Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Total synthesis of (+)-monocerin via tandem dihydroxylation- $S_{\rm N}2$ cyclization and copper mediated tandem cyanation-lactonization approach

U.Nookaraju, Eeshwaraiah Begari* and Pradeep Kumar* Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Total synthesis of (+)-monocerin via tandem dihydroxylation- $S_N 2$ cyclization and copper mediated tandem cyanation-lactonization approach

U.Nookaraju, Eeshwaraiah Begari* and Pradeep Kumar*

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A simple and novel synthesis of (+)-monocerin was achieved in 15 steps and 15.5% overall yield from 3-buten-1-ol employing hydrolytic kinetic resolution, Julia olefination, 10 intramolecular tandem Sharpless asymmetric dihydroxylation- $S_N 2$ cyclization and a novel copper mediated tandem cyanation-cyclization as the key steps.

Introduction

15

Natural products symbolize the significant portion of current drug market and they play a crucial role in the discovery of new drug therapies. Hence total synthesis of biologically active natural products is a constant challenge for many scientists in the ²⁰ area of drug discovery around the globe. Monocerin **1** and its analogues are polyketide natural products¹ which are attractive synthetic targets due to their fascinating architecture (Figure 1). Monocerin was first isolated by Aldridge *et al.* in 1970 from the culture filtrates of *Helminthosporium monoceras* as a anti-²⁵ powdery mildew (Erisyphe graminis) of wheat.² In 1979, Grove

²⁵ powdery initidew (Ensyphe grannins) of wheat. In 1979, Grove and co-workers noticed monocerin as an insecticidal constituent of the entomogenous fungus Fusarium larvarum Fukel.³ Later on monocerin, dihydroisocoumarins and their analogues (Figure 1) were isolated from several other fungal species^{3,4} exhibiting a ³⁰ broad spectrum of biological activities like antifungal,^{4a}

phytotoxic,^{4b} plant pathogenic^{4c} and insecticidal activity.⁵

Figure 1. Polyketide (1,2,3,4,5) and dihydroisocoumarin (6,7,8,9) natural products

In 2008, Sriubolmas and co-workers identified the antiplasmodial activity⁶ of monocerin 1 (IC₅₀ value of 0.68 μ M) against the ³⁵ multidrug-resistant K1 strain of *Plasmodium Falciparum*. Monocerin and its analogues were proved to be non specific toxic and nonspecific inhibitor of seed germination by interference with selected stages of the cell division cycles.⁷ Its structure contains a 4-oxyisochroman-1-one skeleton and a 2,3,5-⁴⁰ trisubstituted tetrahydrofuran, which are fixed with all-cis stereochemistry.

While the first synthesis of monocerin was reported by Mori *et al.* in 1989,⁸ the Simpson group subsequently described its ⁴⁵ biomimetic synthetic path way.⁹ In recent years monocerin and its analogues have attracted a great deal of interest, consequently several syntheses of this molecule were reported.¹⁰ While She *et al.* reported its synthesis via an intramolecular nucleophilic trap of a quinonemethide intermediate through benzylic oxidation ⁵⁰ using PIFA,^{10a} Lee and co- workers described its synthesis through radical cyclization of a vinylic ether.^{10b}

We, herein report a simple and efficient synthesis of (+)monocerin employing hydrolytic kinetic resolution, Julia-⁵⁵ Kochienski olefination, intramolecular tandem Sharpless asymmetric dihydroxylation- S_N^2 cyclization and novel coppermediated tandem cyanation-lactonization of a substituted bromo benzene derivative as the key steps.

60 Results and Discussion

The retrosynthetic analysis of (+)-monocerin 1 is visualized based on the linear approach as outlined in Scheme 1. We envisioned that the target molecule 1 could be prepared by tandem

Scheme 1. Retrosynthetic route to (+)-monocerin

20

cyanation-cyclization of a substituted tetrahydrofuran alcohol 10 which could be derived via tandem Sharpless asymmetric dihydroxylation- $S_N 2$ cyclization of olefin 12. The olefin 12 could be prepared by Julia–Kocienski olefination reaction between s trimethoxy benzaldehyde and sulfone 13. Compound 13 in turn could be derived from commercially available 3-buten-1-ol via hydrolytic kinetic resolution.

As illustrated in scheme 2, our synthesis began with the ¹⁰ commercially available 3-buten-1-ol. This upon hydroxy group protection using PMBCl followed by oxidation using *m*CPBA gave (\pm)-14, which was subjected to Jacobsen's HKR¹¹ protocol using (*S*,*S*)-salen-Co^{III}(OAc) catalyst to give the enantiopure epoxide (-)-14¹² and diol. The epoxide ring opening^{12,13} with ¹⁵ ethyl magnesium bromide ((-)-14 \rightarrow 15) followed by protection of hydroxy group with MOM chloride using diisopropylethylamine as a base gave the MOM ether 16 in almost quantitative yield. Subsequent oxidative removal of 4-methoxy benzyl group with DDQ afforded the alcohol 17 in excellent yield.

Scheme 2. Total synthesis of (+)-Monocerin 1 and formal synthesis of its stereoisomer $\mathbf{31}$

Next, we sought to synthesize the olefin fragment **12**. Initially we attempted at the Horner-Wittig reaction of 3,4,5-trimethoxy phenylmethylenephosphonate with aldehyde derived from **17**

²⁵ under various conditions to obtain **12.** For example, use of different bases such as NaH (1.5 to 6 equiv), n-BuLi, KO^tBu and NaHMDS (2 equiv) etc. to bring the above transformation was a total failure. Raising the temperature from 0 °C to rt and reflux temperature in various solvents such as THF or DMF also did not ³⁰ work.

Hence we modified the strategy and proceeded with Julia-Kocienski olefination reaction to obtain the required olefin 12. Thus the primary alcohol 17 was converted to sulfide 18 under 35 Mitsunobu conditions using 1-phenyl-1H-tetrazole-5-thiol as a nucleophile in the presence of TPP/DIAD. Oxidation of sulfide 18 with ammonium heptamolybdate and H₂O₂ afforded sulfone 13.¹⁴ Having sulfone 13 in hand we wanted to optimize the Julia– Kocienski¹⁵ olefination conditions screening various bases such ⁴⁰ as KHMDS, NaHMDS under prematallate conditions at -78 °C to 0 °C. However under none of above conditions the product formation could be observed. Then we switched over to the Barbier conditions using NaHMDS as a base at -78 °C to 0 °C, however it gave only 10% of the desired product. Notably 45 increasing the temperature from -78 °C to rt under Barbier conditions resulted in improvement of yields up to 30%. Eventually, further raising the temperature from 0 °C to rt, afforded the desired product 12 in 88% yield (Table 1).

