Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Desilylative activation of TMSCN in chemoselective Strecker-Ugi type reaction: Functional fused imidazoles as building blocks in an entry to annulated purines

Sankar K. Guchhait,* Vikas Chaudhary

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A pathway of desilylative activation of TMSCN as a functional isonitrile equivalent and DABCO-THF as an appropriate system for activation in a chemoselective Strecker-Ugi type reaction has rendered ethyl glyoxalate and various heterocyclic-2-amidines as feasible substrates, and afforded the successful

¹⁰ synthesis of 3-amino-2-carboxyethyl substituted fused imidazoles to be useful as building blocks. This class of functional scaffold has provided via construction of fused pyrimidinone motif the synthesis of biologically important C8-N9 annulated purines, and adenines and their oxo/thio analogs. This new approach is convenient and flexible for preparation of versatile purine-condensed heterocycles.

Introduction

- ¹⁵ Purine class of compounds is known for their wide range of biological activities and use as valuable tools in chemical biology.¹ These properties have incited for the preparation of versatile derivatives and analogs of purines.² In this direction, the synthesis of annulated purines has recently gained importance.
- ²⁰ These compounds have been shown to posses various bioactivities³ such as antihypertension, anti-inflammatory, human A3 adenosine receptor antagonism, and inhibition of PDE1/5 and tyrosine kinase EphB4. Furthermore, for some specific pharmacological activities, the purine derivatives have ²⁵ traditionally been considered as relatively less potent, while their analogs with an additional fused ring that represent a novel family of compounds have been reported to possess important
- activities, selectivities, physicochemical properties, and pharmacokinetic profiles.^{3a-c,4} Various approaches are known for ³⁰ different kind of annulations at purines (Scheme 1). The
- frequently used approach for annulation (C6-N1/C8-N9) involves the double nucleophilic substitution reaction of leaving groupcontaining purine (path A).^{3c-e,4,5} The approach requires additional reactions for incorporation of leaving group into purine. The
- ³⁵ method exploring the reaction of the amidine functionality in aminopurine for annulations is also known (path B). For example, the reaction of adenine, purine-2,6-diamine, or purine-8-amine with α -halocarbonyl constructs corresponding imidazole-fused purines.⁶ Exploring the reactivity of amidine functionality, we
- ⁴⁰ developed also a multicomponent reaction of adenine or guanine with aldehyde and isocyanide towards preparation of aminoimidazole-fused compounds.⁷ Hocek *et al* reported a methodology of intramolecular direct arene C-H arylation of suitably N9-aryl or arylalkyl substituted purines towards

This journal is © The Royal Society of Chemistry [year]

purino[8,9-f]phenanthridines 5.6-45 synthesis of and dihydropurino[8,9-*a*]isoquinolines (path C).⁸ Recently, an approach involving Buchwald-Hartwig amination of NHprotected 5-halopyrimidine-2,4-dione with 2-aminopyridine, intramolecular C-H amination, and deprotection towards 50 preparation of pyridine-fused purine-2,4-dione has been documented (path D).⁹ Herein, we report the synthesis of suitably functionalized heterocyclic-condensed imidazole via an appropriate desilylative activation of TMSCN as a functional isonitrile equivalent in the Strecker-Ugi type reaction and 55 exploration of heterocyclic-condensed imidazole as building block that affords access to heterocyclic-annulated purines (Scheme 1). While the literature-known methods for preparation of annulated purines involve mostly the construction of new

[journal], [year], **[vol]**, 00–00 | 1

annulated ring starting from purine or the intramolecular building of imidazole ring, this present approach explores annulated ringcontaining functional imidazole as an important building block. This approach can enable the preparation of purinones annulated

s at C8-N9 with various substituted 5/6-membered heteroaromatics which are not accessible by known methods.

Results and discussion

Synthesis of 3-amino-2-carboxyethyl substituted fused imidazoles

- ¹⁰ With our aim of establishing a new approach for synthesis of heterocyclic-annulated purine class of compounds, we were interested in exploring a suitably functionalized synthetic building block which could be prepared in one step. In this aspect, we considered N-fused imidazole with 2-carboxy ester
- ¹⁵ and 3-amine functionalities, as the building block. The preparation of 3-amine and 2-aryl/alkyl substituted N-fused imidazoles involves the multicomponent reaction of heterocyclic-2-amidine and aldehyde with *iso*-octyl/*tert*-butyl isocyanide,¹⁰ and subsequent de-*iso*-octylation¹¹ or de-*tert*-butylation.¹²
- ²⁰ Following these methods, we attempted the preparation of 3amino-2-carboxyethylimidazo[1,2-*a*]-pyridine as a model building block by the reactions of 2-aminopyridine and ethyl glyoxalate with *iso*-octyl/*tert*-butyl isocyanide and follow up dealkylations promoted by TFA^{11} or HBF_4^{12} , respectively. In
- ²⁵ these reactions, the desired product formed in low yields (24 and 27%, respectively), conversions were incomplete, and side reactions took place. The variation of solvent and reaction temperature in the process could not improve the yield of the product beyond 32%. Recently, we developed a Strecker-Ugi
- ³⁰ type reaction of heterocyclic-2-amidine and aldehyde with TMSCN as isocyanide equivalent in water, which afforded 3-amine and 2-aryl/alkyl substituted N-fused imidazoles in good yields.¹³ Following this approach for the preparation of 3-amine and 2-carboxyethyl substituted imidazo[1,2-*a*]-pyridine, a
- ³⁵ reaction of ethyl glyoxalate and 2-aminopyridine with TMSCN was done. The product **2a** was obtained in 12% yield (entry 1, Table 1). Reaction was found to be incomplete and non-isolable side products also formed. We realized that several competing reactions were associated because of an additional functionality
- $_{40}$ (α -ester) present in the aldehyde component, the amine substrate, and the product containing ester and amine functionalities. On the other hand, these groups in the product are required towards its function as a potential building block. For preparation of the building block, the approach using TMSCN as isocyanide
- 45 equivalent compared to the MCR-dealkylation method is relatively step economical and was thus considered for exploration. We then investigated in our reaction some of the milder and efficient protocols reported for synthesis of αaminonitrile via Strecker reaction using TMSCN. Rama Rao's
- ⁵⁰ approach¹⁴ with β-cyclodextrin-catalysis or Kobayashi's conditions¹⁵ using Et₃N for activation of TMSCN provided the product in trace and 10% yield only, respectively (entries 2 and 3). The combined use of a catalytic quantity of scandium triflate along with Et₃N in Kobayashi's conditions, which was known to
- ⁵⁵ promote the Strecker reaction for less reactive substrates, also resulted in poor reaction conversion and formation of several products (entry 4). Gratifyingly, a reaction using a tertiary

Гable	1:	Optim	ization	of the	reaction

1	$ \begin{array}{c} $							
#	Activator ^b	Solvent	Reaction condition	s ^c Yield ^d (%)				
1	KF	H ₂ O	RT, 5 h	12				
2	β-Cyclodextrir	ו H ₂ O-MeOH	°RT, 24 h	traces				
3	Et₃N	DCM	RT, 24 h	10				
4	Et ₃ N-Sc(OTf)	₃ ^f DCM	RT, 24 h	8				
5	DABCO	1,4-dioxane	80 °C, 4h	50				
6	DABCO	1,4-dioxane	μW , 120 °C, 30 min	58				
7	DABCO	THF	µW, 120 ºC, 15 min	70				
8	DABCO	DME	µW, 120 ºC, 15 min	62				
9	DABCO	Diglyme	µW, 120 ºC, 15 min	60				
10	DABCO	DMSO	µW, 120 ^o C, 10 min	32				
11	DABCO	MeCN	µW, 120 ºC, 10 min	36				
12	DABCO	<i>n</i> -butanol	µW, 120 °C, 10 min	17				
13	DABCO	PEG-400	µW, 120 ºC, 10 min	20				
14	DBU	THF	µW, 120 ºC, 30 min	22				
15	TEA	THF	µW, 120 ºC, 30 min	18				
16	DIPEA	THF	µW, 120 ºC, 30 min	15				
17	N-methylimida	zole THF	µW, 120 ^o C, 30 min	20				
18	DABCO-Sc(OT	Tf) ₃ THF	µW, 120 ºC, 30 min	40				
19	_	THF	µW, 120 ºC, 30 mir	ז 1				
20	InCl ₃	THF	µW, 120 ^o C, 10 min	18				
21	Sc(OTf) ₃	THF	µW, 120 ^o C, 10 min	15				

^a 2-Aminopyridine (1 mmol), Ethyl glyoxalate (1 equiv.), TMSCN (1 equiv.);
 ^b Nucleophilic activator (1 equiv.) and Lewis acid (5 mol %) were used;
 ^c RT: Room temperature (25-27 °C), optimal reaction time for conventional oil bath heating or microwave irradiation;
 ^d isolated yield;
 ^e H₂O-MeOH (10:1);
 ^f Et₃N (1 equiv.)-Sc(OTf₃ (20 mol%).

amine that possess bi-nucleophilic sites, such as DABCO¹⁶ in 1,4-dioxane provided significant improvement in yield of the product (entry 5). Microwave dielectric heating enhanced further 70 the yield (entry 6). A survey of other ether solvents (entries 7-9), e.g., THF, DME, and Diglyme revealed their similar efficiency and THF was most effective. The reactions using DABCO in other different kind of solvents (entries 10-13), DMSO, MeCN, *n*-butanol, and polyethylene glycol indicated that these solvents 75 were inferior compared to ether solvents. The reaction in THF was then investigated using various bases (entries 14-17) that could promote desilylation of TMSCN, such as DBU, triethylamine (TEA), diisopropylethylamine (DIPEA), and *N*-methylimidazole. DABCO was found to be most effective. One 80 equivalent quantity of DABCO was found to be optimal.

^{*a*} N-heterocyclic amidines (1 mmol), Ethyl glyoxalate (1 equiv.), TMSCN (1 equiv.); ^{*b*} isolated yield.

A reaction with combined use of DABCO and catalytic Sc(OTf)₃ resulted in several side reactions and inferior yield of product (entry 18). The reaction in absence of DABCO (entry 19) formed majorly imine with a little desired product. The Lewis acid-10 catalysis replacing DABCO in the reaction (entries 20 & 21) lowered the yield of the product. All these results of the optimization study indicate that the chemoselective Strecker-Ugi reaction using multifunctional substrate as in the present reaction crucially depends on nucleophilic activation pathway of TMSCN 15 and DABCO-THF as an appropriate activators-system.

