Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Stereoselective Synthesis of \boldsymbol{O}-Tosyl Azabicyclic Derivatives via Aza Prins Reaction of Endocyclic N-Acyliminium Ions: Application to the Total Synthesis of (\pm)-epi-Indolizidine 167B and 209D

${ }_{5}$ Anil K. Saikia,* ${ }^{a}$ Kiran Indukuri ${ }^{a}$ and Jagadish Das ${ }^{a}$
Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A diastereoselective protocol has been established for the synthesis of 4- O-tosyl piperidine containing hexahydroindolizin-3(2 H$)$-one, hexahydro- $1 H$-quinolizin- $4(6 H)$-one and $1,3,4,10 b$-tetrahydropyrido[2,1-a]isoindol- $6(2 H)$-one derivatives via the aza-Prins cyclization 10 reaction of cyclic N-acyliminium ions mediated by p-toluene sulphonic acid (p-TSA) under mild conditions. The reaction is highly diastereoselective and gives excellent yields. This method has been applied to an efficient total synthesis of the indolizidine alkaloids, (\pm-epi-indolizidine 167B and 209D.

Introduction

${ }_{5}$ Piperidines and their derivatives are extremely important building blocks in the synthesis of natural products, ${ }^{1}$ biologically active compounds and drug intermediates. ${ }^{2}$ These piperidine units are also present in many of the known alkaloids. ${ }^{3}$ For example, dienomycin C (1), an alkaloid isolated from the Streptomyces ${ }_{20}$ strain MC67-C1, has been found to exhibit antibacterial activity against some strains of Mycobacterium tuberculosis. ${ }^{4}$ Haloperidol (2) a neuroleptic drug, containing a 4-hydroxy piperidine moiety, is used in the treatment of delirium. ${ }^{5}$ Apart from these, some amino- and hydroxylated piperidines show potent antineoplastic 25 and antitumor activities. ${ }^{6}$ Fused piperidines such as the alkyl indolizidine alkaloids ($\mathbf{3} \mathbf{p}-\mathbf{q}$), isolated from the skin secretions of certain neotropical frogs of the Dendrobatidae family, represent a class of noncompetitive blockers of neuromuscular transmission. ${ }^{7}$ Their epimers, alkyl epi-indoli-
30

Dienomycin C 1

Haloperidol 2

R"'
$R^{2}=\equiv R^{2}=E t$

35

3p; R=n-propyl: Indolizidine 167B epi-3p; R=n-propyl: epi-Indolizidine 167B
3q; R=n-hexyl: Indolizidine 209D epi-3q; R=n-hexyl: epi-Indolizidine 209D
Fig. 1 Some piperidine containing alkaloids

40 zidines (epi-3p-q) are popular synthetic targets and many approaches have been published towards their synthesis. ${ }^{8}$ Another class of piperidine containing alkaloids called quinolizidines (4), isolated from bacteria, fungi, plants, invertebrates and vertebrates, act as non-competitive blockers of ${ }_{45}$ nicotinic receptors. ${ }^{9}$ Several research groups had reported that 4substituted piperidines could be synthesized in the presence of Lewis and Brønsted acids via the aza-Prins cyclization reaction of homoallyl amine or N-acyl iminium ion precursors and then trapping the carbocations generated during these reactions, with ${ }_{50}$ various nucleophiles such as hydroxy, ${ }^{10}$ halo, ${ }^{11}$ aryl, ${ }^{12}$ nitrile, ${ }^{13}$ formate and acetate groups. ${ }^{14}$ Alternatively, 4-substituted piperidines containing bicyclic systems are also accomplished via endo-trig (aza-Prins) cyclization of N-homoallyl cyclic N acyliminium ions 15 followed by trapping with various ${ }_{55}$ nucleophiles such as formate, ${ }^{16}$ hydroxy, ${ }^{17}$ and halo ${ }^{18}$ groups under Brønsted and Lewis acidic conditions. Apart from these methods, piperidine containing systems were also achieved by ene cyclizations, ${ }^{19}$ alkyne-aza Prins cyclizations, ${ }^{20}$ aza-Michael reactions ${ }^{21}$ and by other methods. ${ }^{22}$ Although there are many ${ }_{60}$ methods for the construction of piperidine rings using Lewis and Brønsted acids, the use of p-TSA in the Prins reaction is very limited. ${ }^{23,24}$ Padwa et al. reported the dual role of p-TSA via tandem Pummerer/Mannich cyclization cascade of α sulfinylamides for the synthesis of tosylated azabicyclic ${ }_{65}$ compounds. ${ }^{24}$ The harsh reaction conditions, lack of selectivity, and poor yields limit the scope of these methods towards the application in natural product synthesis. ${ }^{10-18}$ The direct insertion of a tosylate group at the C-4 position of the piperidine ring of azabicyclic compounds using the aza-Prins cyclization has not ${ }_{70}$ been explored. Presently we are involved in stereoselective
synthesis of tetrahydropyrans via the Prins cyclization reaction ${ }^{25}$ and very recently reported a methodology for the synthesis of amido/phenyl azabicyclic compounds via the aza-Prins-Ritter/Friedel-Crafts cyclization reactions. ${ }^{26}$ In this paper we wish 5 to report the dual role of p-TSA for the synthesis of O-tosylated azabicyclic compounds via the aza-Prins cyclization in which the p-TSA acts as Brønsted acid as well as a nucleophile.

Results and discussion

Initially, we reacted 1-(but-3-en-1-yl)-5-hydroxypyrrolidin-2-one 10 with 1.2 equivalents of p-TSA in dichloromethane at room temperature and the reaction proceeded smoothly to afford ($7 R^{*}, 8 \mathrm{a} R^{*}$)-3-oxooctahydroindolizin-7-yl 4-methylbenzenesulfonate in 79% yield with a disteriomeric ratio of $85: 15$. Using the same solvent at reflux temperature resulted in 88% yield, 15 without any change in diastereomeric ratio.

With the established optimal reaction conditions in hand, a variety of regioselectively reduced homoallyl imides derived from cyclic imides and homoallyl alcohols were evaluated as substrates and the results are summarized in Table 1. All the 20 substrates produced cyclized products in moderate to high yields without formation of any elimination products. ${ }^{18, \text {, }} 27$ The substrates having no substitution (entries 1,7 , and 11) at the α position to nitrogen gave excellent yields with dr of 50:50 to $90: 10$. This is due to the absence of a 1,3-diaxial interaction ${ }_{25}$ between the axial hydrogen at the α-position to nitrogen and the incoming tosyl group (Scheme 1). ${ }^{26,28}$ On the other hand, 5-hydroxy-1-(3-methylbut-3-en-1-yl) pyrrolidin-2-one (entry 6) failed to give the desired product, because of steric crowding between the bulky tosyl group and the tertiary carbocation 30 formed during the reaction, instead starting material was recovered in 97%. Reactions of the substrates having alkyl and aryl substitutions at the α-position to nitrogen afforded the desired products with good yields and produced only a single diastereomer. In cases of aromatic substitution, the substrates 35 having electron withdrawing aromatic substituents (entries 2,3 , 10 and 12) gave slightly higher yields, compared to unsubstituted phenyl (entry 13) and electron donating aromatic substituents (entries 5 and 15). There was no effect of the size of the cyclic imides such as succinimide, glutarimide and pthalimide on yields 40 and diastereoselectivities.
The stereochemistry of compound $\mathbf{6 n}$ was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and NOESY experiments. A strong NOE between the H_{10} hydrogen at $\mathrm{C}-10$ of the piperidine ring and the H_{7} hydrogen at C 7
45

55

Fig. 2 NOE and X-ray crystallographic structure of $\mathbf{6 n}$

Table 1 Synthesis of O-Tosylated azabicyclic compounds via aza-Prins cyclization reaction

$$
\begin{array}{ccccc}
\hline \text { S.No. } & \text { Substrate } 5 & \text { Product } \mathbf{6} & \text { dr }^{\mathrm{a}} & (\%) \text { Yield }{ }^{\mathrm{b}} \\
\hline & 0 & &
\end{array}
$$

$$
\begin{aligned}
& n=1,2 \\
& \mathrm{R}=\mathrm{H}, \mathrm{alkyl}, \text { aryl }
\end{aligned}
$$

of the ring junction of compound $\mathbf{6 n}$ indicates the cis relationship between these two hydrogens. Similarly there was no observation of an NOE between H_{10} and H_{12} or between H_{7} and H_{12} of the piperidine ring. This clearly supports the trans relationship 5 between tosyl and cyclohexyl groups. Finally the stereochemistry of the compound $\mathbf{6 n}$ was confirmed by X-ray crystallographic analysis (Figure 2). ${ }^{29}$