N, N	of Stores 13	MeO MeO OMe	омом 12
S.No	Reaction Condition	yield (%)	E:Z
1.	Premetallate ^a KHMDS, THF,-78 °C	No reaction	-
2.	Premetallate KHMDS, THF,-78 °C to 0 °C	No reaction	-
3.	Premetallate NaHMDS, THF,-78 °C to rt	No reaction	-
4.	Premetallate NaHMDS, THF, 0 °C to rt	No reaction	-
5.	Barbier ⁵ NaHMDS, THF,-78 ℃ to 0 ℃	10% ^c	E only
6.	Barbier NaHMDS, THF,-78 °C to rt	30% ^c	E only
7.	Barbier NaHMDS. THF. 0 °C to rt	88% ^c	E only

 a base first added to sulfone followed by aldehyde addition, b base added to a mixture of sulfone and aldehyde $^{\rm c}{\rm isolated}$ yield

Compound 12 was subjected to MOM deprotection with 6 N HCl to give the alcohol 19 in 98% yield. Now the stage was set for the synthesis of *cis*- substituted tetrahydrofuran hydroxyl compound 11 via intramolecular tandem Sharpless asymmetric 55 dihydroxylation-S_N2 cyclization following Marshall's protocol.^{12a} Thus the alcohol 19 was converted into its mesylate followed by Sharpless asymmetric dihydroxylation¹⁶ using AD-mix- β in ^tBuOH/H₂O (1:1) to afford the inseparable mixture of key *cis* and trans-substituted tetrahydrofuran 11 and 20 (93:7) respectively in 60 95% yield. The formation of major cis-substituted tetrahydrofuran alcohol thus obtained could be attributed to the well-established steric preference of the AD-mix reagents and presumed S_N2 nature of cyclization reaction leading to the inversion of configuration at the reacting centre. The results 65 obtained are analogous to those reported in a preliminary

communication,^{12a} by Marshall *et al.* where the synthesis of *cis* and *trans*- 2,5-disubstituted and 2,3,5-trisubstituted tetrahydrofuran was achieved from δ and \mathcal{E} -mesyloxy α , β -unsaturated esters by tandem dihydroxylation and in situ S_N2 s cyclization sequence. It may be pertinent to mention here that this protocol is amenable to the other stereoisomers of monocerin by simply taking the (*R*)-enantiomer of epoxide **14** and changing the ligand in the dihydroxylation step. Selective aromatic bromination of **11 & 20** with NBS in CH₂Cl₂ afforded the

¹⁰ bromobenzene derivatives **10 & 21** in 98% yield. At this stage the two diastereomers could be separated easily by silica gel column chromatography.

Our next task was to convert bromo compund **10** into the ¹⁵ corresponding cyano using CuCN in DMF¹⁷ at reflux temperature conditions followed by acid mediated cyclization¹⁸ to give the desired product **22**. Initially the formation of desired product **22** was not observed by attempting the reaction of **10** with CuCN (1.0 equiv.) in DMF at 100 °C and only the starting material was ²⁰ recovered (Table 2, entry 1).

Surprisingly, when the reaction was carried out at 150 °C, instead of the expected product **23**, the cyclized product **22** was directly obtained albeit in low yield (Table 2, entry 2). This provided ²⁵ incentive for an extensive study to explore the copper-mediated tandem cyanation-lactonization of **10**. To improve the yield, when 2 equiv of CuCN was used, we could isolate compound **22** in moderate yield (Table 2, entry 3). When the same reaction was carried out with 3 equiv of CuCN at 150 °C, the desired cyclized

³⁰ product **22** was obtained in 75% yield (Table 2, entry 4).

^aisolated yield,^bQuantitative recovery of the starting material.^{c,d}Recovery of most of the starting material.^eno cyano product was observed

To the best of our knowledge, there has been no reports of the synthesis of 6-membered lactone ring through copper-mediated ³⁵ tandem cyanation-cyclization of a substituted bromo benzene

tetrahydrofuran alcohol.

45

Mechanistically, the reaction is expected to proceed via the formation of oxidative addition of aryl bromide with copper ⁴⁰ cyanide followed by reductive elimination to give the cyano intermediate. This on further coordination with copper as Lewis acid facilitates the attack of alcoholic group. Subsequent protodecupration and hydrolysis eventually leads to the desired cyclized product **22** (Scheme 3).

Finally selective demethylation of methoxy group from 22 using boron trichloride gave the target molecule monocerin 1 in 75% yield. In the same manner, we have also accomplished the formal synthesis of (*S*,*S*,*S*) and (*R*,*R*,*R*) isomers of monocerin **31** & **30** ⁵⁰ respectively (Schemes 2 & 4). In our method, the synthesis of target molecule 1 was accomplished in 15 steps in an overall 15.5% yield. Our synthesis of 1 proved to be an efficient in comparison with literature reports (Mori *et al.*⁸ 14 steps, 6.6% yield; She *et al.*^{10a} 12 steps, 12.25% yield; Lee *et al.*^{10b} 10 steps,

⁵⁵ 7.7% yield; Stephen *et al.*^{10c} 8 steps, 6.5% yield; Fang *et al.*^{10d} 11 steps 5% yield).

Scheme 3. Plausible mechanism for Copper mediated tandem cyanation-lactonization

Scheme 4: Formal synthesis of (2*R*,3a*R*,9b*R*)-6,7,8-trimethoxy-2-propyl-2,3,3a,9b-tetrahydro-5*H*-furo[3,2-*c*]isochromen-5-one **30**

Conclusions

In summary we have developed a novel copper mediated tandem cyanation-cyclization method for the synthesis of (+)-monocerin

and its stereoisomers. The present method is applicable for the preparation of polyketide and dihydroisocoumarin natural products containing lactone moiety through the intramolecular carbonylative coupling of aryl halide and alcohol. Our approach

s is suitable for the large-scale synthesis of 1 and its analogues. Currently synthesis of other analogues of monocerin such as 11hydroxy monocerin and 12-hydroxy monocerin is under progress in our laboratory.

10 Experimental Section:

2-(2-((4-Methoxybenzyl)oxy)ethyl)oxirane (±)-14:

To a stirred solution of but-3-en-1-ol (5.0 g, 69.33 mmol) in THF (100 mL) was added NaH (4.0 g, 90.14 mmol) at 0 °C and stirred well for 20 min at rt. Then PMBCl (11.8 ml, 83.22 mmol) was added to the reaction mixture at 0 °C followed by addition of TBAI (2.5 g, 6.9 mmol) and stirred at rt for 3h. The reaction mixture was quenched with ice water and extracted with EtOAc

