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By introducing the electron-deficient guest molecule and the 

counter anion, the assembly morphology of 1-[11-(2-

anthracenylmethoxy)-11-oxoundecyl]pyridinium bromide (2-

AP) was transformed to microsheets and nanofibers from 

microtubes, respectively. 10 

Self-assembly of amphiphiles is an effective way to generate 

supramolecular materials.1 Hydrogen bonds, van der Waals forces, 

π-π stacking, charge-transfer (CT), and electrostatic interactions 

are the most common noncovalent forces that can contribute to the 

self-assembly process.2 Some recent studies demonstrated that the 15 

addition of guest molecules can induce significant changes of the 

final assembly morphologies and spectroscopic properties of host 

amphiphiles.3 Specifically, the assembly behaviour of π-

conjugated supra-amphiphiles is particularly appealing for their 

potential applications in sensing and electrochemical devices.4 For 20 

example, Zhang and co-workers reported the morphology 

transformation from microtubes to vesicles by introducing the 

electron-deficient ethane-1, 2-diyl bis(3, 5-dinitro benzoate) to the 

pyrenyl-functionalized amphiphilic system.5a Ghosh and co-

workers have developed a facile strategy to modulate the reversible 25 

assembly transformation between vesicles and micelles through 

the introduction of pyrenyl group to the naphthalene diimide 

amphiphile.5b Inspired by those works, here we report the 

responsive assembly behaviour of an pyridinium derivatized 2-

anthracene (2-AP, Figure 1A) with different guest molecules.30 

  

        Our previous work has shown that the electron-rich  

 

 
Figure 1 (A) Schematic illustration of three pathways of the assembly process of 2-AP with or without guest molecules. (B) Characterization of the final 35 

assemblies. (a) OM, (b) SEM, (c) AFM images and (d) AFM height profile of microsheets assembled from 2-AP/MV (1:1, molar ratio, 0.25 mM 2-AP); (e, 

f, g) TEM images and (h) statistical analysis of the diameter of nanofibers assembled from 2-AP/phosphate (pH 7.8, 0.2 mM 2-AP, 10 mM potassium 

phosphate). Scale bars are 50 μm for (a), 20 μm for (b), 2 μm for (c), 50 nm for (e), and 20 nm for (f, g). 
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anthracene ring and the electron-deficient pyridinium motif of 2-

AP adapt a co-planar structure, which can readily assemble into 

dimers via the CT interactions and ultimately form microtubes with 

an average diameter of ~10 µm (Figure 1A, Pathway a).6 The 

morphology of the final assemblies relies on a fine balance of the 5 

CT interactions and hydrophobic feature of anthracene and alkyl 

linkers. Therefore we hypothesize that the dissociation of the CT 

pairs by the incorporation of a suitable guest molecule could result 

in the architectural change of 2-AP assemblies. To achieve this, 

the guest molecule needs either to be more electron-deficient than 10 

the pyridinium cation (Figure 1A, Pathway b), or as a counter 

anion that can form tight binding with the pyridinium cation with 

the anthracene ring (Figure 1A, Pathway c).  

We first tested the addition of methyl viologen (MV) into the 

2-AP system. MV is more electron deficient than pyridinium 15 

cation, and has been used as an electron acceptor to form a CT 

complex in many studies due to its importance as electronic relays 

in electron transfer systems.7 As a general protocol, MV was mixed 

with 2-AP in aqueous solution (1:1, molar ratio, 0.25 mM) and 

incubated for 30 min. The final assembly was evaluated with 20 

optical microscopy (OM), scanning electron microscopy (SEM), 

and atomic force microscopy (AFM). As shown in Figure 1B (a-c), 

microsheets were observed for 2-AP/MV with an average size of 

50, 1.5, and 0.35 μm in length, width, and thickness, respectively. 

The AFM height profile analysis further confirmed a typical sheet-25 

like structure of 2-AP/MV (Figure 1B (d); Figure S6).  

