ + Na)⁺ requires m/z 361.1920, found m/z 361.1904.

(3c): White solid; yield: 30%; $[\alpha]_D^{20} = -71$ (c = 0.10, CHCl₃); mp 154-156 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.45 (s, 1H), 7.65-7.63 (m, 1H), 7.18-7.13 (m, 1H), 7.00-6.97 (m, 1H), 3.71-3.67 (m, 1H), 2.69 (s, 3H), 2.48-2.41 (m, 1H), 1.34 (s, 9H), 1.05-1.00 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.1, 149.7 (dd, J = 244, 13 Hz), 146.7 (dd, J = 243.1, 12.7 Hz), 134.8, 116.7 (d, J = 17.9 Hz), 115.1, 109.1 (d, J = 21.8 Hz), 75.8, 59.8, 28.5, 28.2, 24.5, 20.7, 19.8; ESI HRMS exact mass calcd. for (C₁₆H₂₄F₂N₂O₂S₁ + Na)⁺ requires m/z 369.1419, found m/z 369.1410.

(4c): White solid; yield: 33%; $[\alpha]_D^{20} = -108$ (c = 0.10, CHCl₃); mp 176-178 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.76 (s, 1H), 7.72-7.65 (m, 1H), 7.14-7.03 (m, 2H), 3.64 (d, J = 10.4 Hz, 1H), 2.76 (s, 3H), 2.56-2.48 (m, 1H), 1.26 (s, 9H), 1.07 (d, J = 7.0 Hz, 3H), 1.02 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.0, 150.1 (dd, J = 244.5, 13.0 Hz), 146.7 (dd, J = 243.1, 12.7 Hz), 134.8, 117.0 (d, J = 17.9 Hz), 115.1, 109.1 (d, J = 21.5 Hz), 65.5, 59.3, 35.3, 26.5, 24.3, 22.7, 20.6, 19.8; ESI HRMS exact mass calcd. for (C₁₆H₂₄F₂N₂O₂S₁ + Na)⁺ requires m/z 369.1419, found m/z 369.1409.

Scheme 2 General procedure for the synthesis of 5 and 6

(5a): White solid; yield: 25%; $[\alpha]_D^{20} = -223$ (c = 0.10, CHCl₃); mp 134-137 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 10.1 (s, 1H), 7.63-7.60 (m, 2H), 7.31-7.26 (m, 2H), 7.07-7.03 (m, 1H), 4.36 (s, 1H), 3.27-3.16 (m, 2H), 2.42-2.38 (m, 1H), 1.88-1.56 (m, 5H), 1.28 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.5, 138.5, 128.7, 123.6, 119.1, 59.0, 56.1, 48.9, 25.6, 25.5, 23.4, 20.7; ESI HRMS exact mass calcd. for (C₁₆H₂₄N₂O₂S₁ + Na)⁺ requires m/z 331.1451, found m/z 331.1457.

(**6a**): White solid; yield: 40%; $[\alpha]_D^{20} = -66$ (c = 0.10, CHCl₃); mp 120-123 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 10.12 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.29 (t, J = 7.56 Hz, 2H), 7.06 (t, J = 7.38 Hz, 1H), 4.38-4.37 (m, 1H), 3.29-3.21 (m, 2H), 2.39 (m, 1H), 1.78-1.54 (m, 7H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.6, 138.6, 128.8, 123.7, 119.2, 59.0, 56.1, 48.9, 25.7, 25.5, 23.4, 20.7; ESI HRMS exact mass calcd. for (C₁₆H₂₄N₂O₂S₁ + Na)⁺ requires m/z 331.1451, found m/z 331.1434.

(**5b**): White solid; yield: 36%; $[\alpha]_D^{20} = -170$ (c = 0.10, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 10.02 (s, 1H), 7.28 (s, 2H), 6.72 (s, 1H), 4.37-4.35 (m, 1H), 3.25-3.20 (m, 2H), 2.43-2.22 (m, 7H), 1.90-1.51 (m, 5H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.4, 138.5, 138.4, 125.5, 116.2, 59.0, 56.1, 48.9, 25.7, 25.5, 23.4, 21.3, 20.7; ESI HRMS exact mass calcd. for (C₁₈H₂₈N₂O₂S₁ + Na)⁺ requires m/z 359.1761, found m/z 359.1775.