The mechanism of the reaction can be explained as follows. The starting material carbinol in the presence of p-TSA gives the 10 corresponding N-acyliminium ion intermediate A. This intermediate undergoes a 6-endo-trig cyclization to give the more stable chair like intermediate \mathbf{B}, with the R substituent axial, due to more steric crowding and strong angular strain between the

Scheme 1 Plausible reaction mechanism
35 substituent \mathbf{R} and the lactam carbonyl group. ${ }^{26,28}$ The tosyl nucleophile attacks the carbocation intermediate \mathbf{B} in an equatorial fashion to give the respective tosyl substituted azabicyclic compound 6 .
The conversion of the tosyl group to a hydroxy group was
${ }_{40}$ performed for compound $\left(5 R^{*}, 7 S^{*}, 8 \mathrm{a} R^{*}\right)$-5-benzyl-3-oxooctahydroindolizin-7-yl 4-methylbenzenesulfonate ($\mathbf{6 d)}$ by treating with $\mathrm{Mg} / \mathrm{MeOH}$ at room temperature to give corresponding alcohol $\left(5 R^{*}, 7 S^{*}, 8 \mathrm{a} R^{*}\right)$-5-benzyl-7-hydroxyhexahydroindolizin- $3(2 H)$-one ($\mathbf{6 d}$ ') in 83% yield with ${ }_{45}$ retention of configuration (Scheme 2). ${ }^{30}$ The configuration of the compound 6d' was confirmed by NOESY experiment (see SI).

50

Scheme 2 Deprotection of tosyl group

A number of protocols have been developed for the total synthesis of indolizidine 167B and 209D alkaloids and their epimers. ${ }^{8}$ The present methodology was utilized for the synthesis
of epi-indolizidine 167B and 209D. The secondary homoallyl ${ }_{60}$ alcohols $\mathbf{8 p - q}$ were reacted with commercially available succinimide under Mitsunobu reaction conditions ${ }^{31}$ to give the corresponding homoallyl imides $\mathbf{9 p - q}$. The imides $\mathbf{9 p - q}$ were reduced with NaBH_{4} to the corresponding carbinols 5p-q. ${ }^{32}$ The carbinols 5p-q were then subjected to the aza-Prins cyclization ${ }_{65}$ reaction in the presence of p-TSA to give exclusively a single isomer of the tosylated azabicyclic products $\mathbf{6 p - q}$. To achieve our target, we followed a LiAlH_{4} reduction procedure for the reduction of both lactam and tosyl groups. ${ }^{33,34}$ Unfortunately, compound $\mathbf{6 q}$, could not be converted into the desired product 70 and instead ring opening products $\mathbf{1 1}$ and $\mathbf{1 2}$ were isolated in 28% and 37% yields, respectively. After the failure of this reduction strategy, the tosyl group was first removed by using NaBH_{4} in DMSO at $80^{\circ} \mathrm{C}$ to yield corresponding lactams 10p-q. ${ }^{35}$ The lactams 10p-q were

75

80

85

Scheme 3 Synthesis of (\pm)-epi-Indolizidine 167B and 209D
90
then finally reduced by LAH under reflux ${ }^{34}$ to give the target alkaloids (\pm)-epi-indolizidine 167B (epi-3p) and 209D (epi-3q) in 87% and 94% yields, respectively. The spectral data were in agreement with the literature. ${ }^{8}$

Conclusions

In conclusion, we have demonstrated the dual role of p-TSA in endo-trig cyclization reaction for the synthesis of 4-O-tosyl ${ }^{00}$ piperidine containing hexahydroindolizin-3(2H)-one, hexahydro$1 H$-quinolizin- $4(6 H)$-one and $1,3,4,10 b$-tetrahydropyrido[2,1a]isoindol-6 $(2 H)$-one derivatives. This methodology could be useful for accessing other substituted azabicyclic alkaloids by manipulating the tosyl group. This methodology was successfully 105 applied for the total synthesis of (\pm)-epi-indolizidine 167 B and 209D in good yields.

Experimental section

${ }_{110}$ General Information: All the reagents were of reagent grade (AR grade) and were used as purchased without further purification. Silica gel (60-120 mesh size) was used for column chromatography. Reactions were monitored by TLC on silica gel
$\mathrm{GF}_{254}(0.25 \mathrm{~mm})$. Melting points were recorded in an open capillary tube and are uncorrected. Fourier transform-infra red (FT-IR) spectra were recorded as neat liquid or KBr pellets. NMR spectra were recorded in CDCl_{3} with tetramethylsilane as 5 the internal standard for ${ }^{1} \mathrm{H}(600 \mathrm{MHz}, 400 \mathrm{MHz})$ or ${ }^{13} \mathrm{C}(150$ $\mathrm{MHz}, 100 \mathrm{MHz}$) NMR. Chemical shifts (δ) are reported in ppm and spin-spin coupling constants (J) are given in Hz. HRMS spectra were recorded using Q-TOF mass spectrometer.

${ }_{10}$ Synthesis of starting materials

The homoallyl imides and carbinol imides were synthesized using literature procedures and the structure of the known compounds $\mathbf{5 a - o}$ were confirmed by comparison of their spectral data $\left({ }^{1} \mathrm{H}\right.$ ${ }_{15}$ NMR and ${ }^{13} \mathrm{C}$ NMR) with those reported. ${ }^{26}$

Typical procedure for the synthesis of $\left(7 R^{*}, 8 \mathrm{a} R^{*}\right)$-3-oxooctahydroindolizin-7-yl 4-methylbenzenesulfonate (6a)
${ }_{20}$ To a solution of 1-(but-3-en-1-yl)-5-hydroxypyrrolidin-2-one (78 $\mathrm{mg}, 0.5 \mathrm{mmol}$) in dichloromethane (3 mL) was added p toluenesulfonic acid monohydrate ($114 \mathrm{mg}, 0.6 \mathrm{mmol}$) at once. The reaction mixture was stirred at reflux temperature. The progress of the reaction was monitored by TLC with ethyl acetate 25 as eluent. The reaction was completed in 10 h and after completion of the reaction, the reaction mixture was treated with aqueous sodium bicarbonate (5 mL) and the product was extracted with dichloromethane ($2 \times 10 \mathrm{~mL}$). The organic layer was washed with brine (5 mL), dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and ${ }_{30}$ evaporated to leave the crude product, which was purified by column chromatography using ethyl acetate as eluent over silica gel to give the ($7 R^{*}, 8 \mathrm{a} R^{*}$)-3-oxooctahydroindolizin-7-yl 4methylbenzenesulfonate in ($136 \mathrm{mg}, 88 \%$) as a white solid, mp $97-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) δ ${ }_{35} 1.37(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dt}, J=12.0$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.56-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 2 \mathrm{H})$, 2.32-2.37 (m, 2 H), 2.43 ($\mathrm{s}, 3 \mathrm{H}$), 2.59 (dt, $J=11.6$ and $2.4 \mathrm{~Hz}, 1$ H), 3.42-3.50 (m, 1 H), $4.10(\mathrm{dd}, J=13.6$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ $(\mathrm{tt}, J=12.0$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (d, J ${ }_{40}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta 21.7,24.4,30.0,30.9,37.2,39.7,55.1,78.1$, 127.7 (2C), 130.1 (2C), 134.2, 145.1, 173.4; IR (KBr, neat) 2925, 1685, 1597, 1455, 1358, 1189, 1175, 946, 858, 671, $555 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 310.1108$, found ${ }_{45} 310.1100$. ESI-MS: m / z (relative intensity): $332.2\left((\mathrm{M}+\mathrm{Na})^{+}\right.$, $100 \%), 310.2\left((\mathrm{M}+\mathrm{H})^{+}, 21 \%\right), 242.3$ (19), 201.2 (52), 160.1 (58).
($5 S^{*}, 7 S^{*}, 8 \mathrm{Ba} R^{*}$)-5-(4-chlorophenyl)-3-oxooctahydroindolizin${ }_{50}$ 7-yl 4-methylbenzenesulfonate (6 b)

Colourless gum; yield $157 \mathrm{mg}, 75 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.49(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{dt}$, $J=12.0$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.16(\mathrm{dd}, J=11.6$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), ${ }_{55} 2.24(\mathrm{dd}, J=12.4$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.53(\mathrm{~m}, 2$ H), $3.47-3.54(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{tt}, J=11.6$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9,24.4,29.9,33.5,39.8,49.0$, ${ }_{60} 52.2,75.0127 .7$ (2C), 128.0 (2C), 128.8, 129.2 (2C), 130.2 (2C), 133.5, 136.2, 145.3, 174.2; IR (KBr, neat) 2924, 1691, 1597, 1492, 1414, 1359, 1189, 1175, 1095, 951, 835, 575, $555 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 420.1031$, found 420.1031. ESI-MS: m / z (relative intensity): $442.2\left((\mathrm{M}+\mathrm{Na})^{+}\right.$, $\left.{ }_{65} 100 \%\right), 420.2\left((\mathrm{M}+\mathrm{H})^{+}, 39 \%\right), 311.2$ (19), 272.1 (24), 270.1 (54), 248.1 (24), 117.1 (33).