- $_{20}$ (3 x 50 mL). The extract was washed with brine, dried (Na_2SO_4) and concentrated. Silica gel column chromatography of the crude product using (petroleum ether:EtOAc, 91:9) as eluent provided the PMB protected compound (12.8 g, 96%) yield as a colourless liquid. $^1{\rm H}$ NMR (200MHz, CDCl₃) d 7.36 7.25 (m, 2 H), 6.97 -
- ²⁵ 6.85 (m, 2 H), 5.86 (tdd, J = 6.7, 10.3, 17.1 Hz, 1 H), 5.20 5.01 (m, 2 H), 4.48 (s, 2 H), 3.83 (s, 3 H), 3.52 (t, J = 6.8 Hz, 2 H), 2.39 (tq, J = 1.3, 6.7 Hz, 2 H); ¹³C NMR (125MHz, CDCl₃) d 159.1, 135.3, 130.5, 129.2, 116.3, 113.7, 72.5, 69.3, 55.2, 34.2.
- ³⁰ To a stirred solution of above compound (12.0 g, 62.4 mmol) in CH₂Cl₂ (200 mL) at 0 °C was added *m*-CPBA (50%) (32.31 g, 93.62 mmol).The reaction mixture was stirred at room temperature for 1h and quenched by saturated Na₂CO₃ solution, extracted with CH₂Cl₂,washed with sat. NaHCO₃ and brine, dried
- ³⁵ (Na₂SO₄), concentrated and purified by silica gel column chromatography using (petroleum ether:EtOAc, 9:1) as eluent to yield the epoxide (±)-14 (11.9 g, 92%) as a colourless liquid. ¹H NMR (200MHz, CDCl₃) d 7.35 7.22 (m, 2 H), 6.96 6.85 (m, 2 H), 4.49 (s, 2 H), 3.83 (s, 3 H), 3.68 3.56 (m, 2 H), 3.15 3.03
 ⁴⁰ (m, 1 H), 2.85 2.76 (m, 1 H), 2.54 (dd, *J* = 2.8, 5.1 Hz, 1 H),
- $_{40}$ (m, 1 H), 2.85 2.76 (m, 1 H), 2.34 (dd, J = 2.8, 5.1 Hz, 1 H) 2.03 - 1.69 (m, 2 H).

(S)-2-(2-((4-Methoxybenzyl)oxy)ethyl)oxirane (-)-14:

- ⁴⁵ Epoxide (±)-**14** (6 g, 28.83 mmol) and (*S*,*S*)-salen-Co(III)-OAc (95.7 mg, 0.0144 mmol) in isopropyl alcohol (0.285 ml) was stirred at 0 °C for 5 min, and then distilled water (0.285 ml, 15.84 mmol) was added. After stirring for 24 h, it was concentrated and purified by silica gel column chromatography using petroleum
- ⁵⁰ ether : EtOAc (9:1) to afford (-)-14 (2.88 mg, 48%) as a yellow colour syrupy liquid Continued chromatography with petroleum ether : EtOAc (1:1) provided the diol as a brown coloured liquid. $[\alpha]_D^{27}$: -13.1 (*c* 1.0, CHCl₃) {lit.¹⁹ $[\alpha]_D^{26}$: -13.9° (*c* 1.0, CHCl₃)}; IR (neat .cm⁻¹) : v_{max} 2997, 2924, 1611, 1511, 1416, 1316, 1243,
- ⁵⁵ 1174, 1088, 906, 817, 753, 709; ¹H NMR (200 MHz, CDCl₃) δ 7.28 (d, *J* = 8.6 Hz, 2 H), 6.89 (d, *J* = 8.6 Hz, 2 H), 4.47 (s, 2 H), 3.82 (s, 3 H), 3.67 3.54 (m, 2 H), 3.16 2.96 (m, 1 H), 2.79 (t, *J* = 4.5 Hz, 1 H), 2.53 (dd, *J* = 2.7, 4.9 Hz, 1 H), 2.03 1.70

 $\begin{array}{c} (m,\ 2\ H);^{13}C\ NMR\ (50\ MHz\ ,\ CDCl_3)\ \delta\ 159.2,\ 130.3,\ 129.2,\\ {}_{60}\ 113.8,\ 72.7,\ 66.7,\ 55.2,\ 50.1,\ 47.1,\ 32.9;\ HRMS\ (ESI)\ for\\ C_{12}H_{16}O_3Na\ (M+Na)^+\ found\ 231.0992,\ calcd\ 231.0992. \end{array}$

(R)-1-((4-Methoxybenzyl)oxy)hexan-3-ol 15:

65 To a stirred solution of epoxide (-)-14 (2.0 g, 9.61 mmol) and CuI (183 mg, 0.961mmol) in dry THF (60 mL), was added, 1M solution of ethyl magnesium bromide in THF (14.4 ml, 14.4 mmol, 1M solution in THF) drop-wise at 0 °C and stirred for 1h. The mixture was quenched with a saturated NH₄Cl solution (5 ⁷⁰ mL). The layers were separated, the aqueous layer extracted with EtOAc (3x10 mL), the combined organic extracts were washed with brine (2x5 mL), followed by 25% NH₄OH solution (5 ml) and dried over Na₂SO₄, evaporated to dryness and silica gel column chromatographic purification (petroleum ether:EtOAc, 75 89:11) of the crude product gave 15 (2.2 g, 96%) as a yellow colour oil. $[\alpha]_{D}^{26}$: + 8.41° (c 0.53, CHCl₃); IR (neat, cm⁻¹) : v_{max} 3444, 2956, 1612, 1512, 1245, 1085, 1032, 817, 707; ¹H NMR (200 MHz,CDCl₃) & 7.32 - 7.20 (m, 2 H), 6.96 - 6.83 (m, 2 H), 4.46 (s, 2 H), 3.81 (s, 4 H), 3.74 - 3.57 (m, 2 H), 3.00 - 2.81 (m, 1 80 H), 1.80 - 1.66 (m, 2 H), 1.55 - 1.24 (m, 4 H), 1.03 - 0.81 (m, 3 H); ¹³C NMR (50 MHz, CDCl₃) δ 143.2, 137.5, 129.5, 127.3, 96.1, 77.6, 76.4, 58.3, 54.7, 35.4, 32.4, 25.0, 23.2, 21.5; HRMS (ESI) for $C_{14}H_{22}O_3Na (M + Na)^+$ found 261.1461, calcd 261.1461.

(*R*)-1-Methoxy-4-(((3 methoxymethoxy)hexyl)oxy) methyl)benzene 16:

To a solution of alcohol 15 (2.0 g, 8.4 mmol) in dry CH₂Cl₂ (40 90 mL) was added diisopropylethylamine (3.12 mL, 17.64 mmol) at 0 °C. To this mixture MOM chloride (0.94 ml, 12.6 mmol) was added slowly with further stirring for 2h at the room temperature. The reaction mixture was quenched with addition of cold water at 0 °C. The two phases were separated and the aqueous phase was 95 extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with water (3 x 20 mL), brine, dried over Na₂SO₄ and concentrated to give crude 16. It was purified by silica gel column chromatography using (petroleum ether-EtOAc, 93:7) as eluent to furnish 16 as colourless oil (2.34 g, 99%); $\left[\alpha\right]_{D}^{27}$: - $100 4.39^{\circ}$ (c 1.02, CHCl₃); IR (neat, cm⁻¹) : v_{max}, 2933, 1512, 1246, 1138, 1034, 951, 821, 750, 606; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (br. s., 2 H), 6.88 (d, J = 8.2 Hz, 2 H), 4.64 (s, 2 H), 4.44 (s, 2 H), 3.81 (s, 3 H), 3.71 (t, J = 5.6 Hz, 1 H), 3.54 (t, J = 6.4 Hz, 2 H), 3.37 (s, 3 H), 1.85 - 1.75 (m, 2 H), 1.54 - 1.32 (m, 4 H), ¹⁰⁵ 0.92 (t, J = 7.2 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 130.5, 129.3, 113.7, 95.7, 74.9, 72.6, 66.7, 55.5, 55.3, 37.0, 34.7, 18.4, 14.2; HRMS (ESI) for $C_{16}H_{26}O_4Na (M + Na)^+$ found 305.1723, calcd 305.1723.

