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Imidazoline-catalyzed enantioselective Friedel–Crafts (FC)-

type reactions were established using C3-symmetric chiral 

trisimidazolines. The imidazoline catalysts promoted the FC-

type reaction of aldimines with 2-naphthols to produce the 

corresponding adducts in high yields and with up to 99% ee. 

Asymmetric organocatalysis is one of the most attractive approaches 

to synthesize optically pure compounds without using any precious 

or toxic metals.1 In particular, chiral organocatalysts with two or 

more reaction-promoting functional groups, are of ongoing interest 

in recent enantioselective synthesis.2 The functionalities on the 

catalyst activate the substrates by using a synergistic cooperation,3 

creating the products efficiently. Imidazolines have great potential as 

reaction-promoting units because of their basicity, nucleophilicity, 

and the Brønsted acidity of their salts.4 However, chiral imidazolines 

as organocatalysts have not been adequately studied until now.5,6 

Herein, we report the first chiral imidazoline-catalyzed Friedel–

Crafts (FC)-type reaction of aldimines with 2-naphthols. The C3-

symmetric chiral trisimidazolines 1 (Fig. 1) work as powerful 

organocatalysts for the FC-type reaction producing the adduct in 

high yields and with high enantioselectivity. 

 

 

 

Fig. 1 Chiral trisimidazoline catalysts 1. 

 

An asymmetric FC-type reaction between phenols and aldimines is 

an important preparation route of the optically active α-

aminomethylphenol unit.7,8 which is often found in pharmaceutically 

important compounds9 and is widely utilized in asymmetric 

transformations.10 The first enantioselective FC-type reaction of 2-

naphthol and aldimines was presented by Hui7a in 2010 using a 

stoichiometric amount of a chiral zinc complex. In 2011, Wang7b and 

Chimni7c independently reported catalytic enantioselective processes 

using chiral organocatalysts derived from Cinchona alkaloids. We11e 

also developed chiral dinuclear vanadium complexes for the 

enantioselective FC-type reaction via a dual activation mechanism.11 

 

 
Fig. 2 A plausible transition state for the FC-type reaction of 

aldimines with 2-naphthols. 

 

Our group previously reported the organocatalytic enantioselective 

Michael reaction and bromolactonization with trisimidazoline 1a.6 

We assumed that in the trisimidazoline-catalyzed reaction of 

aldimines with 2-naphthols, one imidazoline could function as 

Brønsted base and other imidazoline as a proton donor, leading to a 

straightforward coupling to produce the adducts in high 

enantioselectivity (Fig. 2). As the first step in the development of the 

FC-type process, the reaction of aldimines 2 and 2-naphthol (3a) was 

attempted using a 5 mol % of the chiral trisimidazoline 1a  (Table 1). 

Among the substituent R imine groups we tested, the aryl sulfonyl 

groups resulted in products with relatively good yields and moderate 

enantioselectivities (Table 1, Entries 1-6); the reaction of 2f (R = 4-

Cl-C6H4SO2) with 3a gave the FC adduct 4f in 40% ee quantitatively 

(Entry 6).12 Using more electron deficient aryl sulfonyl groups on the 

aldimines and lowering the reaction temperature had positive effects 

on the enantioselectivities (Entries 7-9); the reaction of N-4-nosyl 

imine 2h (R = 4-NO2-C6H4SO2) produced the FC adduct 4h in 96% 

ee (Entry 9).13,14 The optimal result was obtained when the reaction 

of 2h with 3a was performed in toluene at –5 °C for 36 h (Table 2, 

Entry 1). 
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Table 1 Coupling reaction of imines 2 with 2-naphthol (3a) 

mediated by the chiral trisimidazoline catalyst 1aa 

 

 

aReaction conditions: 2 (0.1 mmol), 3a (0.15 mmol), 1a (5 mol %), toluene (0.4 

mL), N2.
 bIsolated yield. cDetermined by HPLC (Chiralpak AS-H for 4a; 

Chiralpak IB for 4b; Chiralcel OD-3 for 4c and 4h; Chiralpak IC for 4d; 

Chiralpak IA for 4e; Chiralcel OD-H for 4f and 4g). 