$\left(5 S^{*}, 7 S^{*}, 8 \mathrm{a} R^{*}\right)$-5-(3-bromophenyl)-3-oxooctahydroindolizin-

 7-yl 4-methylbenzenesulfonate (6c)${ }^{70}$
Colourless gum; yield $180 \mathrm{mg}, 78 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=$ 18.0, 12.0 and $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17-2.23 (m, 1 H), 2.25-2.32 (m, 1 H), 2.48 ($\mathrm{s}, 3 \mathrm{H}$), 2.50-2.55 (m, 2 H$)$, 3.52-3.61 (m, 1 H$)$, 4.45$754.50(\mathrm{tt}, J=11.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14-7.19 (m, 2 H), 7.37-7.41 (m, 3 H), 7.78 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9,24.4$, 29.8, 33.5, 39.9, 49.2, 52.3, 75.1, 123.4, 125.0, 127.9 (2C), 129.3, 130.3 (2C), 130.7, 130.9, 133.9, 140.2, 145.3, 174.2; IR (KBr, ${ }_{80}$ neat) $2924,1691,1596,1419,1359,1189,1176,949,855,671$, $554 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 464.0526, found 464.0529. Found: C, 54.41; H, 4.77; N, 2.99; S, 6.87. Calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{~S}: \mathrm{C}, 54.32 ; \mathrm{H}, 4.79 ; \mathrm{N}, 3.02 ; \mathrm{S}$, 6.91 .
${ }_{85}$
($5 R^{*}, 7 S^{*}, 8 R^{*}$)-5-benzyl-3-oxooctahydroindolizin-7-yl methylbenzenesulfonate (6 d)

White solid, mp $115-117{ }^{\circ} \mathrm{C}$; yield $162 \mathrm{mg}, 81 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.{ }_{90} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.74$ (ddd, $J=13.6,11.2$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16-2.27 (m, 1 H), $2.29-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=12.8$ and 10.4 $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.2$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.75(\mathrm{~m}, 1 \mathrm{H})$, 4.45 (pentet, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{tt}, J=12.0$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), ${ }_{95} 7.00-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8$, $24.8,30.2,31.7,37.1,39.9,48.9,52.1,75.6,126.8,127.7$ (2C), 128.6 (2C), 129.1 (2C), 130.1 (2C), 134.1, 137.2, 145.0, 173.2; IR (KBr, neat) 2926, 1682, 1598, 1495, 1417, 1359, 1189, 1174, ${ }_{100}$ 1097, 948, 816, 675, $555 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 400.1577$, found 400.1577. ESI-MS: m/z (relative intensity): $422.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 400.3\left((\mathrm{M}+\mathrm{H})^{+}\right.$, 41%), 251.2 (15), 250.2 (55), 228.2 (33), 102.2 (30).
${ }_{105}\left(5 S^{*}, 7 S^{*}, 8 a R^{*}\right)$-3-ox0-5-(p-tolyl)octahydroindolizin-7-yl
4-
methylbenzenesulfonate (6e)
Pale yellow gum; yield $118 \mathrm{mg}, 59 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.48(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.85$ 110 (ddd, $J=18.4,12.8$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13-2.27 (m, 3 H), 2.32 (s, $3 \mathrm{H}), 2.49$ (s, 3 H), 2.50-2.55 (m, 2 H), 3.49-3.57 (m, 1 H), 4.52$4.56(\mathrm{tt}, J=12.0$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2 H), 7.77 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 115 21.1, 21.9, 24.3, 30.0, 33.3, 40.0, 49.2, 52.1, 75.5, 126.1 (2C), 128.0 (2C), 129.3, 129.7 (2C), 130.1 (2C), 134.3, 137.2, 145.2,
174.1; IR (KBr, neat) 2923, 1689, 1597, 1416, 1359, 1188, 1176, 948, 856, 680, $556 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ (M $+\mathrm{H}^{+}$400.1577, found 400.1577. ESI-MS: m / z (relative intensity): $422.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 400.3\left((\mathrm{M}+\mathrm{H})^{+}, 60 \%\right)$, 5250.2 (84), 228.2 (46), 136.1 (19).

($2 R^{*}, 9 \mathrm{a} R^{*}$)-6-oxooctahydro-1H-quinolizin-2-yl benzenesulfonate ($\mathbf{6 g}$)

${ }_{10}$ Colorless gum; yield $129 \mathrm{mg}, 80 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta 1.45-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.85-2.11(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.43$ (s, 3 H), 3.21-3.28 (m, 1 H$), 4.53(\mathrm{tt}, J=11.6$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.72-4.79(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
${ }_{15} 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta 19.0$, 21.5, 29.6, 31.4, 32.6, 39.6 (2C), 54.0, 78.3, 127.4 (2C), 129.8 (2C), 134.0, 144.8, 169.3; IR (KBr, neat) 2948, 1636, 1452, 1356, 1269, 1176, 1093, 941, 849, 817, $670 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$324.1264, found 324.1262. ESI-MS:
${ }_{20} \mathrm{~m} / \mathrm{z}$ (relative intensity): $346.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right)$, $324.2((\mathrm{M}+$ $\left.\mathrm{H}^{+}, 66 \%\right), 279.2$ (28), 215.2 (37), 174.1 (55), 152.1 (41).
($2 S^{*}, 4 R^{*}, 9 \mathrm{a} R^{*}$)-4-isobutyl-6-oxooctahydro-1 H-quinolizin-2-yl 4-methylbenzenesulfonate (6h)
25
White solid, mp $122-124{ }^{\circ} \mathrm{C}$; yield $163 \mathrm{mg}, 86 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3$ H), 1.12-1.32 (m, 2 H), 1.31-1.42 (m, 2 H), 1.44-1.64 (m, 3 H), 1.72-1.82 (m, 2 H), 1.93-2.00 (m, 1 H), 2.07-2.14 (m, 1 H), ${ }_{30} 2.26-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{tt}, J$ $=11.6$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 19.0,21.7,22.5,22.8,25.1,30.1,33.1,34.3,39.3,40.2$, 46.4, 49.4, 76.0, 127.7 (2C), 130.0 (2C), 134.2, 145.0, 169.5; IR
${ }_{35}$ (KBr , neat) 2954, 1637, 1456, 1360, 1176, 1094, 945, 873, 817, $673 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 380.1890, found 380.1890. ESI-MS: m/z (relative intensity): $402.3\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 380.3\left((\mathrm{M}+\mathrm{H})^{+}, 9 \%\right), 271.2(46)$, 246.2 (51), 230.2 (84), 208.2 (38).

40
($2 S^{*}, 4 S^{*}, 9 \mathrm{a} R^{*}$)-6-oxo-4-((E)-styryl)octahydro-1 H -quinolizin-2-yl 4-methylbenzenesulfonate ($\mathbf{6 i}$)