110 (R)-3-(Methoxymethoxy)hexan-1-ol 17:

To a solution of PMB ether **16** (2.0 g, 7.08 mmol) in dry CH_2Cl_2 : H₂O (38:2) mL was added DDQ (1.93 g, 8.5 mmol) at 0 °C with further stirring for 2h at the room temperature. The reaction mixture was quenched with addition of cold water, stirred for 30 min then sat.NaHCO₃ solution was added, stirred for 30 min. Then filtered through celite. The two phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3 x 15 mL). The combined organic layers were washed with sat.NaHCO₃ (2x15 mL), brine, dried over Na₂SO₄ and concentrated to give crude **17**.

- ⁵ It was purified by silica gel column chromatography using petroleum ether-EtOAc (86:14) as eluent to furnish **17** as a yellow colour oil (1.12 g, 99%). $[\alpha]_D^{27}$: - 58.22° (*c* 1.08, CHCl₃); IR (neat, cm⁻¹) : v_{max}. 3385, 2956, 2933, 1095, 1029, 915; ¹H NMR (500 MHz, CDCl₃) δ 4.70 (d, *J* = 6.7 Hz, 1 H), 4.66 (d, *J* =
- ¹⁰ 7.0 Hz, 1 H), 3.86 3.70 (m, 3 H), 3.41 (s, 3 H), 2.15 1.91 (m, 1 H), 1.86 1.79 (m, 1 H), 1.73 1.65 (m, 1 H), 1.62 1.55 (m, 1 H), 1.53 1.45 (m, 1 H), 1.41 1.32 (m, 2 H), 0.93 (t, J = 7.2 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 95.9, 76.4, 59.9, 55.8, 36.8, 36.5, 18.5, 14.2; HRMS (ESI) for C₈H₁₈O₃Na (M + Na)⁺ found ¹⁵ 185.1148, calcd 185.1148.

(*R*)-5-((3-(Methoxymethoxy)hexyl)thio)-1-phenyl-1H-tetrazole 18:

- ²⁰ To the solution of resulting alcohol **17** (0.5 g, 3.08 mmol) in dry THF (5 mL) were added PPh₃ (1.78 g, 6.78 mmol), 1-phenyl-1*H*-tetrazole-5-thiol (0.824 g, 4.62 mmol) and DIAD (1.33 ml, 6.78 mmol) at 0 °C and it was allowed to stir for 2h at room temperature. THF was concentrated and crude product was
- ²⁵ purified by silica gel column chromatography using petroleum ether-EtOAc, (91:9) as eluent to furnish **18** as a yellow colour oil (954 mg, 96%); $[\alpha]_D^{26}$: 14.06 ° (*c* 1.48, CHCl₃); IR (neat, cm⁻¹) : v_{max} 2955, 2931, 1596, 1499, 1385, 1032, 915, 759, 711; ¹H NMR (200 MHz, CDCl₃) δ 7.64 7.51 (m, 5 H), 4.72 4.60 (m, 2
- $_{30}$ H), 3.78 3.63 (m, 1 H), 3.61 3.41 (m, 2 H), 3.40 3.35 (m, 3 H), 2.18 1.88 (m, 2 H), 1.61 1.25 (m, 4 H), 0.97 0.86 (m, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 154.3, 133.7, 130.0, 129.7, 123.8, 95.6, 76.0, 55.7, 36.4, 33.8, 29.5, 18.4, 14.1; HRMS (ESI) for C₁₅H₂₂O₂N₄NaS (M + Na)⁺ found 345.1353, calcd 345.1356.

(*R*)-5-((3-(Methoxymethoxy)hexyl)sulfonyl)-1-phenyl-1H-tetrazole 13:

To a solution of compound **18** (0.9 g, 2.79 mmol) in absolute ⁴⁰ EtOH (10 mL) was added (NH₄)₆Mo₇O₂₄.4H₂O (1.72 g, 1.39 mmol) dissolved followed by H₂O₂ (1.47 mL, 12.55 mmol) at 0 °C and it was allowed to stir for 8h at room temperature. The reaction mixture was quenched with addition of cold sat.Na₂SO₃ solution at 0 °C, filtered through celite. The solvent was ⁴⁵ evaporated and then the residue was extracted with EtOAc, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified by silica gel column chromatography using petroleum ether-EtOAc, (90:10) as eluent to furnish **13** as a light yellow colour semi solid

- ⁵⁰ (960 mg, 97%); $[\alpha]_D^{25}$: 4.43° (*c* 1.0, MeOH) {lit.^{15c} for *S* isomer $[\alpha]_D^{23}$ = + 8.60° (*c* 0.91, CHCl₃); IR (neat ,cm⁻¹) : v_{max} 2958, 2932, 1595, 1339, 1149, 1036, 761, 688; ¹H NMR (200 MHz, CDCl₃) δ 7.82 - 7.53 (m, 5 H), 4.71 - 4.61 (m, 2 H), 3.99 - 3.69 (m, 3 H), 3.40 (s, 3 H), 2.35 - 1.97 (m, 2 H), 1.52 - 1.28 (m, 4 H),
- 55 0.99 0.89 (m, 3 H); ^{13}C NMR (50 MHz, CDCl₃) δ 133.0, 131.4, 129.7, 125.1, 95.7, 75.2, 55.8, 52.6, 36.3, 26.6, 18.4, 14.0; HRMS (ESI) for $C_{15}H_{22}O_4N_4NaS~(M~+~Na)^+$ found 377.1254, calcd 377.1254.

