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Regioselective synthesis of 3,4,5-trisubstituted 2-

aminofurans  

Thi Ngoc Tram Huynh,a,b Pascal Retailleau,c Clément Denhez,a* Kim Phi Phung 

Nguyenb and Dom Guillaumea 

Three series of methyl 5-substituted 2-aminofuran-4-keto-3-

carboxylates have been prepared following a multicomponent 

reaction strategy by the addition of an isocyanide to 4-oxo-2-

butynoate in the presence of an aldehyde. The cycloaddition 

regioselectivity is generally high (>95%) but decreases when 

an electron-rich substituent is located at the butynoate 4-

position. 

 Furan is an important five membered O-heterocycle frequently 

present in biologically important natural products and pharmaceutical 

substances.1 2-Aminofurans are powerful synthetic intermediates2 

whose use is somehow hampered by their limited availability. Such 

limitation is particularly stressed for 3,4,5-trisubstituted 2-

aminofurans. Indeed, if 3-cyano-4,5-disubstituted-2-aminofurans can 

be prepared by reaction of α-bromoacetophenones with 

malononitrile,3 or by cascade Stetter--keto nitrile cyclization reaction 

of aromatic aldehydes and acylidenemalononitriles,4 most of the 

reported 3,4,5-trisubstituted-2-aminofurans have been prepared by 

nucleophilic addition of isocyanides to dimethyl acetyledicarboxylate 

in the presence of majoritarily aromatic aldehydes,5 but also 

conjugated aldehydes,6 or modified aldehydes,7 acids,8 acyl chlorides9 

(Scheme 1).  
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Diaroylacetylenes (1,4-diarylbut-2-yne-1,4diones) have also been 

scarcely but successfully used in place of dimethyl 

acetylenedicarboxylate10 (Scheme 1). However, despite its chemical 

efficiency the isocyanide-based multicomponent approach has 

exclusively been applied to symmetrical alkynes, allowing the 

preparation of 3,4,5-trisubstituted-2-aminofurans presenting 

simultaneously either a diketo- or a diester-functionality at C3 and C4, 

so far. Recently, the two-step synthesis of three 3,4,5-trisubstituted-2-

aminofurans in which the 3- and 4-position are functionalized with an 

ester and keto group, respectively, has been reported11 (Scheme 1). 

Scheme 1 Known strategies to prepare 3,4,5-trisubstituted 2-

aminofurans 

 
 

This synthesis necessitates the oxidation of a 2-amino-2,3-

dihydrofuran initially resulting from the reaction of carbenoids with 

enamines. Taking advantage of the high isocyanide reactivity, we 

report the regioselective one-step synthesis of 3,4,5-trisubstituted 2-

aminofurans in which the 3- and 4-position are functionalized with an 

ester and keto group. 
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Table 1 Screening of the reaction conditions for 2-aminofurane synthesis 

 

Entry Solvent, conditions Yield (%) 

1 PEG 400,a RT, 24hrs 0 

2 C6H5CH3, reflux, 24hrs 0 
3 [Bmim]BF4, RT, 24hrs 0 

4 H2O, RT, 24hrs 69 

5 H2O, 110°C, sealed tube, 24hrs 66 
6 CH2Cl2, RT, 24hrs 55 

7 CH2Cl2, 70°C, sealed tube, 24hrs 72 

a PEG = poly(ethylene glycol)  

 First we screened experimental conditions of the three component 

reaction using benzaldehyde, the known methyl 4-oxo-2-alkynoate 

(1),12 and tert-butyl isocyanide (4) in various solvents (Table 1). Even 

though [Bmim]BF4, toluene/benzene, or PEG 400, have been reported 

as suitable solvents for such cycloaddition reactions,5a-f,6 in our hands, 

those solvents failed to deliver the expected furan (Table 1, entries 1-

3). Interestingly, the use of H2O as solvent led to 2-aminofuran 5a in 

around 68 % yield, depending on the reaction temperature (Table 1, 

entries 4 and 5). Replacement of water with dichloromethane afforded 

the expected 2-aminofuran in 55% yield when the reaction was 

performed at room temperature and 72% upon heating at 70°C (sealed 

tube) (Table 1 entries 6 and 7). Furthermore and delightedly, the 1H-

NMR spectrum of the crude reaction mixture evidenced that the 

successful cycloaddition was accompanied by single regioisomer 

formation. Characteristic 13C chemical shift of 2-aminofuran C3- and 

C4-atoms at  91.0 and 123.6, respectively,11 unequivocally signed the 

exclusive (above 95%) formation of 5a (Table 1), the furan resulting 

from a nucleophilic attack of the isocyanide at the carbon alpha of the 

methyl 4-oxo-2-alkynoate ester group.13  

Table 2 Cycloaddition yield (%) using methyl 5,5-dimethyl-4-oxohex-2-

ynoate (1) or methyl 4-phenyl-4-oxo-2-butynoate (2) and various aromatic 

aldehydes 

 

Ar 5a, b 6a, b 

Ph 5a (72) 6a (52) 

p-O2N-C6H4 5b (93) 6b (79) 
m-O2N-C6H4 5c (92) 6c (78) 

piperonylc 5d (53) 6d (45) 

p-H3C-C6H4 5e (61) 6e (57) 
p-F-C6H4 5f (50) 6f (52) 

2-(pivaloyloxy)-C6H4 5g (60) 6g (58) 

3-(pivaloyloxy)-C6H4 5h (53) 6h (50) 
4-(pivaloyloxy)-C6H4 5i (62) 6i (52) 

3,5-dimethoxy-4-(pivaloyloxy)-C6H2 5j (70) 6j (63) 

2-(3-methyl)thiophenyl 5k (59) 6k (53) 

a Reactions were conducted using 1 Eq. of 1 (or 2) and 1.1 Eq. of tert-butyl 

isocyanide (4); b Isolated yields; c 5-Benzo[d][1,3]dioxole. 