(**6b**): White solid; yield: 32%; $[\alpha]_D^{20} = -72$ (c = 0.07, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.94 (s, 1H), 7.28 (s, 2H), 6.76 (s, 1H), 4.19-4.17 (m, 1H), 3.46-3.43 (m, 1H), 3.06-2.97 (m, 1H), 2.56-2.52 (m, 1H), 2.30 (s, 6H), 1.76-1.56 (m, 2H), 1.39-1.19 (m, 3H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.8, 138.6, 137.7, 126.0, 117.1, 60.2, 58.8, 44.5, 26.8, 24.6, 23.3, 21.3, 20.6; ESI HRMS exact mass calcd. for (C₁₈H₂₈N₂O₂S₁ + Na)⁺ requires m/z 359.1764, found m/z 359.1766.

(5c): White solid; yield: 35%; $[\alpha]_D^{20} = -102$ (c = 0.08, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 10.55 (s, 1H), 7.77-7.70 (m, 1H), 7.18-7.04 (m, 2H), 4.38-4.36 (m, 1H), 3.32-3.14 (m, 2H), 2.41-2.36 (m, 1H), 1.88-1.52 (m, 5H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.7, 150.0(dd, J = 244.6, 13.0 Hz), 146.4 (dd, J = 242.7, 12.8 Hz), 135.2, 116.9 (d, J = 17.9 Hz), 114.7, 108.7 (d, J = 21.7 Hz), 59.1, 55.8, 49.4, 25.7, 25.4, 23.4, 20.6; ESI HRMS exact mass calcd. for (C₁₆H₂₂F₂N₂O₂S₁ + Na)⁺ requires m/z 367.1262, found m/z 367.1262.

(6c): White solid; yield: 30%; $[a]_D^{20} = -99$ (c = 0.10, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.37 (s, 1H), 7.81-7.74 (m, 1H), 7.19-7.07 (m, 2H), 4.19-4.18 (m, 1H), 3.46-3.45 (m, 1H), 3.01-2.92 (m, 1H), 2.55-2.51 (m, 1H), 1.78-1.52 (m, 5H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 169.2, 149.9(dd, J = 245.9, 13.1 Hz), 146.9 (dd, J = 244.5, 11.8 Hz), 135.2, 117.0 (d, J = 17.9 Hz), 115.1, 109.2 (d, J = 21.8 Hz), 61.1, 58.9, 43.9, 27.1, 24.6, 23.5, 22.3, 20.6; ESI HRMS exact mass calcd. for (C₁₆H₂₂F₂N₂O₂S₁ + Na)⁺ requires m/z 367.1262, found m/z 367.1264.

General procedure for the catalyic reduction of imines:

Under an argon atmosphere, trichlorosilane (20 μ L, 0.24 mmol) was added dropwise to a stirred solution of imine **7**, **9** and **11** (0.10 mmol), catalyst **3c** (3.22 mg, 0.01 mmol) in anhydrous toluene or DCM at -40 or -20 °C. The mixture was allowed to stir at the same temperature for 24 h. The reaction was quenched with a saturated aqueous solution of NaHCO₃ (5 mL) and was extracted with EtOAc. The combined extracts were washed with brine and dried over anhydrous MgSO₄ and the solvents were evaporated under vacuum. Purification by column chromatography (silica gel, hexane/EtOAc or

DCM/MeOH) afforded pure amine **8**, **10** and **12**. The ee values were determined using established HPLC techniques with chiral stationary phases.

General procedure for the acylation of 10:

To a stirred solution of amine **10** in dicholoromethane (2 mL) was added acylating reagent (2.0 equiv) at 0 °C. The mixture was stirred at room temperature for 10 h, and was then concentrated under vacuum. The residue was purified by column chromatography (silica gel, hexane:EtOAc = 20:1) to give the pure acylated amine, which was used for chiral HPLC analyses.