With the optimized protocol in hand, we next set out to explore its generality towards synthesis of 3-amine and 2-carboxyethyl functionalized various N-fused imidazoles. To our delight,

versatile heterocyclic amidines including 2-aminopyridine, 2-2-aminobenzothiazole 20 aminopyrazine and with various substitutions underwent smooth reactions and provided functional N-fused imidazoles in good yields (Table 2). For Strecker-Ugi reaction using TMSCN, the present method has rendered for the first time ethyl glyoxalate as viable aldehyde substrate and 25 flexibility for various heterocyclic-2-amidines including 2aminobenzothiazole also. The electronic properties of the substituents in the heteroaromatic ring may change the nucleophilic behavior of amine in Strecker reaction and that of ring nitrogen atom in Ugi reaction. However, the electron-30 withdrawing groups (Br, Cl, F, CF₃, NO₂) and donating groups (Me, OMe) present in the heterocyclic-2-amidines did not have any significant disparity in the reaction. A strong electronwithdrawing group like NO₂ also at C6 of the benzothiazole did not diminish the yield of the product. The reaction conditions 35 were found to be tolerant for chloro, bromo, methoxy and nitro functionalities, which provide the opportunity of their various further chemical manipulations in products.

Synthesis of heterocyclic-condensed adenines and their oxo/thio analogs

- ⁴⁰ We then focused on exploring 3-amino-2carboxyethylimidazo[1,2-*a*]pyridine (**2a**) as synthetic building block towards preparation of heterocyclic-enlarged adenines and their oxo/thio analogs (**5**, Table 3). Accordingly, a reaction of building block (**2a**) with formamide was investigated for the ⁴⁵ preparation of pyrido[1,2-*e*]purin-4(3*H*)-one (**3a**), precursor of compound **5**. The variation in equivalence of formamide, reaction temperature and mode of heating (conventional vs microwave irradiation) were evaluated. After several experiments, it was found that the reaction with formamide in excess quantity at 150
- ⁵⁰ °C under microwave irradiation (2.5 h) provided product (3a) in 65% yield. Reaction at increased temperature, 170 °C for 2 h enhanced the yield of the product to 71%. In spite of good yield, the reaction required microwave irradiation for considerably longer time and yet was found to be incomplete. Therefore, we 55 wanted to obtain a method using conventional heating. On the other hand, the reaction performed by conventional heating at 180 C resulted in incomplete conversion and relatively low yield (46%). We then investigated the effect of ammonia source as additive in the reaction. Indeed, the use of ammonium formate (1 60 mol. equiv.) in the reaction under conventional heating (180 °C) afforded pyrido[1,2-e]purin-4(3H)-one (3a) in 82% yield. The subsequent deoxychlorination with POCl₃ 4gave chloropyrido[1,2-e]purine (4a) in 72% yield. Aromatic nucleophilic substitution (S_NAr) of compound 4a with an amine 65 formed pyridine-annulated adenine (5a) in 90% yield (Table 3). In purine chemistry related to drug discovery and chemical biology research, the variation in amine/oxo/thio substitutions at 6-position of adenine is frequently followed.¹⁷ Gratifyingly, the present new approach enabled the preparation of C8-N9-70 annulated adenines with diverse C4-amines and their oxo/thioanalogs (5a-o) in good yields. Anilines containing electrondonating as well as electron-withdrawing functionalities, sterically hindered aniline, benzyl amines, aliphatic amines, and the amines those are pharmaceutically important could be easily 75 incorporated into the products. The reactions sequence

s ^{*a*} The product (**3b**) formed in the reaction of compound **2g** with formamide could not be isolated in pure form due to its poor solubility and thus directly subjected to subsequent reaction after removal of excess formamide. ^{*b*} Isolated yield, ^{*c*} K₂CO₃ (1.5 equiv.) was utilized in S_NAr reaction (step 3).

2→3→4→5 was also tried for other two representative 3-amino-2-carboxyethyl containing fused imidazoles 2. Imidazo-fused benzothiazole 2g The sequence worked well for and produced benzothiazole-condensed adenine 50. However, the product 15 obtained in the reaction of imidazopyrazine 2f with formamide

could not be isolated because of its poor solubility.

Synthesis of 2-alkyl/aryl substituted heterocyclic-condensed purinones

In aspects of biological activities, the variation in 2-aryl/alkyl ²⁰ substitutions of the purine class of compounds is important.¹⁸ Therefore, we were also interested in the preparation of various 2-aryl/alkyl substituted heterocyclic-enlarged purinones (**8**, Table 4) that could easily be converted into pyridine-enlarged adenines or their oxo/thio analogs by deoxychlorination and S_NAr-²⁵ amination as described above. In this context, the reactions-sequence of transamidation of the building block 3-amino-2-carboxyethylimidazo[1,2-*a*]pyridine **2a**, *N*-aroylation of 3-amine, and amide-amide cyclo-condensation to construct pyrimidinone

ring was considered (Scheme in Table 4). Keeping in mind the 30 development of an operationally simple method, the transamidation of 2a towards preparation of corresponding amide (6a) was performed by using aqueous ammonia solution. With 2 ml of 5% aq NH₄OH solution and THF (1 ml) for 1 mmol of 2a, the reaction at room temperature was found to undergo a little 35 conversion. The use of aqueous ammonia solution of increasing concentration and higher volume enhanced the reaction conversion and yield of the product. Increase in the relative volume of THF did not improve the yield. In the reaction using compound-25% aq NH₄OH-THF in 1 mmol : 20 ml : 1 ml, the 40 best result (85% yield) was obtained. The use of methanolic ammonia replacing aqueous ammonia resulted in even slower reaction and formation of side products. The N-benzoylation of 3amine functionality in compound 6a using benzoyl chloride following classical methods caused chemoselectivity problem.

⁴⁵ **Table 4:** Synthesis of 2-alkyl/aryl-pyrido[1,2-*e*]-purin-4(3*H*)-one

^a Isolated yield.

⁵⁰ The additional *N*-benzoylation of amide functionality as a competing reaction leading to formation of compound **7b** was also found to occur significantly. The optimal yield (62%) of *N*-benzoyl derivative of imidazopyridine-2-carboxamide-3-amine (**7a**) was obtained by using benzoyl chloride (1.4 equiv.), ⁵⁵ pyridine (3 equiv.), DMAP (20 mol %), MeCN as solvent, and microwave-assisted dielectric heating at 120 °C. Interestingly, in

this reaction condition, the benzoylation of amide functionality was virtually eliminated. We then investigated the base-mediated intramolecular amide-amide cyclo-condensation of compound 7a towards construction of pyridine-annulated purinone (8a). After

- s several experiments, we found that use of NaOEt in EtOH under microwave irradiation provided the desired product (8a) in optimal yield (70 %), albeit the reaction was not complete. In this reaction condition, the compound 7a also formed, although in small quantity (5 %), plausibly via alcoholysis of amide with
- to ethoxide. Both N-benzoylation reaction and amide-amide cyclocondensation were performed in one pot avoiding intermediate chromatographic isolation, which provided the product in similar yield. The reactions sequence $2\rightarrow 6\rightarrow 7\rightarrow 8$ was also tried for 3-amino-2-carboxyethyl containing
- ¹⁵ imidazopyrazine **2f**, which afforded corresponding products **8i-m**. Following this developed reactions-route, various 2-aryl/alkyl substituted pyridine/pyrazine-enlarged purinones (**8a-m**, Table 4) were synthesized. The approach was flexible for incorporation of aryl, alkenyl and alkyl substitutions at C2 of products. The
- ²⁰ pharmacologically-relevant moieties, for example, 2-(4isobutylphenyl)propyl (ibuprofen, anti-inflammatory drug), and trimethoxycinnamyl (anticancer agent) could be easily incorporated in the products.
- ²⁵ Besides the literature-known common biological importance of annulated purine class of scaffolds, the pyridine C8-N9-fused purines (Table 3 and 4) represent also the structural amalgamation of purines with another scaffold, imidazo[1,2*a*]pyridine¹⁹ which possess a wide range of bio-activities²⁰ such
- ³⁰ as anticancer, antibacterial, antifungal, antiviral, antiinflammatory agents, selective CDK inhibitors, GABA receptor agonists and calcium channel blockers. Imidazo[1,2-*a*]pyridine is also represented by marketed drugs, zolimidine and zolpidem. Therefore, these pyridine-condensed analogs of purine class of
- ³⁵ compounds are important for their potential versatile pharmacological activities.

Conclusion

In the present study, a one-step preparation of 3-amino and 2carboxyethyl substituted fused imidazoles and use of this class of

- ⁴⁰ functional scaffold as synthetic building block for preparation of C8-N9 annulated purines have been explored. The Strecker-Ugi type reaction with TMSCN as a functional isonitrile equivalent by a desilylative activation pathway and DABCO-THF as an appropriate activators-system has rendered for the first time ethyl
- ⁴⁵ glyoxalate and various heterocyclic-2-amidines including 2aminobenzothiazoles as feasible substrates and provides successful synthesis of the building blocks in good yields. Relevant substituted C8-N9 annulated purinones, and adenines and their oxo/thio analogs have been prepared from the building
- ⁵⁰ block via construction of fused pyrimidinone motif. This new approach can enable the convenient preparation of molecular diversity-feasible biologically important versatile C8-N9 annulated purines, and, therefore, has potential application in purine chemistry and drug discovery research.

55 Experimental section

General considerations: The starting materials and solvents were used as received from commercial sources without further purification. The ¹H and ¹³C spectra were recorded in $CDCl_3/DMSO-d_6/CD_3OD$ solvents on 400 MHz spectrometer ⁶⁰ using TMS as internal standard. HRMS was measured using TOF analyzer. Melting points determined are uncorrected. Microwave assisted reactions were carried out in sealed reaction vessel using Biotage Initiator.

