

Organic & Biomolecular Chemistry

Design and Synthesis of Potent Macrocyclic HIV-1 Protease Inhibitors Involving P1-P2 Ligands

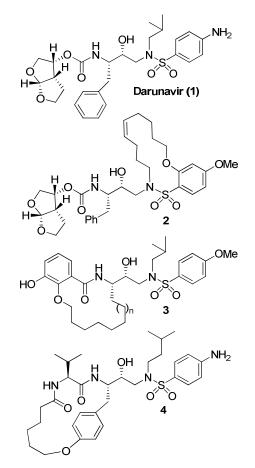
Journal:	Organic & Biomolecular Chemistry
Manuscript ID:	OB-ART-04-2014-000738.R2
Article Type:	Paper
Date Submitted by the Author:	23-Jun-2014
Complete List of Authors:	Ghosh, AK; Purdue University, Chemistry Schiltz, Gary; Northwestern University, Center for Molecular Innovation and Drug Discovery Rusere, Linah; Purdue University, Chemistry Osswald, Heather; Purdue University, Walters, D.; Rosalind Franklin University of Medicine and Science, College of Pharmacy Mitsuya, Hiroaki; National Institutes of Health, HIV and AIDS Malignancy Branch Amano, Masayuki; Kumamoto Univeristy,

SCHOLARONE[™] Manuscripts

Design and Synthesis of Potent Macrocyclic HIV-1 Protease Inhibitors Involving P1-P2 Ligands

Arun K. Ghosh,*^{*a*} Gary E. Schiltz, ^a Linah N. Rusere, ^a Heather L. Osswald, ^a D. Eric Walters, ^b ⁵ Masayuki Amano, ^c and Hiroaki Mitsuya ^{c,d}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x


¹⁰ A series of potent macrocyclic HIV-1 protease inhibitors have been designed and synthesized. The compounds incorporated 16- to 19-membered macrocyclic rings between a Nelfinavir-like P2 ligand and a tyrosine side chain containing a hydroxyethylamine sulfonamide isostere. All cyclic inhibitors are more potent than their corresponding acyclic counterparts. Saturated derivatives showed slight reduction of potency compared to respective unsaturated derivatives. Compound 8a containing a 16-membered ring as the P1-P2 ligand showed the most potent enzyme inhibitory and antiviral activity.

15

Introduction

HIV-1 protease inhibitors are a critical component of antiretroviral therapy (ART) for the treatment of patients with HIV infection and AIDS.^{1,2} The use of ART has reduced both

- ²⁰ the mortality and morbidity rates among HIV-infected patients. However, the emergence of drug resistance has raised serious concerns about the prospects of long-term treatment options.^{3,4} In our continuing studies to combat drug resistance, our structure-based design strategies targeting the protein backbone
- ²⁵ has led to the discovery of a variety of novel HIV-1 protease inhibitors (PIs), including FDA approved HIV protease inhibitor darunavir with broad-spectrum activity against multidrug-resistant HIV-1 variants.⁵⁻⁸
- In another approach to developing inhibitors with broad-³⁰ spectrum activity, we have been exploring the design of various macrocyclic HIV-1 protease inhibitors. Recently, we have reported the design of a series of potent PIs that incorporate flexible macrocycles involving P1'-P2'-ligands and P1-P2 ligands to effectively fill in the S1'-S2' and S1-S2 subsites of ³⁵ HIV-1 protease, respectively.⁹⁻¹¹ The conception of this
- ³⁵ HIV-1 protease, respectively.⁹⁻¹¹ The conception of this macrocyclic design evolved from the observation that certain mutations lead to decreased van der Waals interactions and increased the size of the subsite hydrophobic pocket.^{12,13} On the basis of this insight of enzyme flexibility in accommodating
- ⁴⁰ alternate packing, we designed flexible macrocycles between the P1'-side chain and a suitable P2'-ligand to fill in the S2' and S1'-subsites. As shown in Figure 1, this effort led to a series of potent macrocyclic inhibitors, as represented by inhibitor **2**, containing the P1-P2-ligands of darunavir.
- ⁴⁵ In an alternate design approach, we have designed macrocyclic inhibitors as represented by inhibitor **3**, where the macrocycles involve the P1-P2 ligands, incorporating 2,3dihydroxybenzoic acid derivatives as the P2-ligand, and aliphatic chains as the P1 ligand. Fairlie and co-workers also
- ⁵⁰ designed a number of different macrocyclic HIV-1 protease inhibitors, as represented in inhibitor **4**.¹⁴ Based upon our previous results, we have now investigated macrocyclic inhibitors involving P1-P2 ligands which incorporate 3hydroxy-2-alkylbenzoic acid derivatives as the P2-ligand and
- ⁵⁵ alkylated tyrosine side chains as the P1 ligand. In particular, as shown in Figure 2, inhibitors are designed by taking advantage of the large hydrophobic pocket in the HIV protease S1-S2