Colorless gum; yield $144 \mathrm{mg}, 68 \%$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }_{45} \delta 1.52-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J=18.6$, 13.2 and $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.18-2.22 (m, 1 H), 2.35-2.41 (m, 1 H), 2.46 (s, 3 H), 2.47-2.51 $(\mathrm{m}, 1 \mathrm{H}), 3.48-3.54(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{tt}, J=11.4$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.76 (dd, $J=3.6$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.92 (dd, $J=16.2$ and 3.6 Hz , $\left.{ }_{50} 1 \mathrm{H}\right), 6.25(\mathrm{dd}, J=16.2$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3$ H), 7.31-7.38 (m, 4 H), 7.81 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.4,29.9,30.3,33.2,34.4,40.2,49.4,50.7$, 75.8, 126.5 (2C), 127.2, 127.9 (2C), 128.1, 128.8 (2C), 130.2 (2C), 132.1, 134.2, 136.3, 145.2, 169.9; IR (KBr, neat) 2924,
${ }_{55} 1635,1456,1359,1176,1045,948,755,704 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 426.1734$, found 426.1734. ESIMS: m / z (relative intensity): $448.3\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 426.3$ ((M $\left.+\mathrm{H})^{+}, 38 \%\right), 317.3(30), 276.2(65), 150.1(58), 122.1$ (30).
${ }_{60}\left(2 S^{*}, 4 S^{*}, 9 \mathrm{a} R^{*}\right.$)-4-(2-chlorophenyl)-6-oxooctahydro-1H-quinolizin-2-yl 4-methylbenzenesulfonate ($\mathbf{6 j}$)
Colorless gum; yield $160 \mathrm{mg}, 74 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.84(\mathrm{~m}, 1$ H), 1.87-1.97 (m, 2 H), 2.01-2.08 (m, 1 H), 2.10-2.23 (m, 2 H),
${ }_{65} 2.40-2.48(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.81(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{tt}, J=10.4$ and 4.4 $\mathrm{Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd} J=6.8$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 1 \mathrm{H})$, 7.17-7.20 (m, 2 H), 7.24-7.27 (m, 2 H), 7.29-7.33 (m, 1 H), 7.67 $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3,21.8$, $30.3,32.9,33.8,39.6,50.4,52.9,75.6,126.90,126.93,127.7$ 70 (2C), 128.5, 130.0 (2C), 130.9, 133.1, 133.9, 137.8, 145.1, 169.9; IR (KBr, neat) 2925, 1643, 1443, 1356, 1177, 1039, 950, 846, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClNO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 434.1187, found 434.1189. ESI-MS: m / z (relative intensity): $456.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 434.2\left((\mathrm{M}+\mathrm{H})^{+}, 95 \%\right), 334.2(24)$, ${ }_{75} 284.2$ (24), 262.2 (52), 118.2 (40).
$\left(2 R^{*}, 10 \mathrm{~b} S^{*}\right)$) $6-\mathrm{ox} 0-1,2,3,4,6,10 \mathrm{~b}-h e x a h y d r o p y r i d o[2,1-$
a]isoindol-2-yl 4-methylbenzenesulfonate and ($2 S^{*}, 10 \mathrm{~b} S^{*}$)-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-2-yl 4${ }_{80}$ methylbenzenesulfonate ($\mathbf{6 k}$, mixture of isomers with $\mathbf{5 0 : 5 0}$ ratio)

White solid, mp $129-131{ }^{\circ} \mathrm{C}$; yield 141 mg , 79%; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=12.0$ and $\left.{ }_{85} 5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.89-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.72(\mathrm{~m}, 1$ H), $2.98(\mathrm{t}, J=12.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.27(\mathrm{t}, J=12.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.31-$ $4.38(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=13.6$ and $4.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.62-4.69$ $(\mathrm{m}, 0.5 \mathrm{H}), 4.78-4.87(\mathrm{~m}, 0.5 \mathrm{H}), 5.01$ (brs, 0.5 H), $7.34-7.41$ (m, $3 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $\left.{ }_{90} 2 \mathrm{H}\right), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 21.8 (2C), 29.8, 31.5, 33.8, 36.2, 36.5, 37.8, 53.2, 56.7, 75.9, $78.0,121.8$ (2C), 123.9, 124.0, 127.7 (2C), 127.8 (2C), 128.5, 128.7, 130.1 (2C), 130.2 (2C), 131.5, 131.8, 131.9, 132.1, 133.8, $134.0,144.0,145.0,145.2,145.3,166.1,166.2$; IR (KBr, neat) ${ }_{95} 2925,1689,1597,1421,1362,1290,1189,1175,1097,989,947$, 899, 851, 761, 734, 689, $671 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 358.1108$, found 358.1109. ESI-MS: m / z (relative intensity): $380.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 358.2\left((\mathrm{M}+\mathrm{H})^{+}\right.$, 78%), 249.2 (27), 208.1 (60), 186.1 (83), 132.1 (12).
100
Methyl 4-((2R*,4S*,10bS*)-6-oxo-2-(tosyloxy)-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-4-yl)benzoate (61)

Colorless gum; yield $204 \mathrm{mg}, 83 \% ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $105 \delta 1.48(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$, 2.66 (dd, $J=12.0$ and $3.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.93(\mathrm{~s}, 3 \mathrm{H}), 4.37$ (dd, $J=$ 12.0 and $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.72(\mathrm{tt}, J=11.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.86(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1$ H), $7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=$ $\left.{ }_{10} 7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.94(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9,33.8,38.0,48.9,52.4,54.3$, 75.2, 122.1, 124.5, 126.4 (2C), 128.1 (2C), 129.0, 129.6, 130.3 (2C), 130.4 (2C), 131.3, 132.3, 133.7, 143.4, 144.4, 145.5, 166.7, 167.1; IR (KBr, neat) 2924, 1721, 1693, 1597, 1467, 1411, 1362,
${ }_{115} 1280,1189,1176,1112,964,853,754,665 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 492.1475$, found 492.1483. ESI-

MS: m / z (relative intensity): $514.3\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 492.3$ ((M $+\mathrm{H}^{+}, 80 \%$), 342.3 (71), 320.2 (57), 310.4 (20).

$\left(2 R^{*}, 4 S^{*}, 10 \mathrm{bS} S^{*}\right)$-6-oxo-4-phenyl-1,2,3,4,6,10b-hexahydro-pyrido[2,1-a]isoindol-2-yl 4-methylbenzenesulfonate (6 m)

Pale yellow gum; yield $151 \mathrm{mg}, 70 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.47(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}$, $3 \mathrm{H}), 2.65(\mathrm{dd}, J=12.4$ and $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{dd}, J=12.4$ and ${ }_{10} 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.81(\mathrm{tt}, J=11.2$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.83$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.9,33.7,38.1,48.9,54.2,75.5,122.1,124.5$, ${ }_{15} 126.3$ (2C), 127.7, 128.1 (2C), 128.9, 129.1 (2C), 130.2 (2C), 131.6, 132.1, 133.8, 138.1, 144.5, 145.3, 167.0; IR (KBr, neat) 2924, 1692, 1407, 1361, 1177, 1095, 963, 854, 696, $661 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 434.1421$, found 434.1425. ESI-MS: m / z (relative intensity): $456.2\left((\mathrm{M}+\mathrm{Na})^{+}\right.$, ${ }_{20} 100 \%$), 300.2 (17), 284.2 (62), 211.3 (18), 168.2 (50).

($2 R^{*}, 4 S^{*}, 10 \mathrm{bS} S^{*}$)-4-cyclohexyl-6-oxo-1,2,3,4,6,10b-hexahydro-pyrido[2,1-a]isoindol-2-yl 4-methylbenzene-sulfonate (6n)

${ }_{25}$ Colorless solid, mp $169-171{ }^{\circ} \mathrm{C}$; yield $191 \mathrm{mg}, 87 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86-1.13(\mathrm{~m}, 5 \mathrm{H}), 1.22-1.28(\mathrm{~m}, 1 \mathrm{H})$, $1.30-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.98-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.76(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=$ 10.4 and $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.41(\mathrm{dd}, J=12.4$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-$ ${ }_{30} 4.91(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 21.8,25.8,26.0$ (2C), 29.7, 30.0, 31.8, 38.0, 38.5, 52.1, 54.1, 75.7, 121.9, 124.1, 128.0 (2C), 128.7, 130.1 (2C), 131.7, $131.8,133.8,144.3,145.3,166.7$; IR (KBr, neat) 2928, 1689, ${ }_{35} 1410,1361,1179,1096,966,941,853,827,737,691 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 440.1890$, found 440.1893. ESI-MS: m / z (relative intensity): $462.3\left((\mathrm{M}+\mathrm{Na})^{+}\right.$, $100 \%), 440.3\left((\mathrm{M}+\mathrm{H})^{+}, 93 \%\right), 331.3$ (16), 290.2 (31), 268.2 (45).