UV-Vis, fluorescence, and NMR spectra were used to elucidate 

the driving forces responsible for the assembly. As shown in Figure 

2a, the emission of 2-AP decreased upon the addition of MV,8 and 

the red shift (12 nm) in UV-Vis spectra suggested the presence of 30 

a “J”-type complex.9 The increase in absorption above 400 nm 

should be attributed to aggregates light scattering (Figure 2b).10 In 

the 1H NMR spectra, the proton resonances of the dipyridinum of 

MV shifted upfield after mixing with 2-AP (Figure 3a), and shifted 

back to downfield as the temperature increased, which revealed the 35 

formation of 2-AP/MV complex (Figure S7). Furthermore, a 1:1 

binding mode of 2-AP and MV was revealed by isothermal 

titration calorimetry (ITC) measurement, and the fitting data gave 

a binding constant of 6.3×104 M-1 using the one site model (Figure 

S8). Finally, X-ray powder diffraction (XRPD) experiment was 40 

performed to study the packing patterns of microsheets. A layered 

structure was observed with a thickness ~3.24 nm (Figure 3b), 

which was between 2.80 (the extended length of a single 2-AP 

molecule, Figure S9) and 4.87 nm (the length of two 2-AP 

molecules with an overlap only on anthracene ring). We conclude 45 

that the interactions between the anthracene motif of 2-AP and the 

more electron-deficient MV molecule promotes a slipped “face-to-

face” packing pattern, which consequently results in the final 

microsheets (Figure 1A, Pathway b). However, it is still difficult 

to predict whether the MV molecules were randomly entrapped 50 

within the assembly or arranged alternatively with the 2-AP units. 

 
Figure 2 (a) Fluorescence and (b) UV-Vis spectra of 2-AP, MV, and 2-

AP/MV (1:1, molar ratio, 0.25 mM 2-AP; excitation 376 nm) in water. 

Insert: photography of 2-AP and 2-AP/MV. The transparent solution of 2-55 

AP became cloudy quickly after the addition of MV. 

 
Figure 3 (a) 1H NMR spectra of 2-AP, MV, and 2-AP/MV (1:1, molar 

ratio, 0.5 mM 2-AP) in D2O-CD3OD (4:1, v/v). (b) X-ray power diffraction 

patterns of microsheets assembled from 2-AP/MV. 60 

On the other hand, potassium phosphate (Kphos), which has 

been widely applied in controlling the electrostatic interactions,11 

was chosen as the counter anion to interact with the pyridinium 

motif in order to block the homo-dimer formation of 2-AP. The 

assembly behaviour of 2-AP with Kphos under different pH and 65 

concentration was investigated by transmission electron 

microscopy (TEM). Nanofibers were observed with an average 

diameter of 4.2 nm, and their lengths reached several micrometers 

(Figure 1B (e-h); Figure S11). UV-Vis spectra showed a 10 nm red 

shift of 2-AP upon the addition of Kphos (Figure 4a), and an 70 

excimer peak at 471 nm appeared in the emission spectrum (Figure 

4b), which were caused by the “J”-type aggregation from the π-

stacking of the anthracene rings.12 In addition, the phosphate peak 

shifted upfield and broadened in 31P NMR spectra after mixing 

with 2-AP (Figure S10), likely caused by the electrostatic 75 

interactions between pyridinium cations and phosphates that 

decreased the electron density and reduced the relaxation time of 

phosphate.13 The pyridinium-phosphate complexes, thus serving as 

the hydrophilic peripheral layer, encloses the π-stacked anthracene 

cores and constructs the nanofibrous structures (Figure 1A, 80 

Pathway c).  

It should be pointed out that the nanofibers could be wrapped 

together to form a hydrogel structure when the concentration of 2-
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AP increased to 6 mM (Figure 4d, insert). Its viscoelastic 

behaviour was characterized by rheological measurements, in 

which the storage modulus G′ and the loss modulus G′′ were 

measured as functions of strain and frequency. As shown in 4c-d, 

the G′ was around twenty times greater than G′′, which indicated 5 

the dominant elastic character of the hydrogel exhibiting the clear 

thixotropic property.14 

 
Figure 4 (a) UV-Vis and (b) fluorescence spectra of 2-AP and 2-AP/Kphos 

(pH 7.8, 0.2 mM 2-AP, 10 mM Kphos; excitation 376 nm). (c, d) 10 

Rheological measurement of the 2-AP/Kphos hydrogel (pH 7.8, 12 mM 2-

AP, 10 mM Kphos) showing the evolution of storage modulus (G′) and loss 

modulus (G″) of the hydrogel with (c) strain, and (d) frequency. Insert: 

photograph of the formation of hydrogel of 2-AP/Kphos. 

In conclusion, we demonstrated that the assembly structure of 15 

2-AP can be switched from microtubes to microsheets or 

nanofibers, respectively, through the addition of suitable small 

molecular modulators. Furthermore, the nanofibers can be 

wrapped together to form the hydrogel with an increase of the 

concentration. The present work will stimulate further studies on 20 

the anthracene-contained supra-amphiphiles for controlled self-

assembly and disassembly. 
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