Conclusions

In summary, we have developed a highly efficient Lewis basic organocatalyst 3c for the enantioselective reduction of both *N*-alky and *N*-aryl ketimines with trichlorosilane in high eantioselectivity and moderate to good yield. The broad substrate spectrum of this catalyst is unprecedented in asymmetric imine reduction. Further work is in progress to clarify the mechanism of the transformation and explore the full application scope of the present catalyst system.

Acknowledgements

We are grateful for financial support from the Western Light Talents Training Program of Chinese Academy of Sciences and the National Natural Science Foundation of China (Project No. 21272227 and 21402185).

Notes and references

Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China Tel: +86 28 8289 0803; E-mail: <u>sunjian@cib.ac.cn</u>; wangchao@cib.ac.cn

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

 A. V. Malkov, A. J. P. Stewart-Liddon, G. D. McGeoch, P. Ramirez-Lopez and P. Kocovsky, Org. Biomol. Chem., 2012, 10, 4864; S. Jones and C. J. A. Warner, Org. Biomol. Chem., 2012, 10, 2189; T. Kanemitsu, A. Umehara, R. Haneji, K. Nagata and T. Itoh, Tetrahedron, 2012, 68, 3893; F.-M. Gautier, S. Jones, X. Li and S. J. Martin, Org. Biomol. Chem., 2011, 9, 7860; S. Jones and X. Li, Tetrahedron, 2012, 68, 5522; S. Guizzetti and M. Benaglia, Eur. J. Org. Chem., 2010, 5529; F.-M. Gautier, S. Jones and S. J. Martin, Org. Biomol. Chem., 2009, 7, 229.

 A. V. Malkov, K. Vrankova, S. Stoncius and P. Kocovsky, J. Org. Chem., 2009, 74, 5839; A. V. Malkov, K. Vrankova, R. C. Sigerson, S. Stoncius and P. Kocovsky, Tetrahedron, 2009, 65, 9481; A. V. Malkov, K. Vrankova, M. Cerny and P. Kocovsky, J. Org. Chem., 2009, 74, 8425; A. V. Malkov, M. Figlus, M. R. Prestly, G. Rabani, G. Cooke and P. Kocovsky, Chem. Eur. J., 2009, 15, 9651; A. V. Malkov, S. Stoncius, K. Vrankova, M. Arndt and P. Kocovsky, Chem. Eur. J., 2008, 14, 8082; Z. Wang, S. Wei, C. Wang and J. Sun, Tetrahedron-Asymmetry, 2007, 18, 705; A. V. Malkov, S. Stoncius and P. Kocovsky, Angew. Chem. Int. Ed., 2007, 46, 3722; A. V. Malkov, M. Figlus, S. Stoncius and P. Kocovsky, J. Org. Chem., 2007, 72, 1315; C. Baudequin, D. Chaturvedi and S. B. Tsogoeva, Eur. J. Org. Chem., 2007, 2623; Y. Matsumura, K. Ogura, Y. Kouchi,
F. Iwasaki and O. Onomura, Org. Lett., 2006, 8, 3789; A. V. Malkov,
A. Mariani, K. N. MacDougall and P. Kocovsky, Org. Lett., 2004, 6,
2253; S. Kobayashi, M. Yasuda and I. Hachiya, Chem. Lett., 1996,
407; F. Iwasaki, O. Onomura, K. Mishima, T. Kanematsu, T. Maki
and Y. Matsumura, Tetrahedron Lett., 2001, 42, 2525; A. V. Malkov,
S. Stoncius, K. N. MacDougall, A. Mariani, G. D. McGeoch and P.
Kocovsky, Tetrahedron, 2006, 62, 264; A. V. Malkov, M. Figlus and
P. Kocovsky, J. Org. Chem., 2008, 73, 3985; P. Wu, Z. Wang, M.
Cheng, L. Zhou and J. Sun, Tetrahedron, 2008, 64, 11304; J. F.
Collados, M. L. Quiroga-Feijoo and C. Alvarez-Ibarra, Eur. J. Org.
Chem., 2009, 3357.