40
$\left(2 R^{*}, 4 S^{*}, 10 \mathrm{~b} S^{*}\right)-4$-(4-methoxyphenyl)-6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-2-yl 4-methylbenzenesulfonate (60)
${ }_{45}$ Colorless gum; yield $125 \mathrm{mg}, 54 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (ddd, $J=18.4,13.2$ and 6.0 Hz , 1 H), $2.51(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=10.8$ and $2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.78(\mathrm{~s}, 3$ $\mathrm{H}), 4.35(\mathrm{dd}, J=12.0$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{tt}, J=11.2$ and 4.0 $\mathrm{Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ ${ }_{50}(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49-7.58$ (m, 2 H), 7.83 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91 (d, J $=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.9,33.7,38.0$, 48.3, 54.1, 55.4, 75.6, 114.4 (2C), 122.1, 124.4, 127.5 (2C), 128.1 (2C), 128.9, 130.0, 130.2 (2C), 131.6, 132.0, 133.9, 144.4, 145.3, ${ }_{55}$ 158.9, 166.9; IR (KBr, neat) 2924, 1692, 1512, 1467, 1407, 1360, 1249, 1188, 1176, 1033, 964, 854, 738, 693, $665 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 464.1526$, found 464.1528 . ESI-MS: m / z (relative intensity): $486.3\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 464.3$
$\left((\mathrm{M}+\mathrm{H})^{+}, 14 \%\right), 355.2$ (11), 314.2 (53), 184.1 (10).
60

($5 R^{*}, 7 S^{*}, 8 \mathrm{a} R^{*}$)-5-benzyl-7-hydroxyhexahydroindolizin-3(2H)-one (6d')

Colorless liquid; yield $51 \mathrm{mg}, 83 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }_{65} \delta 1.17(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 1$ H), 1.89-1.93 (m, 1 H$), 2.18-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.37(\mathrm{~m}, 2 \mathrm{H})$, 2.72 (dd, $J=13.6$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=13.6$ and 6.8 $\mathrm{Hz}, 1 \mathrm{H}), 3.72-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{tt}, J=11.6$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.51-4.58 (m, 1 H$), 7.20-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.{ }_{70} \mathrm{CDCl}_{3}\right) \delta 25.1,30.6,35.4,37.5,42.9,49.3,52.7,64.9,126.8$, 128.8 (2C), 129.3 (2C), 138.1, 173.6; IR (KBr, neat) 2923, 1659, 1453, 1421, 1286, 1081, 1027, 751, $701 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 246.1489$, found 246.1498. ESI-MS: m / z (relative intensity): $268.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 246.2\left((\mathrm{M}+\mathrm{H})^{+}\right.$, ${ }_{75} 25 \%$), 224.2 (8), 202.2 (7), 137.4 (11).

Synthesis of (\pm)-epi-Indolizidine 167B and 209D

General procedure for the synthesis of $9 p$ and $9 q$ from 7

To a solution of PPh_{3} (1.0 equiv.) and succinimide (1.0 equiv.) in THF (0.3 M), homoallyl alcohol 7 (1.0 equiv.) was added slowly under N_{2} atmosphere. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and DIAD (1.0 equiv.) in THF (0.5 M) was added slowly. The ${ }_{85}$ reaction mixture was allowed to warm to room temperature and was stirred for 6 h . After completion of reaction, solvent was removed in rotary evaporator and crude product was directly subjected to column chromatography using ethyl acetate and hexane as eluents to give corresponding homoallyl imides.
90

1-(Hept-1-en-4-yl)pyrrolidine-2,5-dione (9p)

Pale yellow liquid; yield $794 \mathrm{mg}, 81 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.63$ $5(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 4 \mathrm{H})$, 2.63-2.73 (m, 1 H), 4.09-4.17 (m, 1 H), 4.93-5.00 (m, 2 H$)$, $5.56-5.66(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.8,19.9$, 28.0 (2C), 33.3, 36.1, 52.0, 117.7, 135.0, 177.8 (2C); IR (KBr, neat) $2960,2873,1700,1396,1371,1190,1124,920,820 \mathrm{~cm}^{-1}$;
100 HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$196.1332, found 196.1333. Found: C, 67.73; H, 8.77; N, 7.14. Calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}, 67.66 ; \mathrm{H}, 8.78 ; \mathrm{N}, 7.17$.

1-(Dec-1-en-4-yl)pyrrolidine-2,5-dione (9q)

105
Yellow liquid; yield $1.13 \mathrm{~g}, 86 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.80(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.25(\mathrm{~m}, 8 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 4 \mathrm{H}), 2.60-2.69$ $(\mathrm{m}, 1 \mathrm{H}), 4.04-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.99(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.65(\mathrm{~m}$, $\left.{ }^{1} 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.6,26.6,28.0(2 \mathrm{C})$, 28.9, 31.2, 31.7, 36.1, 52.3, 117.6, 134.9, 177.7 (2C); IR (KBr, neat) $2928,2857,1704,1397,1372,1177,1143,994,918,820$ cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$238.1802, found 238.1799. Found: C, 70.79; H, 9.79; N, 5.95. Calc. for ${ }_{115} \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 70.85; H, 9.77; N, 5.90.

General procedure for the synthesis of $5 p$ and $5 q$ from $9 p$ and 9q

To a stirred solution of $\mathbf{9 p - q}$ (1.0 equiv.) in $\mathrm{MeOH}(0.4 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ 5 was added NaBH_{4} (2.0 equiv.). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . After completion of the reaction, the reaction mixture was quenched with aqueous NaHCO_{3} and extracted with dichloromethane. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of ot the solvent, the residue was purified by column chromatography on silica gel using ethyl acetate and hexane as eluents to give the homoallyl carbinols 5p-q.

1-(Hept-1-en-4-yl)-5-hydroxypyrrolidin-2-one (5p, mixture of ${ }_{15}$ isomers with 50:50 ratio)

Pale yellow gum; yield $614 \mathrm{mg}, 78 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.41$ $(\mathrm{m}, 1 \mathrm{H}), 1.49-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.37(\mathrm{~m}$, $\left.{ }_{20} 2 \mathrm{H}\right), 2.41-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.01(\mathrm{~m}, 0.5$ H), $4.02-4.09(\mathrm{~m}, 0.5 \mathrm{H}), 5.01-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65-5.75(\mathrm{~m}, 0.5 \mathrm{H}), 5.78-5.88(\mathrm{~m}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,14.0,19.8,20.0,29.0$ (2C), 29.3, 29.4, 33.3, $36.4,36.5,39.1,52.2,52.3,82.5,82.6,116.9,117.0,135.6$, ${ }_{25}$ 136.1, 176.0, 176.1; IR (KBr, neat) 2958, 1664, 1449, 1281, 1182, 1064, 989, 915, $787 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$198.1489, found 198.1492. Found: C, 67.04; H, 9.69; N, 7.06. Calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 66.97; H, 9.71; N, 7.10.
30
1-(Dec-1-en-4-yl)-5-hydroxypyrrolidin-2-one (5 q , mixture of isomers with 60:40 ratio)

Pale yellow gum; yield $717 \mathrm{mg}, 75 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.{ }_{35} \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.35(\mathrm{~m}, 7 \mathrm{H}), 1.50-1.58$ $(\mathrm{m}, 0.6 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 0.4 \mathrm{H}), 1.86-1.94$ (m, 1 H), 2.15-2.35 (m, 3H), 2.43 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.68$ (m, 2 H), 3.89-4.00 (m, 1 H), 4.75 (brs, 1 H), 4.98-5.10 (m, 2 H), 5.23 (brs, 1 H), $5.63-5.74(\mathrm{~m}, 0.4 \mathrm{H}), 5.75-5.86(\mathrm{~m}, 0.6 \mathrm{H})$;
${ }_{40}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.93,13.95,22.50,22.55,26.5$, 26.6, 28.9, 29.0, 29.20, 29.22, 29.28, 29.32, 31.0, 31.6, 31.7, $34.1,36.4,39.0,52.2,52.4,82.3,82.4,116.5,116.7,135.6$, 136.0, 175.5, 175.6; IR (KBr, neat) 2957, 1669, 1458, 1281, 1166, 1065, 990, 915, $786 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for
${ }_{45} \mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$240.1958, found 240.1957. ESI-MS: m/z (relative intensity): $262.2\left((\mathrm{M}+\mathrm{Na})^{+}, 61 \%\right), 240.2\left((\mathrm{M}+\mathrm{H})^{+}\right.$, 66%), 222.2 (100), 210.3 (61), 185.2 (27), 130.2 (79).