 Then, we focused on the cycloaddition regioselectivity. We 

observed that aldehydes had no influence on the regioselectivity since 

all eleven studied aromatic aldehydes afforded only one regioisomer 

with the yield of 50-95 % after cycloaddition in the presence of 1 or 2 in 

CH2Cl2 at 70°C (Table 2). If nitrobenzaldehydes and benzaldehyde 

afforded tetrasubstituted furans in high yield, 2-aminofurans 5f or 5h, 

and 6f or 6h resulting from 4-fluorobenzaldehyde or 4-

pivaloyloxybenzaldehyde, respectively, were obtained in only 50% 

yield (Table 2).  

 Then, to evaluate the influence of the C4-alkyne substituent on the 

regioselectivity, we used methyl 4-phenyl-4-oxo-2-butynoate (2)12,14 in 

place of 1. In that case, cycloaddition again nicely occurred with a 

higher-than-95% regioselectivity (Table 2). However, associated with 

slightly lower chemical yield compared to those observed with 1.  

 More contrasted results were obtained when methyl 4-oxo-4-

(thiophen-2-yl)but-2-ynoate15 (3) was used. In this case, and even 

though global chemical yields were similar to those observed with 1 or 

2, a minor regioisomer (8) resulting from the nucleophilic isocyanide 

attack at -position of the keto group was isolated together with 7, the 

regioisomer resulting from the similar  attack at -position of the keto 

group (Table 3).  

Table 3 Cycloaddition yield (%) using methyl 4-oxo-4-(thiophen-2-yl)but-2-

ynoate (3) and various aromatic aldehydes 

 

Ar Isomer 7a, b Isomer 8a, b 

Ph 7a (40) 8a (10) 

p-O2N-C6H4 7b (62) 8b (30) 
m-O2N-C6H4 7c (61) 8c (25) 

piperonylc 7d (23) 8d (9) 

p-H3C-C6H4 7e (32) 8e (8) 
p-F-C6H4 7f (42) 8f (8) 

2-(pivaloyloxy)-C6H4 7g (47) 8g (-) 

3-(pivaloyloxy)-C6H4 7h (35) 8h (12) 
4-(pivaloyloxy)-C6H4 7i (41) 8i (12) 

3,5-dimethoxy-4-(pivaloyloxy)-C6H2 7j (40) 8j (13) 

2-(3-methyl)thiophenyl 7k (26) 8k (8) 

a Reactions were conducted using 1 Eq. of 3 and 1.1 Eq. of tert-butyl 

isocyanide (4); b Isolated yields; c 5-Benzo[d][1,3]dioxole. 

 The structure of 7b and 8b (Ar=p-NO2-C6H4) were unambiguously   

solved by X-ray crystallography (Figure 1). The high reactivity of the -

position of the methoxycarbonyl group of alkynes as 1-3 towards 

nucleophilic attack has generally been assumed since the pioneer work 

of Jones et al.13 However, the reactivity of the Michael-acceptor is 

known to be reduced if it is substituted with an electron rich group.16,17 

It is very likely that the electron-rich thienyl group modifies the alkyne 

charge distribution resulting in a lower regioselectivity of the isonitrile 

attack.  

 In order to explain the observed regioselectivity, we determined 

DFT-based reactivity18 Fukui condensed indices19 𝑓𝑘
+ and 𝑓𝑘

−20 widely 

used to study of 1,3-dipolar cycloadditions.21 As expected tert-butyl 

isocyanide (4) featured a 𝑓𝑘
− concentrated on the isocyanide carbon 

(0.581 unit). Interestingly, alkyne 1 featured a 𝑓𝑘
+ concentrated on 

carbon 2 (0.178 unit) associated with a high discrimination between 
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the two reactive alkyne carbons (difference of 0.134 unit in favor of 

carbon 2). 

 
Figure 1 ORTEP (50% ellipsoid probability) diagram of regioisomer 7b (left) and 8b 

(right). 

Conversely, alkynes 2 and 3 displayed a more balanced Fukui indice 

distribution. Indeed, whereas the highest 𝑓𝑘
+ was again concentrated 

on carbon 2 (0.051 and 0.105 unit for 2 and 3, respectively) but 𝑓𝑘
+ indice 

on carbon 3 were calculated to be 0.077 and 0.030 unit for 2 and 3, 

respectively. These results are fully in accordance with the 

regioselectivity observed for the cycloaddition involving alkynes 1 and 

2, but do not explain the experimental results obtained for alkyne 

3.Therefore a more intrusive computational study needs to be 

performed. Such study is currently in progress in our Laboratory.  

 
Figure 2 Calculated DFT-based reactivity indices at the M062X/6-31G(d,p) level of 

theory. (Fukui 𝑓𝑘
+ electrophilic indices are specified over reactive carbons and 𝑓𝑘

−  

nucleophilic indices are specified in parentheses) 

Conclusions 

 In conclusion, we have been able to prepare a large variety of 3,4,5-

trisubstituted 2-aminofurans from 4-oxo-2-alkynoates and 

isocyanides. The reaction occurs in a high regioselective manner that 

could be however reduced if the keto substituent is electron rich.  
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