- 60 Figure 1. Structures of Darunavir and macrocyclic HIV-1 protease inhibitors 2-4.
- active site. These inhibitors incorporate P2 ligand found in the ⁶⁵ FDA approved drug nelfinavir **5** and the P1'-P2' ligands found in TMC-126 (**6**).^{15,16} Various macrocyclic inhibitors can be synthesized conveniently by ring-closing metathesis of the dienes **7** using Grubbs' catalyst.

70

Results and discussion

In order to gain additional insight into the proposed inhibitors, a molecular model was obtained with one of the unsaturated macrocycles overlaid with nelfinavir (Figure 3).¹⁷ s As can be seen, the phenolic hydroxyl group of the macrocyclic

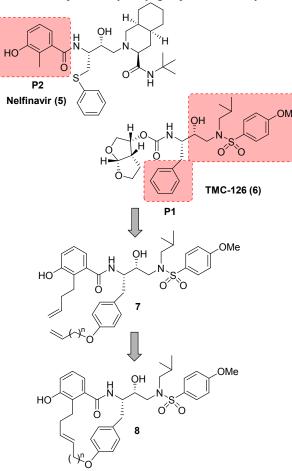


Figure 2. Design of Macrocyclic Inhibitor 8.

¹⁰ inhibitor **8a** (16-membered macrocycle, n = 1) appears to be capable of forming hydrogen bonds with the Asp30 backbone NH as well as the side chain carbonyl residue in the S2 subsite. The benzamide carbonyl oxygen is positioned to form a hydrogen bond with the tight-bound water molecule that can ¹⁵ interact with one of the sulfonamide oxygens. The 4-methoxy

- is interact with one of the sufformide oxygens. The 4-methoxy oxygen on the P2'-sulformide ligand can also form hydrogen bonding interactions with the Asp30' backbone NH in the S2'pocket. Furthermore, it appears that as the ring size increases, the P₂ and P₁ ligands would become distorted from their 20 optimal position and bind less tightly in the S2 pockets. Based
- upon this model, it appears that inhibitors with 16-18 membered ring sizes could optimally fit in the S2 hydrophobic pocket.

Synthesis of desired tyrosine-derived the 25 hydroxyethylamine sulfonamide isostere is shown in Scheme 1. The commercially available butadiene monoxide 9 was reacted with *p*-benzyloxyphenylmagnesium bromide in the presence of a catalytic amount of cuprous cyanide to provide the corresponding allylic alcohol.18 Sharpless asymmetric 30 epoxidation of the resulting alcohol using (-)-diethyl D-tartrate provided optically active epoxide 10 in very good yield.^{19,20} Regioselective epoxide opening of 11 using TMSN₃ and Ti(OiPr)4 as described by Sharpless and co-workers afforded the corresponding azido diol.²¹ The resulting diol was converted to 35 epoxide 11 by treatment with 2-acetoxyisobutyryl chloride in chloroform followed by reaction of the resulting chloroacetate with sodium methoxide.²²