Table 2 Chiral trisimidazoline-catalyzed Friedel-Crafts (FC)-type 

reactiona 

 

 

 

aReaction conditions: 2 (0.1 mmol), 3 (0.15 mmol), 1a (5 mol %), toluene (0.4 

mL), -5 oC, N2. 
bIsolated yield. cDetermined by HPLC (Chiralcel OD-3 for 4h and 

4s; Chiralpak AD-H for 4i, 4k and 4p-q; Chiralpak IC-3 for 4l, 4j, 4o and 4r; 

Chiralpak IE for 4m; Chiralcel OD-H for 4n). dAt -35 oC. 

 

When N-4-nosyl imines 2h-j containing an electron withdrawing 

group (R1 = 4-, 3- or 2-Cl-C6H4) were utilized as substrates under the 

optimal conditions, the organocatalyst 1a efficiently promoted the 

reactions with 3a producing the adducts 4h-j in high yields and high 

enantioselectivities (Table 2, Entries 1-3). The catalyst 1a, mediated 

the reaction of aldimine 2k, which possesses an electron rich 

aromatic ring (R1 = 4-Me-C6H4), to afford the FC product 4k in 77% 

ee (Entry 5). However, the use of the newly designed trisimidazoline 

1b which was derived from (1S,2S)-1,2-bis(4-

methoxyphenyl)ethane-1,2-diamine improved the ee value of 4k 

(90% ee, Entry 6) while maintaining the high chemical yield. The 

organocatalyst 1b also successfully activates the various substrates 

to afford 4 in high yields and with high enantioselectivity (Entries 4 

and  7-11). 2-Furyl N-4-nosylimine (2q), 6-methoxy-2-naphthol (3b), 

and sesamol (3c) were applicable substrates for the reaction (Entries 

12-14).15 The highest enantiomeric excess value was obtained from 

the reaction of 3-methylphenyl N-4-nosyimine (2l) with 3a to give 

the corresponding adduct 4l with 99% ee (Entry 7).  

 

 
 

Scheme 1. An FC-type reaction catalyzed by N-methyl 

trisimidazoline 5. 

 

 

Scheme 2. An FC-type reaction catalyzed by bisimidazoline 6 

and monoimidazoline 7. 

 

The ability of the hydrogen atom attached to the nitrogen in catalyst 

1 to play an important role in the promotion of the high 

enantiocontrol reaction was suggested by the alkylation of N-methyl 

trisimidazoline 5, where no hydrogen bond-interaction that was 

depicted in Fig. 2 could be formed and therefore a low yield and a 

reduced enantioselectivity were observed (Scheme 1). Since a lower 

enantioselectivity and catalytic activity were observed when using 

bisimidazoline 6 and monoimidazoline 7 (Scheme 2), the three chiral 

imidazoline units on catalyst 1 were essential. These units construct 

three equally-aligned reaction sites, to enable an efficient catalytic 

activity and highly asymmetric induction ability. 

Conclusions 

We have discovered the first imidazoline-mediated highly 

enantioselective FC-type reaction between aldimines 2 and 2-

naphthols 3. Various aryl imine substrates bearing either 

electron-withdrawing or electron-donating groups could be 

successfully employed with 5 mol % of the C3-symmetric chiral 

trisimidazolines 1. An investigation into the reaction 

mechanism and the scope, as well as its application to 

enantioselective synthesis of biologically active compounds, is 

currently underway. 
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Entry R Temp (
o
C) Time (h) Yield (%)

b
 Ee (%)

c
 

1 4-Br-C6H4 (2a) 25 24 82 (4a) Rac 

2 Boc (2b) 25 24 17 (4b) 17 

3 PhSO2 (2c) 25 24 88 (4c) 22 
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5 4-MeO-C6H4SO2 (2e) 25 24 65 (4e) 30 

6 4-Cl-C6H4SO2 (2f) 25 12 100 (4f) 40 
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9 4-Ns (2h) -5 24 70 (4h) 96 

Entry 1 R
1
 R

2
 3 

Time 

(h) 

Yield 

(%)
b
 

Ee 

(%)
c
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5 1a 4-Me-C6H4 4-Ns (2k) 3a 36 100 (4k) 77 
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