Synthesis of 6p and 6q from 5p and 5q:

50

Compounds $\mathbf{5 p}$ and $\mathbf{5 q}$ were cyclized in dichloromethane under the same reaction conditions as described in general procedure for $\mathbf{6 a - o}$ to provide $\mathbf{6 p}$ and $\mathbf{6 q}$ in 79% and 84% yields, respectively.
55
($5 S^{*}, 7 S^{*}, 8 \mathrm{a} S^{*}$)-3-oxo-5-propyloctahydroindolizin-7-yl methylbenzenesulfonate ($\mathbf{6 p}$)

Colorless liquid; yield $834 \mathrm{mg}, 79 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.{ }_{60} \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.33$ $(\mathrm{m}, 2 \mathrm{H}), 1.39-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.82(\mathrm{~m}$, $1 \mathrm{H}), 2.17-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{dd}, J=9.2$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46$ (s, 3 H), $3.58-3.66(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{tt}, J$ $=12.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0$ ${ }_{65} \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 13.7, 19.5, 21.7, 24.4, 30.1, 33.1, 34.0, 40.0, 47.2, 51.6, 75.7, 127.7 (2C), 130.0 (2C), 134.2, 145.0, 173.5; IR (KBr, neat) 2926, 1684, 1599, 1458, 1420, 1360, 1177, 1096, 946, 848, 816, $678 \mathrm{~cm}-1$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 352.1577$, found 352.1579. ESI${ }_{70}$ MS: m / z (relative intensity): $374.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 352.2((\mathrm{M}$ $\left.+\mathrm{H})^{+}, 46 \%\right), 243.2$ (55), 202.2 (32), 180.2 (37).
($5 S^{*}, 7 S^{*}, 8 S^{*}$)-5-hexyl-3-oxooctahydroindolizin-7-yl methylbenzenesulfonate (6q) 75
Pale yellow liquid; yield $990 \mathrm{mg}, 84 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.46$ $(\mathrm{m}, 10 \mathrm{H}), 1.52-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.26(\mathrm{~m}$, 2 H), 2.36 (dd, $J=9.6$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.45 (s, 3 H), 3.58-3.65 ${ }_{80}(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{tt}, J=11.6$ and 4.4 Hz , $1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,21.6,22.5,24.3,26.1,28.9$, $30.1,30.9,31.6,33.8,40.0,47.3,51.5,75.7,127.6$ (2C), 129.9 (2C), 134.1, 145.0, 173.3; IR (KBr, neat) 2928, 1688, 1417, 1361, ${ }_{85}$ 1288, 1177, 1095, 946, 851, $678 \mathrm{~cm}-1$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$394.2047, found 394.2047. Found: C, 64.19; H, 7.93; N, 3.52; S, 8.09. Calc. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 64.08$; H, 7.94; N, 3.56; S, 8.15.
${ }_{90}$ General procedure for the synthesis of $\mathbf{1 0 p}$ and $\mathbf{1 0 q}$ from $\mathbf{6 p}$ and $\mathbf{6 q}$

To a stirred solution of 6 (1.0 equiv.) in DMSO (0.2 M), NaBH_{4} (3.0 equiv.) was added slowly. The reaction mixture was stirred 95 at $85^{\circ} \mathrm{C}$ for 8 h . After completion of the reaction, the reaction mixture was washed with brine solution and then extracted with ethylacetate. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of the solvent, the residue was purified by column chromatography on silica gel using ethyl 100 acetate and hexane as eluents to give $\mathbf{1 0 p}$ and $\mathbf{1 0 q}$.

(5S*,8aR*)-5-propylhexahydroindolizin-3(2H)-one (10p)

Colorless liquid; yield $231 \mathrm{mg}, 64 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.{ }_{105} \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.44(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.64$ $(\mathrm{m}, 5 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.39(\mathrm{~m}$, $2 \mathrm{H}), 3.52-3.60(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,19.0,19.7,25.3,27.5,30.4,32.3,33.9$, 48.0, 53.3, 173.8; IR (KBr, neat) 2933, 1682, 1418, 1371, 1306, ${ }_{10}$ 1271, 1155, 1078, $749 \mathrm{~cm}-1$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}$ $(\mathrm{M}+\mathrm{H})^{+}$182.1539, found 182.1533. ESI-MS: m / z (relative intensity): $204.2\left((\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right), 182.2\left((\mathrm{M}+\mathrm{H})^{+}, 61 \%\right)$, 168.2 (44), 166.2 (15).
$115\left(5 S^{*}, 8 \mathrm{R}^{*}\right)$-5-hexylhexahydroindolizin-3(2H)-one (10q):

Colorless liquid; yield $294 \mathrm{mg}, 66 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.26(\mathrm{~m}, 9 \mathrm{H}), 1.36-1.62$ $(\mathrm{m}, 7 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=$ 9.2 and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,19.0,22.6,25.3,26.3$, $27.4,29.2,30.1,30.3,31.8,33.9,48.1,53.2,173.5$; IR (KBr, neat) $2928,1684,1416,1306,1269,1020,738 \mathrm{~cm}-1$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 224.2009$, found 224.2009. ESI-MS: m / z (relative intensity): $246.2\left((\mathrm{M}+\mathrm{Na})^{+}, 95 \%\right), 224.2$ ${ }_{10}\left((\mathrm{M}+\mathrm{H})^{+}, 52 \%\right), 210.2(100), 204.2$ (48), 168.2 (43).

General procedure for synthesis of epi-3p and epi-3q from $10 p$ and $10 q$
${ }_{15}$ Lactams $\mathbf{1 0 p - q}$ (1.0 equiv.) in THF (0.2 M) were added slowly to a strried suspension of LiAlH_{4}, (3.0 equiv.) in THF (0.3 M) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to reflux for 6 h . After completion of reaction the excess LAH was quenched with ethylacetate at $0^{\circ} \mathrm{C}$. The reaction mixture was
${ }_{20}$ filtered through celite pad. The solvent was removed in rotary evaporator, the residue was purified by column chromatography on neutral alumina to give the epi-3p and epi-3q.

$\left(5 S^{*}, 8 \mathrm{a} R^{*}\right)$-5-propyloctahydroindolizine (epi-3p)

25
Colorless liquid; yield $145 \mathrm{mg}, 87 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.33$ $(\mathrm{m}, 3 \mathrm{H}), 1.35-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.76(\mathrm{~m}$, $3 \mathrm{H}), 2.33-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{q}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (ddd, $J=$ 30 11.6, 8.4 and $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (ddd, $J=12.8,6.8$ and $3.6 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.5,19.5,20.9,21.0,25.8$, 27.7, 30.8, 31.4, 48.8, 55.1, 55.3; IR (KBr, neat) 2868, 2802, 1459, 1378, 1263, 1142, 1091, 896, $740 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$168.1747, found 168.1756. ESI-MS: m / z 35 (relative intensity): $168.2\left((\mathrm{M}+\mathrm{H})^{+}, 100 \%\right), 144.2$ (23), 130.2 (45), 126.2 (44).

$\left(5 S^{*}, 8 \mathbf{a} R^{*}\right)$-5-hexyloctahydroindolizine (epi-3q)

${ }_{40}$ Colorless liquid; yield $196 \mathrm{mg}, 94 \%$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.38$ $(\mathrm{m}, 9 \mathrm{H}), 1.41-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.82(\mathrm{~m}$, $3 \mathrm{H}), 2.43-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.4$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ddd, $J=12.0,9.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{ddd}, J=13.2,6.0$ and $\left.{ }_{45} 2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,19.6,21.1$, $22.9,23.8,27.8,27.9,29.9,30.9,31.4,32.1,49.0,55.4,55.7$; IR (KBr, neat) 2927, 2857, 2802, 1460, 1378, 1262, 1148, 1088, 749 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} 210.2216$, found 210.2222. ESI-MS: m / z (relative intensity): $210.3\left((\mathrm{M}+\mathrm{H})^{+}\right.$, ${ }_{50} 50 \%$), 204.2 (100), 202.2 (15), 182.2 (22), 145.0 (9).

1-(Dec-1-en-4-yl)pyrrolidine (11)

Pale yellow liquid; yield $58 \mathrm{mg}, 28 \%$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.{ }_{55} \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.37(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.46$ $(\mathrm{m}, 1 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.48(\mathrm{~m}, 1$ H), 2.51-2.57 (m, 1 H), 2.79 (brs, 1 H), 3.02 (brs, 4 H), 5.13-5.19 $(\mathrm{m}, 2 \mathrm{H}), 5.80-5.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
14.3, 22.8, 23.7 (2C), 25.9, 29.7, 31.3, 31.9, 35.8, 51.5 (2C), 63.9, ${ }_{60} 117.4,135.3$; IR (KBr, neat) 2923, 2856, 1632, 1457, 1030, 738, $610 \mathrm{~cm}-1$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} 210.2216$, found 210.2218. ESI-MS: m / z (relative intensity): 210.2 ((M + $\mathrm{H}^{+}, 100 \%$), 168.2 (77), 97.1 (17), 83.1 (21).

${ }_{65}$ 2-Allyl-1-heptylpyrrolidine (12)

Pale yellow liquid; yield $77 \mathrm{mg}, 37 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.35(\mathrm{~m}, 10 \mathrm{H})$, 1.96-2.06 (m, 4 H$), 2.16-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.90(\mathrm{~m}, 3 \mathrm{H})$, ${ }_{70} 3.20-3.35(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67-5.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $14.2,21.9,22.8,27.0,27.6,29.2,30.0,31.9,36.8,53.8,54.4$, $65.9,117.9,134.6$; IR (KBr, neat) 2924, 2854, 1628, 1465, 1018, $734,611 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$ ${ }_{5} 210.2216$, found 210.2221. ESI-MS: m / z (relative intensity): $210.2\left((\mathrm{M}+\mathrm{H})^{+}, 100 \%\right), 168.2$ (24).