- 3. O. Onomura, Y. Kouchi, F. Iwasaki and Y. Matsumura, Tetrahedron Lett., 2006, 47, 3751; H. Zheng, J. Deng, W. Lin and X. Zhang, Tetrahedron Lett., 2007, 48, 7934; H.-J. Zheng, W.-B. Chen, Z.-J. Wu, J.-G. Deng, W.-Q. Lin, W.-C. Yuan and X.-M. Zhang, Chem. Eur. J., 2008, 14, 9864; S. Guizzetti, M. Benaglia and G. Celentano, Eur. J. Org. Chem., 2009, 3683; S. Guizzetti, M. Benaglia, F. Cozzi and R. Annunziata, Tetrahedron, 2009, 65, 6354; S. Guizzetti, M. Benaglia, F. Cozzi, S. Rossi and G. Celentano, Chirality, 2009, 21, 233; S. Guizzetti, M. Benaglia and S. Rossi, Org. Lett., 2009, 11, 2928; Z.-Y. Xue, Y. Jiang, W.-C. Yuan and X.-M. Zhang, Eur. J. Org. Chem., 2010, 616; X. Chen, Y. Zheng, C. Shu, W. Yuan, B. Liu and X. Zhang, J. Org. Chem., 2011, 76, 9109; S. Guizzetti, M. Benaglia, M. Bonsignore and L. Raimondi, Org. Biomol. Chem., 2011, 9, 739; Y. Jiang, X. Chen, Y. Zheng, Z. Xue, C. Shu, W. Yuan and X. Zhang, Angew. Chem. Int. Ed., 2011, 50, 7304; Y. Jiang, L.-X. Liu, W.-C. Yuan and X.-M. Zhang, Synlett, 2012, 1797; Z.-Y. Xue, L.-X. Liu, Y. Jiang, W.-C. Yuan and X.-M. Zhang, Eur. J. Org. Chem., 2012, 251; A. Genoni, M. Benaglia, E. Massolo and S. Rossi, Chem. Commun., 2013, 49, 8365.
- A. V. Malkov, A. J. P. S. Liddon, P. Ramirez-Lopez, L. Bendova, D. Haigh and P. Kocovsky, *Angew. Chem. Int. Ed.*, 2006, 45, 1432.
- L. Zhou, Z. Wang, S. Wei and J. Sun, *Chem. Commun.*, 2007, 2977;
 Z. Y. Wang, X. X. Ye, S. Y. Wei, P. C. Wu, A. J. Zhang and J. Sun, *Org. Lett.*, 2006, **8**, 999; Y.-C. Xiao, C. Wang, Y. Yao, J. Sun and Y.-C. Chen, *Angew. Chem. Int. Ed.*, 2011, **50**, 10661; Z. Wang, C. Wang, L. Zhou and J. Sun, *Org. Biomol. Chem.*, 2013, **11**, 787.
- Z. Wang, M. Cheng, P. Wu, S. Wei and J. Sun, Org. Lett., 2006, 8, 3045.
- F. Xue, C. Li, J. Chen and B. Wan, Chin. J. Org. Chem., 2014, 34, 267.
- D. Pei, Z. Wang, S. Wei, Y. Zhang and J. Sun, Org. Lett., 2006, 8, 5912; D. Pei, Y. Zhang, S. Wei, M. Wang and J. Sun, Adv. Synth. Catal., 2008, 350, 619.
- 9. C. Wang, X. Wu, L. Zhou and J. Sun, Chem. Eur. J., 2008, 14, 8789.
- X. Wu, Y. Li, C. Wang, L. Zhou, X. Lu and J. Sun, *Chem. Eur. J.*, 2011, **17**, 2846; P. Zhang, C. Wang, L. Zhou and J. Sun, *Chin. J. Chem*. 2012, **30**, 2636.
- X.-W. Liu, C. Wang, Y. Yan, Y.-Q. Wang and J. Sun, J. Org. Chem., 2013, 78, 6276.
- P. Kocovsky and S. Stoncius, in Chiral Amine Synthesis Methods, Developments and Applications; Ed. Thomas, C. N.; Wiley-VCH GmbH, Weinheim, 2010, 143.
- 13. CCDC 1003515 for 3c and 1003514 for 4c contain the supplementary crystallographic data for this paper. These data can

be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

14. M. E. Furrow and A. G. Myers, J. Am. Chem. Soc., 2004, 126, 5436.