(*R*,*E*)-1,2,3-Trimethoxy-5-(4-(methoxymethoxy)hept-1-en-1-⁶⁰ yl)benzene 12:

To a mixture of compound 13 (930 mg, 2.62 mmol) and trimethoxybenzaldehyde (514 mg, 2.62 mmol) in dry THF (10 mL) was added NaHMDS (4.64 ml, 1M in THF, 4.64 mmol) 65 dropwise at 0 °C and it was stirred at room temperature for 3h. The reaction mixture was quenched with addition of sat.NH₄Cl solution. The two phases were separated and the aqueous phase was extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine, dried over Na2SO4 and 70 concentrated to give crude 12. It was purified by silica gel column chromatography using petroleum ether-EtOAc (90:10) as eluent to furnish 12 as colourless oil (749 mg, 88 %, E only); $[\alpha]_D^{26}$: + 18.46° (c 1.31, CHCl₃); IR (neat, cm⁻¹) : v_{max} 2956, 2930, 1581, 1506, 1416, 1327, 1150, 1124, 1006, 966, 838, 779; ⁷⁵ ¹H NMR (500 MHz, CDCl₃) δ 6.58 (s, 2 H), 6.36 (d, *J* = 15.6 Hz, 1 H), 6.24 - 6.08 (m, 1 H), 4.76 - 4.66 (m, 2 H), 3.91 - 3.83 (m, 9 H), 3.74 - 3.66 (m, 1 H), 3.40 (s, 3 H), 2.53 - 2.37 (m, 2 H), 1.58 -1.35 (m, 4 H), 1.01 - 0.91 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 153.2, 137.3, 133.3, 132.0, 126.1, 103.0, 95.4, 60.9, 56.0, 55.5, ⁸⁰ 38.0, 36.6, 18.7, 14.1; HRMS (ESI) for $C_{18}H_{28}O5Na (M + Na)^+$ found 347.1826, calcd 347.1829.

(*R*,*E*)-1-(3,4,5-Trimethoxyphenyl)hept-1-en-4-ol 19:

85 To a solution of compound 12 (700 mg, 2.15 mmol) in methanol (14 ml), was added 6N HCl (14 ml) drop wise at rt and stirring was continued for 2h (reaction was monitored by TLC). The reaction was quenched by using sat.NaHCO₃ solution. The two phases were separated and the aqueous phase was extracted with 90 EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated to give crude 19. It was purified by silica gel column chromatography using petroleum ether-EtOAc, (85:15) as eluent to furnish 19 as a white solid (592 mg, 98%); mp.: 70-71 °C; $[\alpha]_D^{27}$: - 11.27 (c 1.8, 95 CHCl₃); IR (neat, cm⁻¹) : v_{max} 3412, 2955, 2929, 1580, 1453, 1237, 1150, 1006, 966, 838; ¹H NMR (400 MHz, CDCl₃) δ 6.60 (s, 2 H), 6.41 (d, J = 15.7 Hz, 1 H), 6.17 (td, J = 7.5, 15.4 Hz, 1 H), 3.90 - 3.81 (m, 9 H), 3.79 - 3.72 (m, 1 H), 2.53 - 2.39 (m, 1 H), 2.38 - 2.24 (m, 1 H), 1.68 - 1.62 (m, 1 H), 1.54 - 1.37 (m, 4 ¹⁰⁰ H), 0.96 (t, J = 6.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 137.2, 132.7, 132.5, 125.6, 102.8, 70.6, 60.6, 55.7, 40.7, 38.8, 18.6, 13.7; HRMS (ESI) for $C_{16}H_{24}O_4Na (M + Na)^+$ found 303.1566, calcd 303.1567.

¹⁰⁵ (2*R*,3*R*,5*S*)-5-Propyl-2-(3,4,5-trimethoxyphenyl) tetrahydrofuran 11:

To a solution of compound **19** (200 mg, 0.713 mmol) in dry CH₂Cl₂ was added triethylamine (0.4 ml, 2.84 mmol) at 0 °C. To ¹¹⁰ this mixture mesyl chloride (0.11 ml, 1.42 mmol) was added slowly with further stirring for 2h at the room temperature. The reaction mixture was quenched with addition of cold water at 0 °C. The two phases were separated and the aqueous phase was extracted with EtOAc (3 x 8 mL). The combined organic layers ¹¹⁵ were washed with water (3 x 8 mL), brine, dried over Na₂SO₄ and concentrated to give crude mesylate.

100

To a solution of crude mesylate in ^tBuOH/H₂O (1:1, 12 mL) were added AD-mix- β (357 mg, 1.4 gm/mmol) and methanesulfonamide (25.5 mg, 100 mg/mmol) at 0 °C and the reaction mixture was allowed to stir for 24h at 0 °C temperature. The reaction was guenched by addition of Na-SO₂ (360 mg, 1.48

- $_{\rm S}$ The reaction was quenched by addition of Na₂SO₃ (360 mg, 1.48 mg/mmol) and stirred for 1h at room temperature until it became colourless. EtOAc was used for extraction and the organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was
- ¹⁰ purified by silica gel column chromatography using petroleum ether-EtOAc, (80:20) as eluent to furnish **11** as a colourless oil (200 mg, 95%), which contains 7% of other diastereomer **20** (inseparable) confirmed by ¹H NMR spectroscopy; $[\alpha]_D^{28}$: -51.35° (*c* 1.85, CHCl₃); IR (neat, cm⁻¹) : v_{max} 3470, 2955,2940, ¹⁵ 1590, 1418, 1232, 1125, 920, 781; ¹H NMR (400 MHz, CDCl₃) δ
- 6.63 (s, 2 H), 4.75 (d, J = 3.7 Hz, 1 H), 4.40 4.33 (m, 1 H), 4.09 - 3.99 (m, 1 H), 3.87 (s, 6 H), 3.84 (s, 3 H), 2.49 - 2.39 (m, 1 H), 1.90 - 1.81 (m, 1 H), 1.80 - 1.73 (m, 1 H), 1.70 - 1.40 (m, 4 H), 0.99 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 20 137.4, 132.4, 103.7, 103.4, 84.9, 84.3, 78.6, 78.1, 77.2, 74.6,
- 73.9, 60.8, 56.1, 40.7, 40.2, 38.5, 38.3, 19.4, 19.1, 14.1; HRMS (ESI) for $C_{16}H_{24}O_5Na$ (M + Na)⁺ found 319.1514, calcd 319.1516.

25 (2*R*,3*R*,5*S*)-2-(2-Bromo-3,4,5-trimethoxyphenyl)-5propyltetrahydrofuran-3-ol 10:

To a solution of alcohol **11** (100 mg, 0.337 mmol) in CH_2Cl_2 (3 mL) was added NBS (66 mg, 0.371 mmol) and the mixture was ³⁰ stirred at 25 °C for 10 min. After the reaction was complete

- (reaction was monitored by TLC), it was quenched with sat. Na₂S₂O₃ (3 mL) and extracted with CH_2Cl_2 (3 x 4 mL), washed with water and combined organic phases were dried over Na₂SO₄ and concentrated to give the crude bromo compound, which was
- ³⁵ then purified by column chromatography over silica gel using petroleum ether-EtOAc (90:10) to give brominated alcohol **10** (124 mg, 98%) as a colourless oil. It contains 8.7 mg of other diastereomer **23**; $[\alpha]_D^{28}$: - 55° (*c* 2.2, CHCl₃); IR (neat, cm⁻¹) : v_{max} 2935, 2866, 1569, 1481, 1428, 1166, 1012, 812, 773; ¹H
- ⁴⁰ NMR (400 MHz, CDCl₃) δ 7.07 (s, 1 H), 4.99 (d, J = 4.1 Hz, 1 H), 4.76 4.69 (m, 1 H), 4.02 (td, J = 6.9, 13.7 Hz, 1 H), 3.91 3.85 (m, 9 H), 2.50 (td, J = 6.8, 14.3 Hz, 1 H), 1.90 1.81 (m, 1 H), 1.76 1.62 (m, 3 H), 1.56 1.41 (m, 2 H), 0.99 (t, J = 7.3 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.5, 142.4, 132.1,
- $_{45}$ 108.1, 107.4, 84.3, 77.7, 71.8, 61.0, 56.0, 40.5, 38.3, 19.4, 14.2; HRMS (ESI) for $C_{16}H_{23}O_5BrNa~(M~+~Na)^+$ found 397.0618, calcd 397.0621.