65 Experimental procedure for synthesis of Ethyl 3aminoimidazo[1,2-*a*]pyridine-2-carboxylate (2a, Table 1): A mixture of 2-aminopyridine (1a, 94 mg, 1 mmol) and ethyl glyoxalate solution (50% solution in toluene) (0.2 ml, 1 mmol) was stirred at RT (25-27 °C) for 2 min. THF (2 ml) and DABCO

⁷⁰ (112 mg, 1 equiv.) were subsequently added. Reaction mixture was cooled to 0-5 °C and TMSCN (0.125 ml, 1 mmol) was added. The mixture was heated under microwave irradiation at 120 °C. After completion of reaction (monitored by TLC, 15 min), solvent was evaporated under vacuum. The column ⁷⁵ chromatographic purification of crude mass on neutral alumina

provided ethyl 3-aminoimidazo[1,2-*a*]pyridine-2-carboxylate (**2a**, 144 mg, 70%).

The other compounds (**2b-k**, Table 2) were prepared following this procedure.

- 80 Experimental procedure for synthesis of Pyrido[1,2-*e*]purin-4(3*H*)-one (3a, Table 3): Ethyl 3-aminoimidazo[1,2-*a*]pyridine-2-carboxylate (2a, 205 mg, 1 mmol) was taken in a round bottom flask. Formamide (2 ml) and ammonium formate (63 mg, 1 mmol) were added. The reaction mixture was heated at 180 °C.
- After completion of reaction (monitored by TLC, 4 h), the column chromatographic purification of crude mass on neutral alumina provided pyrido[1,2-*e*]purin-4(3*H*)-one (**3a**, 153 mg, 82%). The other compound (**3b**, Table 3) was prepared following this procedure.
- ⁹⁰ Experimental procedure for synthesis of 4-Chloropyrido[1,2-*e*]purine (4a): Pyrido[1,2-*e*]purin-4(3*H*)-one (3a, 186 mg, 1 mmol) was taken in a round bottom flask under N₂. POCl₃ (2 ml) was added to it under a flow of N₂. Reaction mixture was heated at 120 °C. After completion of reaction (monitored by TLC, 4 h),
 ⁹⁵ the mixture was poured into ice-cold water. 20% Aqueous NaOH solution was added dropwise till pH 8. Then the solution was extracted with EtOAc (2 × 40 ml). The combined organic layer was washed with water (10 ml), dried with anhyd. Na₂SO₄, and concentrated under vacuum. The column chromatographic ¹⁰⁰ purification of crude mass on silica gel provided 4-chloropyrido[1,2-*e*]purine (4a, 147 mg, 72%). The other compound (4b, Table 3) was prepared following this procedure.

Representative experimental procedure for synthesis of *N*-Benzylpyrido[1,2-*e*]purin-4-amine (5a, Table 3, entry 1): To a
 ¹⁰⁵ solution of 4-chloropyrido[1,2-*e*]purine (4a, 204 mg, 1 mmol) in
 ⁱPrOH (1 ml) in a round bottom flask, benzyl amine (128 mg, 1.2 mmol) was added. Reaction mixture was heated at 82 °C. After completion of the reaction (monitored by TLC, 2h), solvent was evaporated under vacuum. The column chromatographic
 ¹¹⁰ purification of crude mass on neutral alumina provided *N*-benzylpyrido[1,2-*e*]purin-4-amine (5a, 248 mg, 90%).

The other compounds (**5b-o**, Table 3) were prepared following this procedure.

Experimental procedure for synthesis of 3-Aminoimidazo[1,2*a*]**pyridine-2-carboxamide (6a, Table 4):** Ethyl 3aminoimidazo[1,2-*a*]**pyridine-2-carboxylate (2a, 2.05 g, 10** mmol) was taken in a round bottom flask. 25% Aqueous NH_4OH

- s solution (200 ml) and THF (10 ml) were added and the mixture was stirred at RT (25-27 °C) under closed system. After maximum conversion (monitored by TLC, 7 days), solvents were evaporated under vacuum. The column chromatographic purification of crude mass on neutral alumina provided 3-
- ¹⁰ aminoimidazo[1,2-*a*]pyridine-2-carboxamide (**6a**, 1.5 g, 85%). The other compound (**6b**, Table 4) was prepared following this procedure.

Representative experimental procedure for synthesis of 2-Phenylpyrido[1,2-*e*]purin-4(3*H*)-one (8a, Table 4, entry 1,): 3-

- ¹⁵ Aminoimidazo[1,2-*a*]pyridine-2-carboxamide (**6a**, 177 mg, 1 mmol) was taken in a microwave vial under N_2 . Acetonitrile (anhyd., 2 ml), DMAP (24.5 mg, 20 mol%), pyridine (0.25 ml, 3 mmol) and benzoyl chloride (196 mg, 1.4 mmol) were subsequently added to it under flow of N_2 . Reation mixture was
- ²⁰ heated under microwave irradiation at 120 °C. After maximum conversion (monitored by TLC, 30 min.), solvent was evaporated under vacuum. The column chromatographic purification of crude mass on neutral alumina provided *N*-benzoylimidazo[1,2-*a*]pyridine-3-amine-2-carboxamide (**7a**, 174 mg, 62%). Then, to a
- ²⁵ solution of **7a** in anhydrous ethanol (1.5 ml) in a vial, sodium ethoxide (68 mg, 1 mmol) was added under flow of N_2 and the reaction mixture was heated at 120 °C under microwave irradiation. After completion of the reaction (monitored by TLC, 30 min.), solvent was evaporated under vacumn. The column
- ³⁰ chromatographic purification of crude mass on neutral alumina provided 2-phenylpyrido[1,2-*e*]purin-4(3*H*)-one (**8a**, 183 mg, 70%).

For products (8b-m, Table 4), the mixture obtained after *N*-benzoylation and removal of solvent without chromatographic

³⁵ isolation was directly subjected to the amide-amide cyclocondensation step.

1. Ethyl 3-aminoimidazo[1,2-*a*]pyridine-2-carboxylate (2a, Table 2, entry 1)²¹

- ⁴⁰ Yellow green solid; mp >200 °C; 144 mg, 70% yield; IR (ATR) $\mathcal{W}_{max} = 3419, 3084, 1681, 1109 \text{ cm}^{-1}; ^{-1}\text{H} \text{ NMR}$ (400 MHz, DMSO-*d*₆): $\delta = 8.19$ (d, *J* = 7.0 Hz, 1H), 7.33 (d, *J* = 9.3 Hz, 1H), 7.07 (dd, *J* = 7.8 Hz, 7.9 Hz, 1H), 6.80 (dd, *J* = 6.8 Hz, 6.7 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR
- ⁴⁵ (100 MHz, CD₃OD): δ = 164.9, 138.9, 137.9, 124.3, 123.7, 118.6, 113.1, 111.9, 59.7, 14.9; HRMS (ESI-TOF) Calcd for $C_{10}H_{11}N_3O_2Na$: [M + Na]⁺ 228.0749 found m/z 228.0740.

2. Ethyl 3-amino-7-methylimidazo[1,2-*a*]pyridine-2carboxylate (2b, Table 2, entry 2)

- ⁵⁰ Yellow solid; mp >200 °C; 123 mg, 56% yield; IR (ATR) $\mathcal{V}_{max} =$ 3436, 3132, 2988, 1701, 1616, 1207, 1105 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.09$ (d, J = 7.1 Hz, 1H), 7.09 (s, 1H), 6.67 (d, J = 7.1 Hz, 1H), 6.31 (s, 2H) 4.27 (q, J = 7.0 Hz, 2H), 2.29 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ
- $_{55}$ = 169.7, 143.5, 143.1, 139.5, 127.7, 120.9, 119.5, 117.4, 64.3, 26.1, 19.7; HRMS (ESI-TOF) Calcd for C₁₁H₁₄N₃O₂: [M + H]⁺ 220.1088 found m/z 220.1083.
- 3. Ethyl 3-amino-6-chloroimidazo[1,2-*a*]pyridine-2-

carboxylate (2c, Table 2, entry 3)

- ⁶⁰ Green white solid; mp >200 °C; 156 mg, 65% yield; IR (ATR) $\Psi_{max} = 3399, 2982, 1684, 1613, 1275, 1134, 1029, 782 cm⁻¹; ¹H$ NMR (400 MHz, CDCl3:DMSO-*d*₆): 8.37 (s, 1H), 7.31 (d,*J*=9.7 Hz, 1H), 6.96 (dd,*J*= 9.7 Hz, 1.8 Hz, 1H), 6.22 (s, 2H), 4.37(q,*J*= 7.0 Hz, 2H), 1.38 (t,*J*= 7.1 Hz, 3H); ¹³C NMR (100 MHz,CDCl3:DMSO-*d* $₁): <math>\delta = 169.5 \pm 143.5 \pm 141.3 \pm 130.0 \pm 125.9 \pm 124.5$
- ⁶⁵ CDCl3:DMSO-*d*₆): δ = 169.5, 143.5, 141.3, 130.0, 125.9, 124.5, 123.8, 119.1, 64.9, 19.4; HRMS (ESI-TOF) Calcd for $C_{10}H_{11}^{35}ClN_3O_2$: [M + H]⁺ 240.0542 found m/z 240.0539 and for $C_{10}H_{11}^{37}ClN_3O_2$: [M + H]⁺ 242.0512 found m/z 242.0511.
- 4. Ethyl 3-amino-8-chloro-6-(trifluoromethyl)imidazo[1,2-70 *a*]pyridine-2-carboxylate (2d, Table 2, entry 4)
- Yellow solid; mp >200 °C; 179 mg, 58% yield; IR (ATR) Ψ_{max} = 3458, 3409, 3294, 2978, 1668, 1618, 1519, 1209, 1114 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): 8.95 (s, 1H), 7.54 (s, 1H), 6.82 (s, 2H), 4.32 (q, *J* = 7.0 Hz, 2H), 1.34 (t, *J* = 7.0 Hz, 3H); ¹³C NMR ⁷⁵ (100 MHz, DMSO-*d*₆): δ = 163.8, 141.1, 133.6, 124.0, 123.3 (q, ¹*J*_{C-F} = 270 Hz), 123.2 (q, ³*J*_{C-F} = 5 Hz), 117.5, 113.9 (q, ²*J*_{C-F} = 35 Hz), 113.6, 59.7, 14.5; HRMS (ESI-TOF) Calcd for C₁₁H₁₀³⁷ClF₃N₃O₂: [M + H]⁺ 308.0415 found m/z 308.0425 and for C₁₁H₁₀³⁷ClF₃N₃O₂: [M + H]⁺ 310.0386 found m/z 310.0396.
- 80 5. Ethyl 3-amino-6, 8-dibromoimidaz[1,2-a]pyridine-2carboxylate (2e, Table 2, entry 5)
- Yellow solid; mp >200 °C; 225 mg, 62% yield; IR (ATR) Ψ_{max} = 3473, 3286, 2980, 1677, 1629, 1260, 1214, 1150 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): 8.62 (s, 1H), 7.59 (s, 1H), 6.57 (s, 2H), 85 4.31 (q, J = 7.0 Hz, 2H), 1.33 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 164.3, 140.2, 134.1, 128.5, 123.6, 114.0, 112.9, 104.9, 60.1, 14.9; HRMS (ESI-TOF) Calcd for C₁₀H₁₀⁷⁹Br₂N₃O₂: [M + H]⁺ 361.9142 found m/z 361.9141 and for C₁₀H₁₀⁸¹Br₂N₃O₂: [M + H]⁺ 363.9121 found m/z 363.9126.
- 90 6. Ethyl 3-aminoimidazo[1,2-*a*]pyrazine-2-carboxylate (2f, Table 2, entry 6)