Acknowledgements

80
KI is thankful to Ministry of Human Resource Development (MHRD), New Delhi for his fellowship. Authors are grateful to Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support (Grant No. 02/0159/13/EMR-II). Authors 85 are also grateful to Central Instruments Facility (CIF) of Indian Institute of Technology Guwahati for NMR and XRD facilities.

Notes and references

a Department of Chemistry, Indian Institute of Technology Guwaqhati,
90 Guwahati 781039, Assam, India. Fax: +91 361269 0762; Tel: +91 361
258 2316; E-mail: asaikia@iitg.ernet.in
\dagger Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/
951 (a) E. A Couladouros, A. T. Strongilosa and E. Neokosmidisa, Tetrahedron Lett., 2007, 48, 8227; (b) G. Vincent, D. Karila, G.Khalil, P. Sancibrao, D. Gori and C.Kouklovsky, Chem. Eur. J., 2013, 19, 9358; (c) P. D. Bailey, P. A. Millwood and P. D.Smith, Chem. Commun., 1998, 633.
1002 (a) K. L. Dechant and S. P. Clissold, Drugs, 1991, 41, 225; (b) C. Braestrup, E. B. Nielsen, U. Sonnewald, L. J. S. Knutsen, K. E. Andersen, J. A. Jansen, K. Frederiksen, P. H. Andersen, A. Mortensen and P. D. Suzdak, J. Neurochem.,1990, 54, 639.
3 (a) J. P. Michael, Nat. Prod. Rep., 2008, 25, 139; (b) J. P. Michael, Nat. 105 Prod. Rep., 2000, 17, 579; (c) J. P. Michael, Nat. Prod.Rep., 2003, 20, 458; (d) J. P. Michael, Nat. Prod.Rep., 2005, 22, 603; (e) J. P. Michael, Nat. Prod.Rep., 1999, 16, 675; (f) A. R. Pinder, Nat. Prod.Rep.,1986, 3, 171.

4 (a) S. Umezawa, T. Tsuchiya, K. Tatsuta, Y. Horiuchi, T. Usui, H. 110 Umezawa, M. Hamada and A. Yagi, J. Antibiot., 1970, 23, 20; (b) S. Umezawa, K. Tatsuta, Y. Horiuchi, T. Tsuchiya and H. Umezawa, J. Antibiot., 1970, 23, 28.
5 (a) P. A.Janssen, Int. J. Neuropsychiatry, 1967, 3, Suppl 1:10-8; (b) S. Kudo and T. Ishizaki, Clin. Pharmacokinet., 1999, 37, 435; (c) J. 115 Ichikawa and H. Y. Meltzer, Eur. Arch. Psychiatry Clin. Neurosci.,1999, 249, Suppl 4:90-98; (d) R.DesJarlais, G. Seibel, P. R. Ortiz de Montellano, P. Furth, J. Alvarez, D. Decamp, L. Babé and C. S. Craik, Proc. Natl. Acad. Sci. U.S.A., 1990, 87, 6644; (e) R. M. Bilder, R. S. Goldman, J. Volavka, P. Czobor, M. Hoptman, B.
120 Sheitman, J. P. Lindenmayer, L. Citrome, J. McEvoy, M. Kunz, M.

Chakos, T. B. Cooper, T. L. Horowitz and J. A. Lieberman, Am. J. Psychiatry, 2002, 159, 1018; (f) P. Oosthuizen, R. Emsley, J. Turner and N. Keyter, Int. J. Neuropsychopharmacol., 2004, 7, 125; (g) P. Oosthuizen, R. Emsley, J. Turner and N. Keyter, J. Psychopharmacol., 2001, 15, 251.
6 (a) M. Ishibashi, Y. Ohizumi, T. Sasaki, H. Nakamura, Y. Hirata and J. Kobayashi, J. Org. Chem., 1987, 52, 450; (b) A. J. Freuer, A. D. Patil, L. Killmer, N. Troupe, M. Mentzer, B. Carte, L. Faucette and K. Johnson, J. Nat. Prod. 1997, 60, 986.
107 (a) J. W. Daly and T. F. Spande, Amphibian Alkaloids: Chemistry, Pharmacology and Biology. Alkaloid: Chemical and Biological Perspective; Pelletier, S. W., Ed.; Wiley: New York, NY, 1986; Vol. 4, pp 1-274. (b) J. W. Daly, G. B. Brown and M. Mensah-Dwumah, Toxicon 1978, 16, 163; (c) J. W. Daly, C. W. Myers and N. Whittaker,
15 Toxicon, 1987, 25, 1023; (d) J. P. Michael, Alkaloids; Cordell, G. A., Ed.; Academic: London, 2001; Vol. 55, pp 91-258. (e) R. S. Aronstam, J. W. Daly, T. F. Spande, T. K. Narayanan and E. X. Albequerque, Neurochem. Res., 1986, 11, 1227; (f) T. Tokuyama, N. Nishimori, I. L. Karle, M. W. Edwards and J. W. Daly, Tetrahedron, 1986, 42, 3453.
208 (a) R. P. Polniaszek and S. E. Belmont, J. Org. Chem., 1990, 55, 4688; (b) S. Peroche, R. Remuson, Y. Gelas-Mialhe and J.-C. Gramain, Tetrahedron Lett., 2001, 42, 4617; (c) J. P. Michael and D. Gravestock, Pure Appl. Chem., 1997, 69, 583; (d) M. Amat, N. Llor, J. Hidalgo, C. Escolano and J. Bosch, J. Org. Chem., 2003, 68, 1919; (e) J. Zaminer,
25 C. Stapper and S. Blechert, Tetrahedron Lett., 2002, 43, 6739; (f) T. G. Back and K. Nakajima, Org. Lett.,1999, 1, 261; (g) R. Chênevert, G. M. Ziarani, M. P. Morin and M. Dasser, Tetrahedron: Asymmetry, 1999, 10, 3117; (h) D. L.Comins and Y.-M. Zhang, J. Am. Chem. Soc., 1996, 118, 12248; (i) H. Takahata, M. Kubota, K. Ihara, N. Okamoto,
30 T. Momose, N. Azer, A. T. Eldefrawi and M. E. Eldefrawi, Tetrahedron: Asymmetry, 1998, 9, 3289; (j) G. Kim, S.-D. Jung and W.-J. Kim, Org. Lett., 2001, 3, 2985; (k) T. G. Back and K. Nakajima, J. Org. Chem., 2000, 65, 4543.

9 (a) P. Jain, M. H. Garroffo, H. J. C. Yeh, T. F. Spande, J. W. Daly, N.
35 R. Andriamaharavo and M. Andriantsiferana, J. Nat. Prod., 1996, 59, 1174; (b) W. Tadeka, T. Sakata, S. Shimano, Y. Enami, N. Mori, R. Nishida and Y. Kuwahara, J. Chem. Ecol., 2005, 31, 1111; (c) J. W. Daly, T. F .Spande and H. M. Garraffo, J. Nat. Prod., 2005, 68, 1556; (d) R. A. Saporito, H. M. Garraffo, M. A. Donnelly, A. L. Edwards, J.

40 T. Longino and , J. W. Daly, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 8045.

10 J. S. Yadav, B. V. S. Reddy, D. N. Chaya, G. G. K. S. N. Kumar, P. Naresh and B. Jagadeesh, Tetrahedron Lett., 2009, 50, 1799.
11 (a) J. S. Yadav, B. V. S. Reddy, K. Ramesh, G. G. K. S. N. Kumar and
45 R. Grée, Tetrahedron Lett., 2010, 51, 1578; (b) J. S. Yadav, B. V. S. Reddy, D. N. Chaya, G. G. K. S. N. Kumar, S. Aravind, A. C. Kunwar and C. Madavi, Tetrahedron Lett., 2008, 49, 3330; (c) P. O.Miranda, R. M. Carballo, V. S. Martín and J. I. Padrón, Org. Lett., 2009, 11, 357; (d) R. M. Carballo, M. A. Ramírez, M. L. Rodríguez, V. S. Martín and