(2*S*,3a*R*,9b*R*)-6,7,8-Trimethoxy-2-propyl-2,3,3a,9b-50 tetrahydro-5H-furo[3,2c]isochromen-5-one 22:

Bromo alcohol 10 (100 mg, 0.267 mmol) was taken in dry DMF (1.0 mL) and CuCN (71 mg, 0.802 mmol) was added to it. The entire solution was refluxed under N_2 for 12h (monitored by

⁵⁵ TLC). The reaction mixture was then cooled to room temperature, and diluted with water (3 mL) and EtOAc (5 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 5 mL). The combined organic extracts

were washed with brine and dried over anhyd. Na₂SO₄ and ⁶⁰ concentrated under reduced pressure to give crude product which was purified by column chromatography using an eluent dichloromethane-EtOAc (95:5) to give cyclised product **22** (64 mg, 75%) as a colourless oil; $[\alpha]_D^{27}$: + 23.2 °(*c* 0.53, CHCl₃) {(lit.⁸ $[\alpha]_D^{21} =$ + 22.8° (*c* 2.76, CHCl₃)}; IR (neat, cm⁻¹) : v_{max} ⁶⁵ 2923, 2853, 1717, 1592, 1461, 1366, 1256, 1110, 1009, 844, 754; ¹H NMR (400 MHz, CDCl₃) δ 6.79 (s, 1 H), 5.01 - 4.92 (m, 1 H),

- 4.52 (d, J = 2.7 Hz, 1 H), 4.19 4.10 (m, 1 H), 3.97 (s, 3 H), 3.95 (s, 3 H), 3.89 (s, 3 H), 2.52 (ddd, J = 5.7, 8.6, 14.2 Hz, 1 H), 2.16 (dd, J = 5.4, 14.2 Hz, 1 H), 1.77 1.68 (m, 1 H), 1.64 1.56 (m, 1 70 H), 1.48 1.34 (m, 2 H), 0.91 (t, J = 7.3 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 159.9, 157.9, 156.5, 144.3, 132.5, 111.2, 108.1,
- MHz, CDCl₃) 8 159.9, 157.9, 156.5, 144.3, 132.5, 111.2, 108.1, 79.5, 79.0, 75.1, 61.8, 61.1, 56.2, 39.0, 38.1, 19.2, 13.9; HRMS (ESI) for $C_{17}H_{23}O_6 (M + H)^+$ found 323.1483, calcd 323.1489.

75 (2*S*,3a*R*,9b*R*)-6-Hydroxy-7,8-dimethoxy-2-propyl-2,3,3a,9btetrahydro-5H-furo[3,2-c]isochromen-5-one 1:

To a solution of lactone 22 (48 mg, 0.148 mmol) in dry CH₂Cl₂ (1 mL) was added BCl₃ (1.0 M, 0.163 mL, 0.163 mmol) at -10 °C 80 under Argon. The mixture was stirred at -5 °C for 1h and quenched with saturated aqueous NaHCO₃ (1 mL), The mixture was extracted with CH₂Cl₂ (3 x 4 mL), and the organic layer was washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuum and purified by column chromatography using an eluent 85 petroleum ether: EtOAc (60:40) to give (+)-monocerin 1 (11.3 mg, 75% yield, brsm) as colourless oil; $[\alpha]_D^{26} = +53^\circ$ (c 1, CHCl₃) {(lit². $[\alpha]_D^{25} = +53^\circ (c \ 1, \text{CHCl}_3)$ }; IR (neat, cm⁻¹) : v_{max} 2956, 2924, 1663, 1520, 1456, 1274, 1119, 1013, 759; ¹H NMR (400 MHz, CDCl₃) δ 11.29 (s, 1 H), 6.60 (s, 1 H), 5.06 (dd, J = $_{90}$ 3.1, 5.3 Hz, 1 H), 4.55 (d, J = 3.2 Hz, 1 H), 4.17 - 4.08 (m, 1 H), 3.96 (s. 3 H), 3.91 (s. 3 H), 2.60 (ddd, J = 6.4, 8.4, 14.5 Hz, 1 H), 2.17 (dd, J = 6.0, 14.5 Hz, 1 H), 1.74 - 1.67 (m, 1 H), 1.63 - 1.59 (m, 1 H), 1.45 - 1.35 (m, 2 H), 0.93 (t, J = 7.3 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) & 167.8, 158.7, 156.3, 137.3, 131.1, 104.3, 95 102.0, 81.2, 78.7, 74.5, 60.7, 56.2, 39.0, 38.0, 19.1, 14.0; HRMS (ESI) for $C_{16}H_{21}O_6(M + H)^+$ found 309.1331, calcd 309.1333.

(*S,E*)-1-(3,4,5-Trimethoxyphenyl)hept-1-en-4-yl-4-nitrobenzoate 24:

To the solution of alcohol 19 (0.2 g, 0.713 mmol) in dry THF (5 mL) were added PPh₃ (0.393 g, 1.49 mmol), p-nitrobenzoic acid (PNBA) (0.143 g, 0.856 mmol) and diisopropylazodicarboxylate (DIAD) (0.29 ml, 1.49 mmol) at 0 °C and it was allowed to stir 105 for 1 h at room temperature. THF was concentrated and crude product was purified by silica gel column chromatography using petroleum ether: EtOAc, (94:6) as eluent to furnish 24 as a yellow colour oil (297 mg, 97%). $[\alpha]_D^{27}$: + 39.8° (c 1.03, CHCl₃); IR $(neat, cm^{-1})$: v_{max} 2959, 2936, 1718, 1581, 1505, 1416, 1270, 110 1184, 1011, 964, 872, 694; ¹H NMR (400 MHz, CDCl₃) δ 8.30 -8.26 (m, J = 8.7 Hz, 2 H), 8.23 - 8.18 (m, J = 8.7 Hz, 2 H), 6.53 (s, 2 H), 6.39 (d, J = 15.6 Hz, 1 H), 6.15 - 6.06 (m, 1 H), 5.32 -5.24 (m, 1 H), 3.88 - 3.83 (m, 9 H), 2.62 (t, J = 6.6 Hz, 2 H), 1.82 $-1.71 \text{ (m, 2 H)}, 1.53 - 1.40 \text{ (m, 2 H)}, 0.97 \text{ (t, } J = 7.3 \text{ Hz}, 3 \text{ H}); {}^{13}\text{C}$ 115 NMR (100 MHz, CDCl₃) 8164.4, 153.3, 150.5, 137.7, 136.0, 133.1, 132.9, 130.6, 124.4, 123.5, 103.2, 75.4, 60.9, 56.1, 37.9,

35.8, 18.7, 13.9; HRMS (ESI) for $C_{23}H_{27}O_7NNa (M + Na)^+$ found 452.1676, calcd 452.1680.