Yellow solid; mp 180 °C; 165 mg, 80 % yield; IR (ATR) \mathcal{V}_{max} = 3452, 3292, 3245, 1703, 1622, 1189 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ = 8.77 (d, *J* = 1.4 Hz, 1H), 8.08 (dd, *J* = 4.9 Hz, 1.4

- ⁹⁵ Hz, 1H), 7.69 (d, J = 4.9 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 164.0$, 144.4, 138.6, 133.4, 127.2, 115.9, 115.6, 60.4, 13.4; HRMS (ESI) Calcd for C₉H₁₀N₄O₂Na: [M + Na]⁺ 229.0702 found m/z 229.0703.
- 100 7. Ethyl 3-aminobenzo[d]imidazo[2,1-b]thiazole-2-carboxylate (2g, Table 2, entry 7)

Pale white solid; mp >200 °C; 156 mg, 60% yield; IR (ATR) \mathbf{W}_{max} = 3401, 3296, 2979, 1663, 1617, 1211, 1115 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.71 (d, *J* = 7.9 Hz, 1H), 7.63 (dd, *J* = 0.9 Hz, 7.9

¹⁰⁵ Hz, 1H), 7.41 (dt, J = 1.2 Hz, 8.0 Hz, 1H), 7.34 (dt, J = 1.2 Hz, 7.8 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.1$, 143.5, 139.1, 131.7, 129.8, 126.6, 125.9, 125.2, 115.1, 114.3, 59.5, 14.9; HRMS (ESI-TOF) Calcd for C₁₂H₁₁N₃O₂SNa: [M + Na]⁺ 284.0470 found m/z ¹¹⁰ 284.0459.

8. Ethyl 3-amino-7-methoxybenzo[*d*]imidazo[2,1-*b*]thiazole-2carboxylate (2h, Table 2, entry 8)

Yellow green solid; mp >200 °C; 160 mg, 55% yield; IR (ATR) $\Psi_{max} = 3454, 3407, 3292, 2978, 1666, 1618, 1207, 1112 cm⁻¹; ¹H$

¹¹⁵ NMR (400 MHz, DMSO- d_6): 8.03 (d, J = 8.9 Hz, 1H), 7.58 (d, J = 2.6 Hz, 1H), 7.06 (dd, J = 2.6 Hz, 8.9 Hz, 1H), 6.41 (s, 2H),

4.24 (q, J = 7.0 Hz, 2H), 3.82 (s, 3H), 1.29 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 164.1$, 157.4, 143.1, 138.9, 131.4, 125.6, 114.89, 114.85, 113.2, 110.0, 59.5, 56.3, 14.9; HRMS (ESI-TOF) Calcd for C₁₃H₁₃N₃O₃SNa: [M + Na]⁺ s 314.0576 found m/z 314.0558.

9. Ethyl 3-amino-7-chlorobenzo[*d*]imidazo[2,1-*b*]thiazole-2carboxylate (2i, Table 2, entry 9)

greenish white solid; mp >200 °C; 192 mg, 65% yield; IR (ATR) $W_{max} = 3402, 3282, 2978, 1666, 1617, 1212, 1118 cm^{-1}; {}^{1}H NMR$

- ¹⁰ (400 MHz, CDCl₃:DMSO-*d*₆): 8.12 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 1.6 Hz, 1H), 7.43 (dd, J = 2.0 Hz, 8.7 Hz, 1H), 6.40 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃:DMSO-*d*₆): $\delta = 163.7$, 142.9, 138.9, 131.6, 130.3, 130.1, 125.9, 123.9, 115.0, 114.8, 59.4, 14.5; HRMS (ESI-TOF)
- ¹⁵ Calcd for $C_{12}H_{10}^{-35}CIN_3O_2SNa$: $[M + Na]^+$ 318.0080 found m/z 318. 0073 and for $C_{12}H_{10}^{-37}CIN_3O_2SNa$: $[M + Na]^+$ 320.0051 found m/z 320.0044.

10. Ethyl 3-amino-7-nitrobenzo[d]imidazo[2,1-b]thiazole-2carboxylate (2j, Table 2, entry 10)

- ²⁰ Yellow solid; mp >200 °C; 195 mg, 64% yield; IR (ATR) $V_{max} =$ 3454, 3401, 3290, 3111, 1683, 1619, 1520, 1340, 1277, 1148 cm⁻¹; ¹H NMR (400 MHz, CDCl₃:DMSO-*d*₆): 8.78 (d, *J* = 1.8 Hz, 1H), 8.33-8.32 (m, 2H), 6.54 (s, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃:DMSO-*d*₆):
- $_{25}$ δ = 163.6, 144.3, 143.0, 139.3, 135.6, 131.4, 121.6, 120.1, 115.3, 113.8, 59.4, 14.3; HRMS (ESI-TOF) Calcd for $C_{12}H_{11}N_4O_4S$: [M + H] $^+$ 307.0503 found m/z 307.0496.

11. Ethyl 3-amino-5,7-difluorobenzo[*d*]imidazo[2,1-*b*]thiazole-2-carboxylate (2k, Table 2, entry 11)

- ³⁰ Yellow green solid; mp 185-187 °C; 148 mg, 50% yield; IR (ATR) Ψ_{max} = 3461, 3294, 2987, 1676, 1646, 1317, 1118 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.21 (d, *J* = 5.9 Hz, 1H), 7.03-6.97 (m, 1H), 5.84 (s, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.0, 159.4 (d, ¹*J*_{C-F} =
- ³⁵ 236 Hz), 148.6 (d, ${}^{1}J_{C-F} = 236$ Hz), 142.1, 138.2, 133.9 (d, ${}^{2}J_{C-F} = 13$ Hz), 114.7, 107.7 (d, ${}^{2}J_{C-F} = 21$ Hz), 102.3 (dd, ${}^{2}J_{C-F} = 28$ Hz, 23 Hz), 59.9, 14.4; HRMS (ESI-TOF) Calcd for $C_{12}H_{9}F_{2}N_{3}O_{2}SNa$: [M + Na]⁺ 320.0282 found m/z 320.0287. **12. Pyrido**[1,2-*e*]purin-4(3*H*)-one (3a)²²
- ⁴⁰ White solid; mp >200 °C; 152 mg, 82% yield; IR (ATR) \mathbb{F}_{max} = 3422, 3092, 3042, 1682, 1578 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆): δ = 8.67 (td, J = 1.2 Hz, 6.9 Hz, 1H), 8.16 (s, 1H), 7.70 (td, J = 1.0 Hz, 9.3 Hz, 1H), 7.56-7.52 (m, 1H), 7.11 (dt, J = 1.1 Hz, 6.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 157.8, 144.3,
- ⁴⁵ 143.9, 141.4, 129.3, 126.7, 124.5, 118.2, 113.1; HRMS (ESI-TOF) Calcd for $C_9H_7N_4O$ [M+H]⁺ 187.0622 Found *m/z* 187.0614.

13. 4-Chloropyrido[1,2-e]purine (4a)²²

White solid; mp >200 °C; 147 mg, 72% yield; IR (ATR) $W_{max} =$

⁵⁰ 3012, 2923, 1395 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.88$ (s, 1H), 8.77 (d, J = 6.8 Hz, 1H), 7.82 (d, J = 9.4 Hz, 1H), 7.70-7.66 (m, 1H), 7.09 (t, J = 6.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.0$, 149.2, 149.1, 146.3, 133.3, 132.8, 125.2, 119.1, 112.8; HRMS (ESI-TOF) Calcd for C₉H₅ClN₄Na: [M + Na]⁺ 227.0101 ⁵⁵ found m/z 227.0101.

14. 4-chlorobenzo[4,5]thiazolo[3,2-e]purine (4b)

White solid; mp >200 °C; 177 mg, 68% yield; IR (ATR) $\Psi_{max} =$ 3038, 2850, 1694, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta =$

8.84 (s, 1H), 8.48 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), ⁶⁰ 7.63 (dd, J = 7.6 Hz, 7.9 Hz, 1H), 7.51 (dd, J = 7.6 Hz, 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.2$, 150.2, 148.8, 148.6, 136.1, 131.2, 128.9, 127.6, 126.5, 124.2, 115.2; HRMS (ESI-TOF) Calcd for C₁₁H₆ClN₄S: [M + H]⁺ 261.0003 found m/z 260.9996.

⁶⁵ **15.** *N*-Benzylpyrido[1,2-*e*]purin-4-amine (5a, Table 3, entry 1) White solid; mp 163-165 °C; 248 mg, 90% yield; IR (ATR) V_{max} = 3251, 2850, 1615, 1314 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.58 (d, *J* = 6.9 Hz, 1H), 8.52 (s, 1H), 7.55 (d, *J* = 9.3 Hz, 1H), 7.43-7.38 (m, 1H), 7.31 (d, *J* = 6.2 Hz, 2H), 7.28-7.22 (m, 3H), 70 6.92-6.89 (m, 2H), 4.87 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =155.2, 151.3, 145.6, 138.1, 129.9, 128.5, 127.7, 127.4, 124.4, 121.8, 118.2, 111.7, 44.7; HRMS (ESI-TOF) calcd for C₁₆H₁₃N₅Na: [M + Na]⁺ 298.1069, found m/z 298.1070.