Preparation of the elaborated sulfonamide intermediate was accomplished by opening epoxide **11** with isobutylamine ⁴⁰ in 2-propanol at reflux.²³ The resulting amine was reacted with *p*-methoxyphenylsulfonyl chloride in the presence of aqueous NaHCO₃ to provide azidosulfonamide **12** in excellent yield. Catalytic hydrogenation of **12** over Pd/C in the presence of Boc₂O provided the Boc-protected amine as well as the free ⁴⁵ phenol in an efficient one-pot operation. The resulting phenol derivative was alkylated with appropriate alkenylbromide in acetone in the presence of K₂CO₃ to furnish the requisite olefins **13-16** in excellent yields.

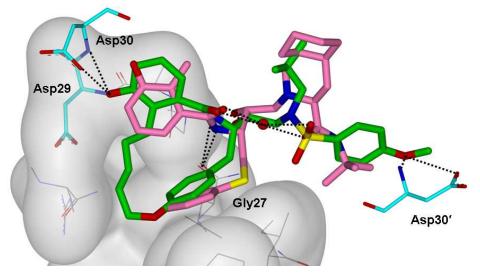
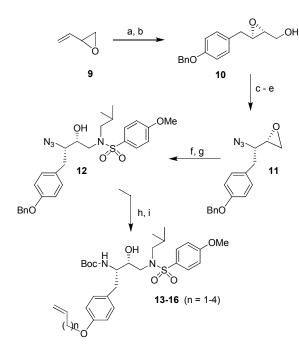
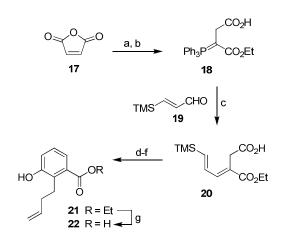



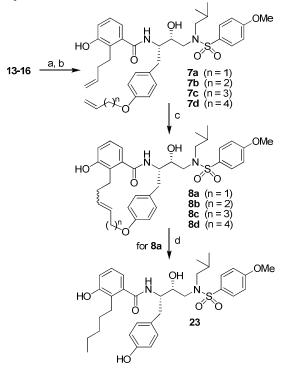
Figure 3. Model of inhibitor 8a (green, n = 1) overlaid with Nelfinavir (magenta) in the HIV-1 protease active site.



Scheme 1. Reagents and conditions: (a) *p*-BnOPhMgBr, ⁵ CuCN, THF, -78 °C; 39%; (b) D-DET, Ti(O-*i*Pr)₄, 4 A MS, TBHP, CH₂Cl₂, 79%; (c) Ti(O-*i*Pr)₄, TMSN₃, PhH, reflux, 55%; (d) AcOMe₂COCl, CHCl₃; (e) NaOMe, THF, 82% 2 steps; (f) *i*-BuNH₂, *i*-PrOH, reflux; (g) *p*-MeOPhSO₂Cl, aq. NaHCO₃, CH₂Cl₂, 97% 2 steps; (h) H₂, MeOH, Boc₂O, Pd/C, ¹⁰ 75%; (i) acetone, K₂CO₃, Bromide, reflux, 94-96%.

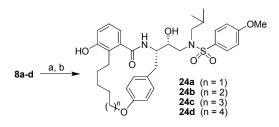
Synthesis of 3-hydroxy-2-alkenylbenzoic acid, the corresponding alkenyl metathesis substrate is shown in Scheme 2. Phosphorane **18** was prepared from maleic anhydride **17** ¹⁵ using reported procedures.²⁴⁻²⁶ Wittig reaction of phosphorane **18** with known^{27,28} aldehyde **19** provided dienoic acid **20** in good yield (83%).²⁹ Alkylation of **20** with LDA and 1-bromo-3-butene in the presence of DMPU afforded the corresponding triene derivative. This was exposed to trifluoroacetic anhydride ²⁰ (TFAA) and triethylamine followed by NaBH₄ in ethanol which effected a 1,6-electrocyclization to afford benzoic acid ester **21**.³⁰ Saponification of ethyl ester **21** with KOH in methanol provided the desired acid **22**.