(S,E)-1-(3,4,5-Trimethoxyphenyl)hept-1-en-4-ol 25:

- To the solution of ester **24** (0.25 g, 0.582 mmol) in THF:MeOH:H₂O (3:2:1) (6 mL) was added LiOH.H₂O (0.029 g, 0.699 mmol at rt and it was allowed to stir for 1h at room temperature. Solvent was concentrated and to the residue was
- ¹⁰ added sat.NaHCO₃ (5 ml) and extracted with EtOAc (3 x 5 ml). The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuum. Purification by column chromatography using an eluent petroleum ether:EtOAc (85:15) gave **25** (153 mg, 94% yield) as colourless oil. $[\alpha]_D^{27}$: + 11.16° (*c* 15 1.8, CHCl₃).

(2*R*,3*R*,5*R*)-5-Propyl-2-(3,4,5-trimethoxyphenyl) tetrahydrofuran-3-ol 26:

- $_{20}$ The same procedure was followed as described for the preperation of compound **11.** Compound **25** (40 mg, 0.142 mmol) was subjected to tandem Sharpless asymmetric dihydroxylation- $S_N 2$ cyclization to give **26** as a colourless oil (40 mg, 95%), which contains 12% of other diastereomer **27** (inseparable)
- ²⁵ confirmed by ¹H NMR spectroscopy. ¹H NMR (200 MHz, CDCl₃) δ 0.92 1.05 (m, 3 H) 1.36 1.61 (m, 4 H) 1.79 1.90 (m, 1 H) 2.27 (dd, *J*=13.07, 5.75 Hz, 1 H) 3.84 (s, 3 H) 3.87 (s, 6 H) 4.35 4.55 (m, 2 H) 5.00 (d, *J*=3.03 Hz, 1 H), 6.60 (s, 2 H).

30 (2*R*,3*R*,5*R*)-2-(2-Bromo-3,4,5-trimethoxyphenyl)-5propyltetrahydrofuran-3-ol 28:

The same procedure was followed as described for the preparation of compound **10.** Bromination of alcohol **26&27** (20 mg, 0.202 mmol) yielded the brominated alcohol **28** (22 mg, 98%) as a colourless oil. It contains 3 mg of other diastereomer **29.** $[\alpha]_D^{25}$: - 43.54° (*c* 2.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.02 (s, 1 H), 5.25 (d, *J* = 3.1 Hz, 1 H), 4.77 (t, *J* = 3.2 Hz, 1 H), 4.51 - 4.45 (m, 1 H), 3.90 - 3.87 (m, 9 H), 2.23 (dd, *J* = 5.5, 13.1 (m 3 H), 0.98 (t, *J* = 7.2 Hz, 3 H): ¹³C NMP (125 MHz CDCl)

(m, 3 H), 0.98 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 152.9, 150.6, 142.4, 132.5, 107.7, 107.5, 83.7, 78.4, 72.4, 61.0, 56.1, 40.8, 38.1, 19.2, 14.1.

45 (2*R*,3a*R*,9b*R*)-6,7,8-Trimethoxy-2-propyl-2,3,3a,9btetrahydro-5H-furo[3,2-c]isochromen-5-one 30 :

The same procedure was followed as described for the preparation of compound **22.** Bromo alcohol **28** (10 mg, 0.026 mmol) yielded cyclized product **30** (6.4 mg, 75%) as a colourless oil. $[\alpha]_D^{28}$: + 11.34° (*c* 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, *J*=7.21 Hz, 3 H), 1.48 - 1.59 (m, 2 H), 1.71 - 1.76 (m, 2 H), 1.94 (ddd, *J*=13.63, 9.60, 3.91 Hz, 1 H), 2.60 (dd, *J*=13.69, 5.87 Hz, 1 H), 3.89 (s, 3 H), 3.97 (s, 3 H), 3.96 (s, 3 H)

⁵⁵ 4.38 - 4.47 (m, 1 H), 4.76 (d, *J*=2.69 Hz, 1 H), 5.04 (t, *J*=3.06 Hz, 1 H), 6.77 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 158.1, 156.6, 144.2, 133.4, 108.0, 80.2, 79.5, 73.9, 61.8, 61.2, 56.2, 40.2, 38.3, 19.2, 14.0; HRMS (ESI) for C₁₇H₂₃O₆ (M + H)⁺ found

323.1484, calcd 323.1489.

(2*S*,3*S*,5*S*)-2-(2-Bromo-3,4,5-trimethoxyphenyl)-5propyltetrahydrofuran-3-ol 21:

Compound **21** was obtained as a by product in the preparation of ⁶⁵ compound **10.** $[\alpha]_D^{27}$: + 39.58° (*c* 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.03 (s, 1 H), 5.26 (d, *J* = 3.2 Hz, 1 H), 4.78 (t, *J* = 3.7 Hz, 1 H), 4.52 - 4.44 (m, 1 H), 3.91 - 3.88 (m, 9 H), 2.25 (dd, *J* = 5.5, 13.3 Hz, 1 H), 1.93 - 1.85 (m, 1 H), 1.78 - 1.71 (m, 1 H), 1.54 - 1.44 (m, 3 H), 1.01 - 0.97 (m, 3 H); ¹³C NMR (100 ⁷⁰ MHz, CDCl₃) δ 152.9, 150.6, 142.4, 132.5, 107.8, 107.5, 83.8, 78.5, 72.4, 61.0, 56.1, 40.8, 38.1, 19.2, 14.1.

(2*S*,3a*S*,9b*S*)-6,7,8-Trimethoxy-2-propyl-2,3,3a,9btetrahydro-5H-furo[3,2-c]isochromen-5-one 31:

⁷⁵ The same procedure was followed as described for the preparation of compound 22. Bromo alcohol 21 (6 mg, 0.0801 mmol) yielded cyclized product 31 (3.8 mg, 75%, brsm) as a colourless oil. [α]_D²⁷ : - 10.5° (*c* 0.2 , CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 0.94 - 0.97 (m, 3 H) 1.49 - 1.57 (m, 2 H) 1.67 - 1.75 (m, 2 H) 1.94 (ddd, *J*=13.66, 9.69, 4.12 Hz, 1 H) 2.59 (dd, *J*=13.43, 5.80 Hz, 1 H) 3.89 (s, 3 H) 3.97 (d, *J*=4.27 Hz, 7 H) 4.39 - 4.46 (m, 1 H) 4.76 (d, *J*=2.75 Hz, 1 H) 5.04 (t, *J*=2.90 Hz, 1 H) 6.78 (s, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 160.2, 158.1, 85 156.5, 144.1, 133.4, 108.0, 80.2, 79.5, 73.9, 61.8, 61.2, 56.2, 40.1, 38.3, 19.2, 14.1.