16. *N*-(4-Methoxybenzyl)pyrido[1,2-*e*]purin-4-amine (5b, 75 Table 3, entry 2)

White solid; mp 160-162 °C; 265 mg, 87% yield; IR (ATR) Ψ_{max} = 3320, 2922, 1606, 1316 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.59 (d, *J* = 6.9 Hz, 1H), 8.53 (s, 1H), 7.58 (d, *J* = 9.3 Hz, 1H), 7.44-7.40 (m, 1H), 7.28 (d, *J* = 8.6 Hz, 2H), 6.92 (dd, *J* = 6.7 Hz, 80 6.8 Hz, 1H), 6.82 (d, *J* = 8.6 Hz, 2H), 6.71 (brs, NH), 4.81 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.0, 155.1, 151.3, 145.5, 130.2, 129.9, 129.1, 124.5, 121.7, 118.2, 113.9, 111.8, 55.3, 44.3; HRMS (ESI-TOF) calcd for C₁₇H₁₅N₅ONa: [M + Na]⁺ 328.1175, found m/z 328.1172.

85 17. N-(4-Chlorobenzyl)pyrido[1,2-e]purin-4-amine (5c, Table 3, entry 3)

White solid; mp 165-167 °C; 262 mg, 85% yield; IR (ATR) Ψ_{max} = 3316, 2922, 1608, 1318, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.61 (d, *J* = 6.9 Hz, 1H), 8.52 (s, 1H), 7.56 (d, *J* = 9.3 Hz, 1H), 90 7.45-7.41 (m, 1H), 7.25 (d, *J* = 8.8 Hz, 2H), 7.21 (d, 8.8 Hz, 2H), 6.93 (t, *J* = 6.5 Hz, 1H), 6.88 (s, NH), 4.85 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 155.1, 151.2, 145.7, 136.8, 133.2, 130.0, 128.9, 128.7, 124.5, 121.8, 118.2, 111.8, 43.9; HRMS (ESI-TOF) Calcd for C₁₆H₁₃³⁵ClN₅ [M+H]⁺ 310.0861 Found *m/z* 310.0856.

95 18. *N*-(4-Methoxyphenyl)pyrido[1,2-*e*]purin-4-amine (5d, Table 3, entry 4)

White solid; mp 125-127 °C; 256 mg, 88% yield; IR (ATR) V_{max} = 3280, 3045, 1640, 1614, 1509, 1319 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.65 (d, *J* = 6.4 Hz, 1H), 8.6 (s, 1H), 8.08-8.03 (m, 1H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.65 (d, *J* = 8.9 Hz, 1H), 7.51-7.47 (m, 1H), 6.97-6.95 (m, 3H), 3.84 (S, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =156.3, 152.9, 150.9, 145.9, 143.5, 131.5, 130.3, 124.5, 122.4, 122.2, 118.2, 114.3, 111.9, 55.6; HRMS (ESI-TOF) calcd for C₁₆H₁₃N₅ONa: [M + Na]⁺ 314.1018, found m/z ¹⁰⁵ 314.1012.

19. *N*-(4'-Chlorophenyl)pyrido[1,2-*e*]purin-4-amine (5e, Table 3, entry 5)

White solid; mp >200 °C; 245 mg, 83% yield; IR (ATR) $𝔅_{max}$ = 3396, 3320, 2921, 1618, 1578, 1316 cm⁻¹; ¹H NMR (400 MHz, 10 CDCl₃): δ = 8.68-8.65 (m, 2H), 8.04 (s, NH), 7.87 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 9.3 Hz, 1H), 7.55-7.51 (m, 1H), 7.37 (d, *J* = 8.6 Hz, 2H), 7.00 (t, *J* = 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 152.3, 150.6, 146.3, 143.8, 137.3, 130.7, 129.1, 128.5, 124.6, 121.3, 118.3, 112.1; HRMS (ESI-TOF) calcd for 115 C₁₅H₁₀³⁵ClN₅Na: [M + Na]⁺ 318.0523 found m/z 318.0530.

20. N-(4'-Bromo-2'-methylphenyl)pyrido[1,2-e]purin-4-amine

(5f, Table 3, entry 6)

White solid; mp 193-195 °C; 300 mg, 85% yield; IR (neat) Ψ_{max} = 3416, 2921, 1578, 1311, 1113 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.66 (d, *J* = 6.9 Hz, 1H), 8.60 (s, 1H), 8.09 (d, *J* = 9.2 Hz,

s 1H), 7.68 (d, J = 9.2 Hz, 2H), 7.54-7.50 (m, 1H), 7.43-7.42 (m, 2H), 6.99 (dd, J = 6.8 Hz, 6.7 Hz, 1H) 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.9$, 150.7, 146.3, 143.9, 135.4, 133.4, 132.1, 130.6, 129.7, 124.7, 124.6, 122.5, 118.3, 117.7, 112.0, 17.9; HRMS (ESI-TOF) calcd for $C_{16}H_{12}Br^{79}N_5Na$: $[M + Na]^+$

 10 376.0174 found m/z 376.0175 and for $C_{16}H_{12}{}^{79}Br^{81}N_5Na;\ [M + Na]^+$ 378.0154 found m/z 378.0153

21. *N*-(3'-anilino)pyrido[1,2-*e*]purin-4-amine (5g, Table 3, entry 7)

White solid; mp >200 °C; 179 mg, 65% yield; IR (ATR) $W_{max} =$

- ¹⁵ 3325, 3216, 1574, 1479, 1315 cm⁻¹; ¹H NMR (400 MHz, DMSO d_{δ}): $\delta = 9.85$ (s, 1H), 8.78 (d, J = 6.8 Hz, 1H), 8.5 (s, NH), 7.74 (d, J = 9.3 Hz, 1H), 7.65-7.61 (m, 1H), 7.34 (s, NH₂), 7.13-7.09 (m, 2H), 6.99(t, J = 7.9 Hz, 1H), 6.32 (d, J = 7.7 Hz, 1H), 5.06 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_{δ}): $\delta = 153.1$, 150.6, 149.3,
- $_{20}$ 145.6, 143.7, 140.4, 131.3, 129.2, 125.3, 122.4, 118.2, 112.8, 109.8, 109.6, 107.0; HRMS (ESI-TOF) calcd for $C_{15}H_{12}N_6Na$: $[M + Na]^+$ 299.1021 found m/z 299.1027.

22. *N*-(3',4'-dimethoxyphenethyl)pyrido[1,2-*e*]purin-4-amine (5h, Table 3, entry 8)

- ²⁵ White solid; mp 157-159 °C; 293 mg, 84% yield; IR (ATR) Ψ_{max} = 3220, 2923, 1597, 1317 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.60 (d, *J* = 6.7 Hz, 1H), 8.52 (s, 1H), 7.60 (d, *J* = 9.2 Hz, 1H), 7.45-7.41 (m, 1H), 6.92 (t, *J* = 6.6 Hz, 1H), 6.81-6.78 (m, 3H), 6.28 (brs, NH), 3.97 (brs, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.98 (t,
- $_{30}$ J = 6.9 Hz, 2H); 13 C NMR (100 MHz, CDCl₃): δ = 155.4, 151.3, 149.0, 147.7, 145.5, 131.3, 129.8, 124.5, 121.9, 120.7, 118.2, 112.0, 111.7, 111.4, 55.9, 55.8, 42.1, 35.4 ; HRMS (ESI-TOF) calcd for $C_{19}H_{19}N_5O_2Na$: $[M\ +\ Na]^+$ 372.1437, found m/z 372.1435.
- 35 23. *N*-(3'-Morpholinopropyl)pyrido[1,2-*e*]purin-4-amine (5i, Table 3, entry 9)

White solid; mp 105-107 °C; 259 mg, 83% yield; IR (ATR) Ψ_{max} = 3301, 2946, 1617, 1316, 1112 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.58 (d, *J* = 6.9 Hz, 1H), 8.46 (s, 1H), 7.60 (d, *J* =

- ⁴⁰ 9.3 Hz, 1H), 7.43-7.39 (m, 2H), 6.90 (t, J = 6.7 Hz, 1H), 3.84-3.79 (m, 6H), 2.56 (t, J = 6.5 Hz, 2H), 2.50 (s, 4H), 1.94-1.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.5$, 151.3, 145.4, 129.5, 124.4, 122.0, 118.3, 111.1, 66.9, 57.4, 53.8, 40.3, 25.3; HRMS (ESI-TOF) calcd for C₁₆H₂₀N₆ONa: [M + Na]⁺ 335.1597 ⁴⁵ found m/z 335.1609.
- **24.** *N*-Allylpyrido[1,2-*e*]purin-4-amine (5j, Table 3, entry 10) White solid; mp 157-159 °C; 169 mg, 75 % yield; IR (ATR) v_{max} = 3212, 3045, 1638, 1586, 1316 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.61$ (d, J = 6.9 Hz, 1H), 8.51 (s, 1H), 7.62 (d, J = 9.3
- ⁵⁰ Hz, 1H), 7.45 (dd, J = 9.3 Hz, 6.6 Hz, 1H), 6.93 (dd, J = 6.6 Hz, 6.8 Hz, 1H), 6.38 (s, NH) 6.08-5.98(m, 1H) 5.32 (d, J = 17.1 Hz, 1H), 5.19 (d, J = 10.3 Hz, 1H), 4.36 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.2$, 151.2, 145.6, 134.0, 129.9, 124.5, 121.8, 118.3, 116.6, 111.8, 43.1; HRMS (ESI-TOF) Calcd for C₁₂H₁₂N₅ ⁵⁵ [M+H]⁺ 226.1094 Found *m*/*z* 226.1086.
- 25. 4-(3'-*N*,*N*-Dimethylpropyloxy)pyrido[1,2-*e*]purine (5k, Table 3, entry 11)

White solid; mp 85-87 °C; 181 mg, 67% yield; IR (neat) \mathcal{V}_{max} =

3354, 1591, 1321 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ = 8.78 60 (dt, *J*₁ = 6.9 Hz, *J*₂ = 1.1 Hz, 1H), 8.58 (s, 1H), 7.71-7.69 (m, 2H), 7.17-7.14 (m, 1H), 4.71 (t, *J* = 6.3 Hz, 2H), 2.71-2.67 (m, 2H), 2.35 (s, 6H) 2.17-2.13 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ = 160.8, 149.5, 147.2, 145.9, 132.4, 124.7, 122.2, 117.3, 112.7, 65.4, 55.7, 43.9, 26.2; HRMS (ESI-TOF) calcd for 65 C₁₄H₁₇N₅ONa: [M + Na]⁺ 294.1331 found m/z 294.1331.