50 J. I. Padrón, Org. Lett., 2006, 8, 3837.
12 J. S. Yadav, B. V. S. Reddy, K. Ramesh, G. G. K. S. N. Kumar and R. Grée, Tetrahedron Lett., 2010, 51, 818.
13 B. V. S. Reddy, K. Ramesh, A. V.Ganesh, G. G. K. S. N. Kumar, J. S. Yadav and R. Grée, Tetrahedron Lett., 2011, 52, 495.
5514 (a) P. M. Esch, R. F. de Boer, H. Hiemstra, I. M. Boska and W. N. Speckamp, Tetrahedron, 1991, 47, 4063; (b) F. P. J. T. Rutjes, J. J. N. Veerman, W. J. N. Meester, H. Hiemstra and H. E. Schoemaker, Eur. J. Org. Chem., 1999, 1127.
15 (a) B. E. Maryanoff, H-C. Zhang, J. H. Cohen, I. J. Turchi and C. A.
${ }_{60}$ Maryanoff, Chem. Rev., 2004, 104, 1431; (b) H. Hiemstra and W. N. Speckamp, The Alkaloids: Chemistry and Pharmacology, 1988, 32, 271; (c) C. M. Marson, ARKIVOC, 2001, 1; (d) W. N. Speckamp and H. Hiemstra, Tetrahedron, 1985, 41, 4367; (e) A. Yazici and S. G. Pyne, Synthesis, 2009, 339; (f) A.Yazici and S. G. Pyne, Synthesis, 55 2009, 513.
16 (a) B. P.Wijnberg, W. N. Speckamp and A. R. C. Oostveen, Tetrahedron,1982, 38, 209; (b) H. E. Schoemaker, J. Dijkink and W. N. Speckamp, Tetrahedron, 1978, 34, 163; (c) W. N. Speckamp, In Stereoselective Synthesis of Natural Products-Workshop Conferences
${ }_{70}$ Hoechst; Bartmann, W., Winterfeldt, E., Eds.; Elsevier: Amesterdam, 1979; Vol. 7. pp 50-61; (d) D. J. Hart and K. Kanai, J. Org. Chem.,

1982, 47, 1555; (e) H. Ent, H. Koning and W. N. Speckamp, Tetrahedron Lett., 1983, 24, 2109.
17 (a) H. Ent, H. de Kong and W. N. Speckamp, Tetrahedron Lett., 1985,
75 26, 5105; (b) P. Bottari, M. A. Endoma, T. Hudlicky, I. Ghiviriga and K. A. Abboud, Coll. Czech. Chem. Commun,.1999, 64, 203.

18 (a) J.-P. Gesson, J.-C. Jacqesy and D. Rambaud, Tetrahedron, 1993, 49, 2239; (b) T. Shono, Y. Matsumura, K. Uchida and H. Kobayashi, J. Org. Chem.,1985, 50, 3243.
8019 (a) M. Terada, K. Machioka and K. Sorimachi, J. Am. Chem. Soc., 2007, 129, 10336; (b) S. M. Walker, J. T. Williams, A. G. Russell and J. S. Snaith, Tetrahedron Lett., 2005, 46, 6611; (c) J. T. Williams, P. S. Bahia, B. M. Kariuki, N. Spencer, D. Philp and J. S. Snaith, J. Org. Chem., 2006, 71, 2460; (d) S. M. Walker, J. T. Williams, A. G. Russell,
85 B. M. Kariuki and J. S. Snaith, Org. Biomol. Chem., 2007, 5, 2925.
20 C. Kim, H. J. Bae, J. H. Lee, W. Jeong, H. Kim, V. Sampath and Y. H. Rhee, J. Am. Chem. Soc., 2009, 131, 14660.

21 (a) Y. Ying, H. Kim, and J. Hong, Org. Lett., 2011, 13, 796; (b) M. J. Lee, K. Y. Lee and J. N. Kim, Bull. Korean Chem. Soc., 2005, 26, 477;
90 (c) Z. Amara, J. Caron, and D. Joseph, Nat. Prod. Rep., 2013, 30, 1211; (d) S. Fustero, D. Jiménez, M. Sánchez-Roselló and C.del Pozo, J. Am. Chem. Soc., 2007, 129, 6700; (e) S. Fustero, D. Jiménez, J. Moscardó, S. Catalán and C. del Pozo, Org. Lett., 2007, 9, 5283.

22 (a) X. Han and R. A. Widenhoefer, Angew. Chem. Int. Ed., 2006, 45,
95 1747; (b) M. Sato, Y. Gunji, T. Ikeno and T. Yamada, Synthesis, 2004, 1434; (c) M. C. Marcotullio, V. Campagna, S. Sternativo, F. Costantino and M. Curini, Synthesis, 2006, 2760; (d) K. Fujita, T. Fujii and R. Yamaguchi, Org. Lett., 2004, 6, 3525; (e) F. Xu, B. Simmons, R. A. Reamer, E. Corley, J. Murry and D. Tschaen, J. Org. Chem., 2008, 73,
100 312; (f) B. M. Trost, N. Maulide and R. C. Livingston, J. Am. Chem. Soc,. 2008, 130, 16502.
23 N. Ahmed and N. K. Konduru, Beilstein. J. Org. Chem., 2012, 8, 177.
24 (a) A. Padwa, T. M. Heidelbaugh, J. T. Kuethe and M. S. McClure, J. Org. Chem., 1998, 63, 6778; (b) A. Padwa, T. M. Heidelbaugh, J. T.
105 Kuethe, M. S. McClure and Q. Wang, J. Org. Chem., 2002, 67, 5928; (c) A. Padwa, M. D. Danca, K. I. Hardcastle and M. S. McClure, J. Org. Chem., 2003, 68, 929.
25 (a) U. C. Reddy, B. R. Raju, E. K. P. Kumar and A. K. Saikia, J. Org. Chem., 2008, 73, 1628; (b) U. C. Reddy, S. Bondalapati and A. K.
110 Saikia, Eur. J. Org. Chem., 2009, 1625; (c) U. C. Reddy, S. Bondalapati and A. K. Saikia, J. Org. Chem., 2009, 74, 2605; (d) U. C.Reddy and A. K. Saikia, Synlett, 2010, 1027; (e) S. Bondalapati, U. C. Reddy, D. S. Kundu and A. K. Saikia, J. Fluorine Chem., 2010, 113, 320; (f) K. Indukuri, S. Bondalapati, T. Kotipalli, P. Gogoi and A. K.
5 Saikia, Synlett, 2011, 233.
26 K. Indukuri, R. Unnava, M. J. Deka and A. K. Saikia, J. Org. Chem., 2013, 78, 10629.
27 K. Komeyama, R. Igawa, T. Morimoto and K. Takaki, Chem. Lett., 2009, 38, 724.
12028 (a) D. J. Hart, J. Am. Chem. Soc.,1980, 102, 397; (b) F. Johnson, Chem. Rev., 1968, 68, 375; (c) A. Alsarabi, J-L. Canet and Y. Troin, Tetrahedron Lett., 2004, 45, 9003; (d) S. H. Kim, H. G. Kim, H. Choo, J. H. Cha, A. N. Pae, H. Y.Koh, B. Y.Chung and Y. S. Cho, Tetrahedron Lett., 2006, 47, 6353; (e) D. Gardette, Y. Gelas-Mialhe, J.-
125 C. Gramain, B. Perrin and R. Remuson, Tetrahedron: Asymmetry, 1998, 9, 1823; (f) Y. Gelas-Mialhe, J.-C. Gramain, A. Louvet and R. Remuson, Tetrahedron Lett., 1992, 33, 73.
29 The crystallographic data for the compound $\mathbf{6 n}$ has been deposited with the Cambridge Crystallographic Data Centre as supplementary 30 publication no. CCDC1000260.
30 M. Sridhar, B. A. Kumar and R. Narender, Tetrahedron Lett., 1998, 39, 2847.
31 (a) D. L. Hughes, The Mitsunobu Reaction. In Organic Reactions; Denmark, S., Ed.; Wiley \& Sons,2004; pp 335-656. (b) C. A. Tarling,
135 A. B. Holmes, R. E. Markwell and N. D. Pearson, J. Chem. Soc., Perkin Trans. 1, 1999, 1695.
32 (a) A. R. Chamberlin and J. Y. L. Chung, J. Am. Chem. Soc., 1983, 105, 3653; (b) J. Sikoraiováa, S. Marchalín, A. Daïchb and B. Decroixb, Tetrahedron Lett., 2002, 43, 4747.
14033 D. R.Boyd, N. D. Sharma, M. V. Berberian, K. S. Dunne, C. Hardacre, M. Kaik, B. Kelly, J. F. Malone, S. T. McGregor and P. J. Stevenson, Adv. Synth. Catal., 2010, 855.

34 Y. S. Lee, D. W. Kang, S. J. Lee and H. Park, J. Org. Chem., 1995, 60, 7149.

35 R. O. Hutchins, D. Kandasamy, F. Dux III, C. A. Maryanoff, D Rotstein, B. Goldsmith, W. Burgoyne, F.Cistone, J.Dalessandro and J.Puglis, J. Org. Chem., 1978, 43, 2249.