Acknowledgement

⁹⁰ B.E thanks DST New Delhi for the INSPIRE Faculty fellowship (IFA12-CH-29). U.N.R thanks UGC, New Delhi for a research fellowship. The authors thank CSIR, New Delhi for financial support as part of XII Five year plan under title ORIGIN (CSC0108).

95 Notes and references

Address: CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune, 411008, India. Fax: +91 20 25902629; Tel: +91 20 25902057.

E-mail: <u>e.begari@ncl.res.in</u>

100

- † Electronic Supplementary Information (ESI) available: Copies of NMR spectra (¹H&¹³C) of all compounds. See DOI: 10.1039/c000000x/
- 1. L. C. Axford, T. J. Simpson and C. L. Willis, *Angew. Chem.* 105 *Int. E.d.*, 2004, **43**, 727-730.
- 2. D. C. Aldridge and W. B. Turner, J. Chem. Soc. C: Organic, 1970, 2598-2600.
- 3. J. F. Grove and M. J. Pople, Chem. Soc. Perkin Trans I., 1979, 2048-2051.
- ¹¹⁰ 4.a) F. E. Scott, T. J. Simpson, L. A. Trimble and J. C. Vederas, J. Chem. Soc, Chem. Commun., 1984, 756-758. b) F. Cuq, M. Petitprez, S. Herrmann-Gorline, A. Klaebe and M. Rossignol, Phytochemistry, 1993, 34, 1265-1270. c) C.H. Lim, Agric. Chem. Biotechnol. (engl. Ed.)., 1999, 42, 45-47. d) W. Zhang, K. Krohn, S. D. D. D. D. L. L. M. (et al., 2000, 71, 1270, 1201).

 N. El Aouad, G. Pérez-Moreno, P. Sánchez, J. Cantizani, F. J. Ortiz-López, J. Martín, V. González-Menéndez, L. M. Ruiz-Pérez, D. González-Pacanowska, F. Vicente, G. Bills and F. Reyes, <i>J. Nat. Prod.</i>, 2012, 75, 1228-1230. f) R. Haritakun, M. ⁵ Sappan, R. Suvannakad, K. Tasanathai and M. Isaka, <i>J. Nat. Prod.</i>, 2009, 73, 75-78. 	
 5. J. F. Grove and M. Pople, <i>Mycopathologia.</i>, 1981, 76, 65-67. 6. R. Sappapan, D. Sommit, N. Ngamrojanavanich, S. Pengpreecha, S. Wiyakrutta, N. Sriubolmas and K. Pudhom, <i>J. Nat. Prod.</i>, 2008, 71, 1657-1659. 	
7. F. Cuq, S. C. Brown, M. Petitprez and G. Alibert, <i>Plant Cell Rep.</i> , 1995, 15 , 138-142.	
8. K. Mori and H. Takaishi, <i>Tetrahedron.</i> , 1989, 45 , 1639-1646. 9. M. P. Dillon, T. J. Simpson and J. B. Sweeney, <i>Tetrahedron</i> 15 <i>Lett</i> 1992 33 7569-7572	
 10. a) B. Fang, X. Xie, C. Zhao, P. Jing, H. Li, Z. Wang, J. Gu and X. She, <i>J. Org. Chem.</i>, 2013, 78, 6338-6343. b) H. K. Kwon, 	
Y. E. Lee and E. Lee, <i>Org. Lett.</i> , 2008, 10 , 2995-2996. c) J. H. Cassidy, C. N. Farthing, S. P. Marsden, A. Pedersen, M. Slater ²⁰ and G. Stemp, <i>Org. Biomol. Chem.</i> , 2006, 4 , 4118-4126, d) B.	
Fang, X. Xie, H. Li, P. Jing, J. Gu, X. She, <i>Tetrahedron Lett.</i> ,2013, 54 , 6349-6351. e) M. Fujita, K. Mori, M. Shimogaki,	
T. Sugimura, Org. Lett., 2012, 14, 1294-1297. 11. M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen, Science, 1997, 277, 936 b) L. P. C. Nielsen, C. P. Stevenson, D.	
G. Blackmond, E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126 , 1360-1362.	
12. a) J. A. Marshall and J. J. Sabatini, <i>Org. Lett.</i> , 2005, 7, 4819- 4822.b) J. A. Marshall, G. Schaaf and A. Nolting, <i>Org. Lett.</i> , ³⁰ 2005, 7, 5331-5333.	
13. D. K. Mohapatra, D. P. Reddy, U. Dash and J. S. Yadav, <i>Tetrahedron Lett.</i> , 2011, 52 , 151-154.	
 14. a) J. D. Panarese and S. P. Waters, <i>Org. Lett.</i>, 2009, 11, 5086-5088. b) G. Li, R. P. Hsung, B. W. Slafer and I. K. Sagamanova, 35 <i>Org. Lett.</i>, 2008, 10, 4991-4994. 	
15. a) P. R. Blakemore, <i>J. Chem. Soc., Perkin Transactions 1.,</i> 2002, 2563-2585. b) J. Liu, K. Xu, J. He, L. Zhang, X. Pan and	
 X. Sne, J. Org. Chem., 2009, 74, 5065-5066. C) D. A. Evans, V. J. Cee, T. E. Smith, D. M. Fitch and P. S. Cho, Angew. Chem. Int. 40 Ed., 2000, 39, 2533-2536. 	
16. a) K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H. L. Kwong, K. Morikawa and <i>T. M. Wang, L. Org. Cham.</i> 1002, 57 , 27(8, 2771, b) H. C.	
 Kolb, M. S. Vannieuwenhze and K. B. Sharpless, <i>Chem. Rev.</i>, 45 1994, 94, 2483-2547. 	
17. a) K. W. Rosenmund and E. Struck, <i>Chem. Ber.</i> , 1919, 52 , 1749. b) J. v. Braun and G. Manz, <i>Liebigs Ann. Chem.</i> , 1931, 488 111-126 c) J. Zanon A. Klapars and S. L. Buchwald, <i>J. Am.</i>	
<i>Chem. Soc.</i> , 2003, 125 , 2890-2891. ⁵⁰ 18. a) J. Mangas-Sanchez, E. Busto, V. Gotor-Fernandez and V.	
 Gotor, <i>Catalysts Science & Technology</i>, 2012, 2, 1590-1595. b) J. Mangas-Sánchez, E. Busto, V. Gotor and V. Gotor-Fernández, <i>Org. Lett.</i>, 2013, 15, 3872-3875. 	
19. a) S. Roy and C. D. Spilling, <i>Org. Lett.</i> , 2010, 12 , 5326– 55 5329.b) F. Glaus and KH. Altmann, <i>Angew. Chem. Int. Ed.</i> , 2012 51 3405–3409	
2012, 01, 5405 5407.	