- **26. 4-Phenoxypyrido[1,2-***e***]purine (5I, Table 3, entry 12)** White solid; mp 140-142 °C; 183 mg, 70% yield; IR (ATR) \mathbf{V}_{max} = 3120, 2921, 1557, 1307 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.72 (d, *J* = 6.6 Hz, 1H), 8.61 (s, 1H), 7.79 (d, *J* = 9.2 Hz, 1H),
- $_{70}$ 7.60-7.56 (m, 1H), 7.51-7.47 (m, 2H), 7.36-7.31 (m, 3H), 7.03 (t, J=6.6 Hz, 1H); $^{13}\rm{C}$ NMR (100 MHz, CDCl₃): $\delta=160.7, 152.4, 149.6, 147.8, 147.2, 131.6, 129.7, 125.9, 124.7, 123.6, 121.9, 119.1, 112.3, ; HRMS (ESI-TOF) calcd for <math display="inline">\rm{C}_{15}\rm{H}_{10}\rm{N}_4\rm{ONa}$: [M + Na]⁺ 285.0746 found m/z 285.0746.
- ⁷⁵ **27. 4-(Phenylthio)pyrido**[**1**,**2**-*e*]**purine (5m, Table 3, entry 13)** White solid; mp 158-160 °C; 230 mg, 83% yield; IR (ATR) Ψ_{max} = 3033, 1567, 1557, 1391, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.73 (s, 1H), 8.70 (d, *J* = 6.9 Hz, 1H), 7.79 (d, *J* = 9.3 Hz, 1H), 7.74-7.72 (m, 2H), 7.61-7.57 (m, 1H), 7.52-7.50 (m, 3H), 7.01
- ⁸⁰ (dd, J = 6.7 Hz, 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.3$, 149.9, 147.7, 143.1, 135.6, 132.0, 131.8, 129.7, 129.4, 127.1, 124.9, 118.9, 112.3; HRMS (ESI-TOF) calcd for C₁₅H₁₀N₄SNa: [M + Na]⁺ 301.0524 found m/z 301.0529.
- 28. 4-((4'-Chlorophenyl)thio)pyrido[1,2-*e*]purine (5n, Table 3, 85 entry 14)
- White solid; mp >200 °C; 256 mg, 82% yield; IR (ATR) $v_{max} =$ 3041, 1562, 1384 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.72$ (s, 1H), 8.70 (d, J = 6.9 Hz, 1H), 7.79 (d, J = 9.4 Hz, 1H), 7.64 (d, J = 8.5 Hz, 2H), 7.61 (m, 1H), 7.46 (d, J = 6.5 Hz, 2H), 7.01
- ⁹⁰ (dd, J = 6.8 Hz, 6.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.6$, 149.8, 147.8, 143.3, 136.8, 136.1, 132.1, 131.9, 129.6, 125.7 , 124.9, 118.9, 112.3; HRMS (ESI-TOF) calcd for C₁₅H₉ClN₄SNa: [M + Na]⁺ 335.0134 found m/z 335.0133.

29. *N*-(4-methylbenzyl)benzo[4,5]thiazolo[3,2-*e*]purin-4-amine 95 (50, Table 3, entry 15)

- White solid; mp >200 °C; 269 mg, 78% yield; IR (ATR) $v_{max} =$ 3188, 2970, 1594 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.50$ (s, 1H), 8.42 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.55 (dd J = 8.0 Hz, 7.6 Hz, 1H), 7.41 (dd J = 7.9 Hz, 7.6 Hz, 1H), 7.26 (d, J
- ¹⁰⁰ = 7.9 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 6.14 (s, NH), 4.85 (s, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 153.6, 151.8, 151.7, 137.2, 135.2, 131.9, 129.3, 129.1, 127.7, 126.9, 125.5, 124.2, 123.9, 114.9, 44.6, 21.1; HRMS (ESI-TOF) calcd for C₁₉H₁₆N₅S: [M + H]⁺ 346.1128 found m/z 346.1142.
- ¹⁰⁵ **30.** 3-Aminoimidazo[1,2-*a*]pyridine-2-carboxamide (6a)²³ White solid; mp 154-156 °C; 150 mg, 85% yield; IR (ATR) Ψ_{max} = 3308, 1655, 1601 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_{δ}): δ = 8.11 (d, J = 7.0 Hz, 1H), 7.34-7.31 (m, 2H), 7.08-7.03 (m, 2H), 6.79 (dd J = 6.8 Hz, 6.7 Hz, 1H), 6.12 (s, 2H); ¹³C NMR (100
- ¹¹⁰ MHz, DMSO- d_6): δ = 166.9, 136.6, 135.3, 123.1, 122.9, 117.5, 116.1, 111.2; HRMS (ESI-TOF) Calcd for C₈H₈N₄ONa: [M + Na]⁺ 199.0596 found m/z 199.0590.

31. 3-Aminoimidazo[1,2-*a*]pyrazine-2-carboxamide (6b)

Yellow solid; mp 180 °C; 145 mg, 82 % yield; IR (ATR) \mathcal{V}_{max} = 115 3438, 3376, 3285, 3206, 1664, 1638, 1590, 1241 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.79 (s, 1H), 8.17-8.14 (m,1H), 7.69-

7.66 (m, 1H), 7.58 (s, 1H), 7.28 (s, 1H) 6.45 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 166.3, 144.1, 135.9, 132.1, 127.4, 118.2, 115.8; HRMS (ESI) Calcd for C₇H₇N₅ONa: [M + Na]⁺ 200.0549 found m/z 200.0543.

- ⁵ **32. 3-Benzamidoimidazo[1,2-***a***]pyridine-2-carboxamide (7a)** White solid; mp >200 °C; 174 mg, 62% yield; IR (neat) $Ψ_{max}$ = 3298, 3229, 1684, 1663, 1601 cm⁻¹; ¹H NMR (400 MHz, DMSO*d*₆): δ = 10.04 (s, 1H), 8.14 (d, *J* = 7.1 Hz, 1H), 8.06 (d, *J* = 7.2 Hz, 2H), 7.63-7.59 (m, 2H), 7.57-7.51 (m, 3H), 7.33-7.28 (m,
- ¹⁰ 1H), 6.91 (t, J = 6.9 Hz, 1H), 6.19 (s,1H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 166.6$, 166.1, 141.3, 132.8, 132.6, 128.9, 127.9, 126.7, 126.3, 125.3, 125.1, 117.8, 112.8; HRMS (ESI-TOF) calcd for C₁₅H₁₂N₄O₂Na: [M+Na]⁺ 303.0858, found m/z 303.0884.

33. 3-Benzamido-*N*-benzoylimidazo[1,2-*a*]pyridine-2s carboxamide (7b)

White solid; mp >200 °C; IR (neat) $\Psi_{max} = 3325$, 1728, 1672, 1582, 1458 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 10.61$ (s, 1H), 9.77 (s, 1H), 8.21 (d, *J* = 7.0 Hz, 1H), 8.11 (d, *J* = 7.3 Hz, 2H), 8.03 (d, *J* = 7.3 Hz, 2H), 7.67-7.54 (m, 7H), 7.37-7.33 (m,

- ²⁰ 1H), 6.96 (t, J = 6.6 Hz, 1H),; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 166.1, 164.7, 162.3, 141.3, 133.2, 133.0, 132.3, 129.0, 128.9, 127.9, 127.8, 126.9, 126.7, 126.4, 124.9, 118.3, 113.2; HRMS (ESI-TOF) calcd for C₂₂H₁₆N₄O₃: [M+Na]⁺ 407.1120, found m/z 407.1126.$
- 25 34. 2-Phenyl-3*H*-pyrido[1,2-*e*]purin-4-one (8a, Table 4, entry 1)

White solid; mp 110-112 °C; 115 mg, 44% yield; IR (neat) $\mathbb{W}_{max} =$ 3496, 3299, 1661, 1640, 1582 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆): $\delta = 8.31$ (d, J = 6.9 Hz, 1H), 8.10 (d, J = 7.6 Hz, 2H), 7.72-

- a_{6}), σ = 0.51 (e, σ = 0.51 a, 11), 0.16 (e, σ = 1.61 a, 21), 1.12 a_{0} 7.69 (m, 2H), 7.62 (dd, J = 7.4 Hz, 7.5 Hz, 2H), 7.52 (dd, J = 7.0 Hz, 8.8 Hz, 1H), 7.14 (t, J = 6.8 Hz, 1H),; ¹³C NMR (100 MHz, DMSO- d_{6}): δ = 166.1, 142.6, 132.8, 132.1, 128.7, 128.1, 127.9, 126.9, 124.9, 117.7, 114.5, 114.2, 111.6; HRMS (ESI-TOF) calcd for C₁₅H₁₀N₄ONa: [M+Na]⁺ 285.0753, found m/z 285.0745.
- 35 35. 2-(4-Chlorophenyl)-3*H*-pyrido[1,2-*e*]purin-4-one (8b, Table 4, entry 2)

Light yellow solid; mp >200 °C; 71 mg, 24% yield; IR (neat) $v_{max} = 3344$, 2922, 1678, 1635, 1588 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.76$ (d, J = 6.7 Hz, 1H), 8.27 (d, J = 8.4 Hz, 2H),

- ⁴⁰ 7. 71 (d, J = 9.2 Hz, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.56-7.52 (m, 1H), 7.12 (t, J = 6.7 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 170.4$, 141.9, 135.9, 132.4, 132.2, 128.6, 128.2, 125.3, 123.9, 116.8, 115.8, 112.2; HRMS (ESI-TOF) calcd for C₁₅H₉ClN₄ONa: [M+Na]⁺ 319.0363, found m/z 319.0364.
- 45 **36.** 2-(2'-Methoxyphenyl)-3*H*-pyrido[1,2-*e*]purin-4-one (8c, Table 4, entry 3)

White solid; mp 185-187 °C; 94 mg, 32% yield; IR (neat) $v_{max} = 3396, 3297, 1674, 1238 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (400 MHz, DMSO- d_6): $\delta = 8.68$ (dt, J = 6.9 Hz, 1.1 Hz, 1H), 7.81 (dd, $J_1 = 7.6, J_2 = 1.8$

- ⁵⁰ Hz, 1H), 7.69 (d, J = 9.3 Hz, 1H), 7.55-7.49 (m, 2H), 7.20 (d, J = 8.2 Hz, 1H), 7.13-7.06 (m, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 157.9$, 157.0, 150.9, 144.6, 141.9, 132.2, 130.5, 129.2, 125.2, 124.5, 122.1, 120.5, 118.2, 112.9, 111.9, 55.8; HRMS (ESI-TOF) calcd for C₁₆H₁₂N₄O₂Na: [M + Na]⁺ 55 315.0858, found m/z 315.0854.
- 37. (*E*)-2-Phenethenyl-3*H*-pyrido[1,2-*e*]purin-4-one (8d, Table 4, entry 4)

Yellow solid; mp >200 °C; 86 mg, 30% yield; IR (neat) $\Psi_{max} =$

3411, 2919, 2850, 1706, 1615, 1579 cm⁻¹; ¹H NMR (400 MHz, ⁶⁰ DMSO-*d*₆): $\delta = 8.68$ (d, J = 6.7 Hz, 1H), 7.95 (d, J = 16 Hz, 1H), 7.69-7.63 (m, 3H), 7.51-7.40 (m, 4H), 7.12-7.08 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 158.6$, 150.8, 145.2, 142.4, 138.2, 135.4, 130.2, 129.8, 129.6, 127.9, 125.9, 124.9, 120.7, 118.8, 113.6; HRMS (ESI-TOF) calcd for C₁₇H₁₂N₄ONa: ⁶⁵ [M+Na]⁺ 311.0909, found m/z 311.0901.

38. (E)-2-(3',4',5'-Trimethoxyphenethenyl)-3H-pyrido[1,2e]purin-4-one (8e, Table 4, entry 5)

Yellow solid; mp >200 °C; 140 mg, 37% yield; IR (neat) $v_{max} = 2988$, 1692, 1587, 1127 cm⁻¹; ¹H NMR (400 MHz, CDCl₃ + ⁷⁰ CD₃OD): $\delta = 8.62$ (d, J = 6.8 Hz, 1H), 7.89 (d, J = 15.9 Hz, 1H), 7.66 (d, J = 9.2 Hz, 1H), 7.50-7.47 (m, 1H), 7.06-7.03 (m, 1H), 6.92(d, J = 16 Hz, 1H), 6.88 (s, 2H), 3.93 (s, 6H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃ + CD₃OD): $\delta = 162.9$, 157.3, 154.7, 149.8, 146.7, 143.4, 143.0, 134.8, 133.8, 129.0, 128.2, 122.6,

 $_{75}$ 122.3, 117.2, 108.8, 64.8, 59.9; HRMS (ESI-TOF) calcd for $C_{20}H_{18}N_4O_4Na; \left[M\!+\!Na\right]^+$ 401.1226, found m/z 401.1220.

39. 2-Benzyl-3*H***-pyrido**[1,2-*e*]purin-4-one (8f, Table 4, entry 6)

White solid; mp >200 °C; 110 mg, 40% yield; IR (neat) $\mathbf{V}_{max} = 30356, 3083, 1670, 1588 cm^{-1}; {}^{1}H NMR (400 MHz, DMSO-$ *d* $_6): <math>\delta = 8.57$ (d, J = 6.8 Hz, 1H), 7.66 (d, J = 9.3 Hz, 1H), 7.49-7.46 (m, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.32 (dd, J = 7.2 Hz, 7.6 Hz, 2H), 7.25-7.22 (m, 1H), 7.04 (dd, J = 6.6 Hz, 6.5 Hz, 1H), 4.07 (s, 2H); 13 C NMR (100 MHz, DMSO-*d*_6): $\delta = 158.7, 155.5, 144.8, 85$ 142.2, 137.1, 129.5, 129.2, 129.0, 127.3, 125.4, 124.8, 118.7,

113.5, 44.8; HRMS (ESI-TOF) calcd for $C_{16}H_{12}N_4ONa;\ [M + Na]^+$ 299.0909, found m/z 299.0901.

40. 2-(2'-(Pyridin-3''-yl)ethyl)-3*H*-pyrido[1,2-*e*]purin-4-one (8g, Table 4, entry 7)

⁹⁰ Light yellow solid; mp >200 °C; 122 mg, 42% yield; IR (neat) $\mathbf{W}_{max} = 3449, 3038, 2920, 1703, 1682 \text{ cm}^{-1}$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.62$ (d, J = 6.8 Hz, 2H), 8.51 (s, 1H), 8.40 (d, J =4.0 Hz, 1H), 7.72-7.67 (m, 2H), 7.52-7.48 (m, 1H), 7.31 (dd, $J_1 =$ 4.8, $J_2 = 2.8$ Hz, 1H), 7.08 (dd, J = 6.8 Hz, 6.6 Hz, 1H), 3.15-3.11

 $_{95}$ (m, 2H), 3.07-3.04 (m, 2H); ^{13}C NMR (100 MHz, CDCl₃): δ = 158.7, 155.9, 150.2, 147.9, 144.8, 142.1, 136.5, 129.5, 125.4, 124.8, 123.9, 118.7, 113.5, 35.7, 30.2; MS (APCI) m/z: 357 (MH⁺), HRMS (ESI-TOF) calcd for C₁₆H₁₃N₅ONa: [M + Na]⁺ 314.1018, found m/z 314.1011.

100 41. 2-(1'-(4''-(2'''-methylpropyl)phenyl)ethyl)-3H-pyrido[1,2e]purin-4-one (8h, Table 4, entry 8)

White solid; mp 190-192 °C; 156 mg, 45% yield; IR (neat) \mathbb{V}_{max} = 3421, 2925, 1667, 1583 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.63 (dt, J = 6.9 Hz, 1.0 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 105 7.50-7.46 (m, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.09-7.05 (m, 3H), 4.22 (q, J = 7.1, 1H), 2.36 (d, J = 7.1 Hz, 2H), 1.76-1.73 (m, 1H), 1.64 (d, J = 7.1 Hz, 3H), 0.80 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 158.9$, 158.7, 144.9, 142.1, 140.20, 140.17, 129.5, 127.5, 125.4, 124.8, 118.7, 113.5, 44.6, 43.3, 30.0, 22.6, 110 20.0; HRMS (ESI-TOF) calcd for C₂₁H₂₁N₄ONa: [M+Na]⁺ 369.1692, found m/z 369.1685.

42. 2-Phenyl-3*H*-pyrazino[2,1-*e*]purin-4-one (8i, Table 4, entry 9)

White solid; mp >200 °C; 71 mg, 27% yield; IR (neat) $\Psi_{max} =$ 115 3408, 1668 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.35$ (s, 1H), 9.00 (d, J = 3.4 Hz, 1H), 8.26 (d, J = 4.2 Hz, 1H), 8.19 (d, J

60

75

- = 7.1 Hz, 2H), 7.62-7.56 (m, 3H); ¹³C NMR (100 MHz, DMSO d_6 : $\delta = 158.7, 156.8, 156.4, 143.4, 142.1, 133.3, 132.1, 131.1$ (2CH), 129.2 (2CH), 128.6, 121.1, 108.9; HRMS (ESI) calcd for $C_{14}H_9N_5ONa: [M + Na]^+ 286.0705$, found m/z 286.0695.
- 5 43. 2-(2-Methoxyphenyl)-3H-pyrazino[2,1-e]purin-4-one (8j, Table 4, entry 10)

Light yellow solid; mp >200 °C; 44 mg, 15% yield; IR (neat) $W_{\text{max}} = 3445, 3243, 2922, 1712, 1646, 1241, 1015 \text{ cm}^{-1}; {}^{1}\text{H NMR}$ (400 MHz, DMSO- d_6): $\delta = 9.29$ (s, 1H), 8.71 (d, J = 3.4 Hz, 1H),

¹⁰ 8.04 (d, J = 4.6 Hz, 1H), 7.79 (dd J = 7.6 Hz, 1.5 Hz, 1H), 7.59-7.55 (m, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.13 (dd, J = 7.6 Hz, 7.5 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta =$ 158.3, 157.6, 152.9, 146.4, 141.9, 139.5, 133.1, 131.1, 129.5, 126.7, 122.1, 121.0, 118.1, 112.5, 56.4; HRMS (ESI) calcd for $_{15}$ C₁₅H₁₁N₅O₂Na: [M+Na]⁺ 316.0811, found m/z 316.0820.

44. (E)-2-Styryl-3H-pyrazino[2,1-e]purin-4-one (8k, Table 4, entry 11)

Yellow solid; mp >200 °C; 26 mg, 9% yield; IR (neat) $\mathbb{W}_{max} =$ 3411, 2919, 2850, 1706, 1579, 1125 cm⁻¹; ¹H NMR (400 MHz,

- ²⁰ DMSO- d_6): $\delta = 9.20$ (s,1H), 8.65 (d, J = 4.6 Hz, 1H), 8.02 (d, J =4.6 Hz, 1H), 7.96 (d, J = 16.0 Hz, 1H), 7.64 (d, J = 6.9 Hz, 2H), 7.46-7.40 (m, 3H), 7.06 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 158.8, 152.5, 146.2, 142.1, 139.55, 139.50,$ 135.1, 130.5, 129.6 (2CH), 129.4, 128.2 (2CH), 126.7, 120.1,
- $_{25}$ 117.9; HRMS (ESI) calcd for C₁₆H₁₁N₅ONa: [M+Na]⁺ 312.0862, found m/z 312.0861.

45. (E)-2-(3,4,5-Trimethoxystyryl)-3H-pyrazino[2,1-e]purin-4-one (8l, Table 4, entry 12)

- Yellow solid; mp >200 °C; 72 mg, 19% yield; IR (neat) $\Psi_{max} =$ ³⁰ 3415, 2921, 1727, 1680, 1285, 1124 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.25$ (d, J = 1.3 Hz, 1H), 8.62 (dd, $J_1 = 4.6$, $J_2 =$ 1.4 Hz, 1H), 8.05 (d, J = 4.6 Hz, 1H), 7.93 (d, J = 16.0 Hz, 1H), 7.06 (d, J = 16.0 Hz, 1H), 6.97 (s, 2H) 3.84 (s, 6H), 3.70 (s, 3H);
- ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 158.2$, 153.1 (2C), 152.3, 35 152.1, 145.9, 141.7, 139.1, 139.0, 130.4, 129.1, 129.0, 119.2, 117.3, 105.0 (2CH), 60.1, 55.9 (2CH₃); HRMS (ESI) calcd for $C_{19}H_{17}N_5O_4Na$: $[M+Na]^+$ 402.1179, found m/z 402.1175. 46. 2-(1-(4-Isobutylphenyl)ethyl)-3H-pyrazino[2,1-e]purin-4one (8m, Table 4, entry 13)
- 40 White solid; mp >200 °C; 83 mg, 24% yield; IR (neat) $\Psi_{max} =$ 3385, 2919, 1670 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.25$ 105 (s, 1H), 8.68 (d, J = 6.8 Hz, 1H), 8.03 (d, J = 4.2 Hz, 1H), 7.32 (d, J = 7.4 Hz, 2H), 7.10 (d, J = 7.4 Hz, 2H), 2.39 (d, J = 6.5 Hz, 2H), 1.79-1.76 (m, 1H), 1.66 (d, J = 6.6 Hz, 3H), 0.83 (d, J = 6.2
- ⁴⁵ Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 160.8$, 158.9, 110 146.4, 141.8, 140.3, 139.9, 139.3, 129.6 (2CH), 129.4, 127.6 (2CH), 126.5, 117.9, 44.6, 43.5, 30.0, 22.6 (2CH₃), 20.0; HRMS (ESI) calcd for $C_{20}H_{21}N_5ONa$: $[M+Na]^+$ 370.1644, found m/z 370.1643 115

50 Acknowledgement:

We gratefully acknowledge financial support from Department of Science and Technology (DST), New Delhi for this investigation. 120 VC is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for his fellowship.

55 Notes and references

M. Legraverend and D. S. Grierson, Bioorg. Med. Chem., 1. 2006, 14, 3987.

- 2. R. Jorda, L. Havlicek, I. W. McNae, M. D. Walkinshaw, J. Voller, A. Sturc, J. Navratilova, M. Kuzma, M. Mistrik, J. Bartek and M. V. Krystof, J. Med. Chem., 2011, 54, 2980.
- For a few selected papers: (a) D. J. Blythin, J. J. Kaminski, M. 3 S. Domalski, J. Spitler, D. M. Solomon, D. J. Conn, S. C. Wong, L. L. Verbiar and L. A. Bober, J. Med. Chem., 1986, 29, 1099; (b) E.-M. Priego, J.F. D. Kuenzel, A. P. IJzerman, M.-J. Camarasa and M.-J. Pérez-Pérez, J. Med. Chem. 2002, 45. 3337: (c) C. E. Müller, M. Thorand, R. Ourishi, M. Diekmann, K. A. Jacobson, W. L. Padgett and J. W. Daly, J. Med. Chem., 2002, 45, 3440; (d) H.-S. Ahn, A. Bercovici, G. Boykow, A. Bronnenkant, S. Chackalamannil, J. Chow, R. Cleven, J. Cook, M. Czarniecki, C. Domalski, A. Fawzi, M. Green, A. Gündes, G. Ho, M. Laudicina, N. Lindo, K. Ma, M. Manna, B. McKittrick, B. Mirzai, T. Nechuta, B. Neustadt, C. Puchalski, K. Pula, L. Silverman, E. Smith, A. Stamford, R. P. Tedesco, H. Tsai, D. Tulshian, H. Vaccaro, R. W. Watkins, X. Weng, J. T. Witkowski, Y. Xia and H. Zhang, J. Med. Chem., 1997, 40, 2196; (e) K. Lafleur, D. Huang, T. Zhou, A. Caflisch, Nevado, C., J. Med. Chem., 2009, 52, 6433; (f) G. Xia, J. Li, A. Peng, S Lai, S. Zhang, J. Shen, Z. Liu, X. Chen, R. Ji, Bioorg. Med. Chem. Lett., 2005, 15, 2790.
- 4. P. G. Baraldi, D. Preti, M. A. Tabrizi, F. Fruttarolo, R. Romagnoli, N. A. Zaid, A. R. Moorman, S. Merighi, K. Varani and P. A. Borea, J. Med. Chem., 2005, 48, 4697.
- H. Sawanishi, H. Suzuki, S. Yamamoto, Y. Waki, S. Kasugai, 5. K. Ohya, N. Suzuki, K.-I. Miyamoto and K. Takagi, J. Med. Chem., 1997, 40, 3248.
- (a) T. Karskela and H. Lönnberg, Org. Biomol. Chem., 2006, 6. 4, 4506. (b) P. Virta, A. Koch, M. U. Roslund, P. Mattjus, E. Kleinpeter, L. Kronberg, R. Sjöholm and K. D. Klika, Org. Biomol. Chem., 2005, 3, 2924.
- 7. S. K. Guchhait and C. Madaan, Tetrahedron Lett., 2011, 52, 56.
- 8. I. Cerna, R. Pohl, B. Klepetarova and M. Hocek, J. Org. Chem., 2010, 75, 2302.
- 9. J. Maes, T. R. M. Rauws and B. U. W. Maes, Chem. Eur. J., 2013, 19, 9137.
- 10. (a) S. K. Guchhait and C. Madaan, Synlett, 2009, 628; (b) S. K. Guchhait, C. Madaan and B. S. Thakkar, Synthesis, 2009, 19, 3293; (c) S. K. Guchhait, G. Priyadarshani, V. Chaudhary, D. R. Seladiya, T. M. Shah and N. P. Bhogayta, RSC Adv., 2013, 3, 10867.
- 11. E. F. DiMauro and J, M. Kennedy, J. Org. Chem., 2007, 72, 1013
- 12. S. K. Guchhait and C. Madaan, Org. Biomol. Chem., 2010, 8, 3631.
- 13. S. K. Guchhait, V. Chaudhary and C. Madaan, Org. Biomol. Chem., 2012, 10, 9271.
- K. Surendra, S. N. Krishnaveni, A. Mahesh and K. R. Rao, J. 14. Org. Chem., 2006, 71, 2532.
- H. Konishi, C. Ogawa, M. Sugiuraa and S. Kobayashi, Adv. 15. Synth. Catal., 2005, 347, 1899.
- 16. J. Wang, D. Cai, M. Zhang and M. Wang, J. Organomet. Chem., 2013, 724, 117.
- (a) D. A. Griffith, J. R. Hadcock, S. C. Black, P. A. Iredale, P. 17. A. Carpino, P. Dasilva-Jardine, R. Day, J. DiBrino, R. L. Dow, M. S. Landis, R. D. O'Connor and D. O. Scott, J. Med. Chem., 2009, 52, 234. (b) P. G. Baraldi, A. U. Broceta, M. J. P. Infantas, J. J. P. Mochun, A. Espinosa and R. Romagnoli, Tetrahedron 2002, 58, 7607. (c) S. Tandel, I. Bliznets, K. Ebinger, Y-A. Ma, D. Bhumralkar and M. Thiruvazhi, Tetrahedron Lett. 2004, 45, 2321.
- 18. Y. Isobe, M. Tobe, H. Ogita, A. Kurimoto, T. Ogino, H. Kawakami, H. Takaku, H. Sajiki, K. Hirota and H. Hayashi, Bioorg. Med. Chem. 2003, 11, 3641.
- 19. S. K. Guchhait, A. L. Chandgude and G. Priyadarshani, J. Org. Chem., 2012, 77, 4438.

125

100

20

- For a few selected papers: (a) A. T. Baviskar, C. Madaan, R. Preet, P. Mohapatra, V. Jain, A. Agarwal, S. K. Guchhait, C. N. Kundu, U. C. Banerjee, P. V. Bharatam, *J. Med. Chem.*, 2011, 54, 5013. (b) Y. Rival, G. Grassy, G. Michel, *Chem*
- ⁵ Pharm Bull, 1992, 40, 1170. (c) S. C. Goodacre, L. J. Street, D. J. Hellett, J. M. Crawforth, S. Kelly, A. P. Owens, W. P. Blackaby, R. T. Lewis, J. Stanley, A. J. Smith, P. Ferris, B. Sohal, S. M. Cook, A. Pike, N. Brown, K. A. Wafford, G. Marshall, J. L. Castro and J. R. Atack, J. Med. Chem., 2006,
- 49, 35. (d) C. Hamdouchi, J. de Blas, M. del Prado, J Gruber, B. A. Heinz and L. Vance, *J. Med. Chem.*, 1999, 42, 50. (e) Y. Abe, H. Kayakiri, S. Satoh, T. Inoue, Y. Swada, K. Imai, N. Inamura, M. Asano, C. Hatori, A. Katayama, T. Oku and H. Tanaka, *J. Med. Chem.*, 1998, 41, 564.
- 15 21. J-C. Teulade, G. Grassy, R. Escale and J-P. Chapat, J. Org. Chem., 1981, 46, 1026.
 - 22. F. Pinguet, S. Mavel, C. Galtier and A. Gueiffier, *Pharmazie*, 1999, **54**, 876.
 - H. S. Zamora, B. Rizo, E. Campos, R. Jimenez and A. Reyes, J. Heterocycl. Chem. 2004, 41, 91.

^a Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali) - 160062, Punjab, India, Fax: 91 (0)172 2214692; Tel: 91 (0)172 2214692 Emails algorithmic and a in

25 (0)172 2214683 Email: <u>skguchhait@niper.ac.in</u> †Electronic Supplementary Information (ESI) available: [spectra of synthesized compounds (Table 2, 3 and 4, and intermediates-2, 3, 5, 6a and 6b)]. See DOI: 10.1039/b000000x/