Synthesis of various acyclic and macrocyclic inhibitors is 25 shown in Scheme 3. Treatment of Boc-derivatives **13-16** with


- trifluoroacetic acid in CH₂Cl₂ resulted in the deprotection of Boc group. The resulting amines were then coupled with acid **22** to provide acyclic dienes **7a-d** in good yields. Ring-closing metathesis of the dienes **7a-d** was carried out using Grubbs'
- ³⁰ first generation catalyst in CH₂Cl₂ at 23 °C for 4 h to provide macrocycles **8a-d** in excellent yields (78-89%).^{31,32} The alkenes were formed as a mixture of *trans/cis* isomers. *Trans/cis* ratios of the unsaturated macrocycles were 1:1 for **8a** (16-membered ring); 3:1 for **8b** (17-membered ring); 5:1 for **8c**
- 35 (18-membered ring); and essentially a single isomer for 8d (19membered ring). The *cis/trans* isomers could not be separated

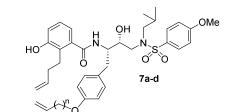
www.rsc.org/xxxxx

XXXXXXXX


- ⁴⁰ Scheme 2. Reagents and conditions: (a) PPh₃, acetone; (b) EtOH, 35% 2 steps; (c) PhCH₃, hydroquinone, 83%; (d) LDA, THF, DMPU, 4-bromo-1-butene; (e) TFAA, Et₃N; (f) NaBH₄, EtOH, 48% 2 steps; (g) KOH, MeOH, reflux, 89%.
- ⁴⁵ by silica gel chromatography. To obtain the corresponding saturated macrocyclic inhibitors, we first attempted hydrogenation of allyl ether 8a over 10% Pd-C in ethyl acetate for 12h. However, under these conditions, only ring opening compound 23 was isolated as the main byproduct. The use of
- ⁵⁰ PtO₂ as catalyst also resulted in allylic ring cleavage to afford the ring-opened byproduct. A similar effect has been reported by us in the context of the synthesis of cycloamide based HIV-1 protease inhibitors.¹¹

⁵⁵ Scheme 3. Reagents and conditions: (a) TFA, CH₂Cl₂; (b) acid 22, EDCI, HOBt, Et₃N, DMF, 60-78%, 2 steps; (c) Grubbs' 1st Gen. Cat. (20 mol%), CH₂Cl₂, 23 °C, 78-89%; (d) H₂, Pd/C, EtOAc.

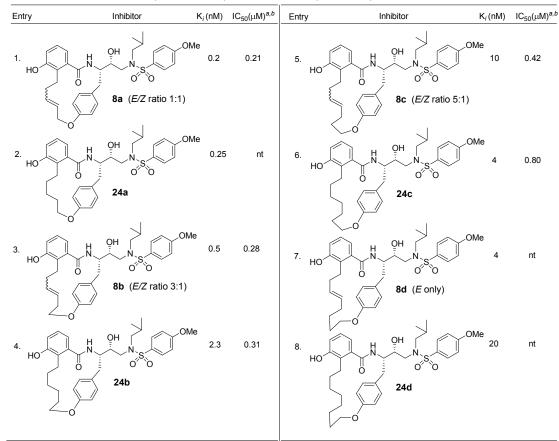
60


To prevent cleavage of the allylic ether, we carried out the hydrogenation according to the procedure reported by Sajiki and Hirota.³³ As shown in Scheme 4, hydrogenation of **8a** in the presence of 5% Pd/C in 1% NH₃ in methanol for 4 hours ³⁵ afforded the saturated macrocyclic inhibitor **24a** in 40% isolated yield. This condition also provided the ring opened compound **23** as the byproduct (27%). Catalytic hydrogenation of unsaturated macrocycles **8b-8d** however, proceeded smoothly over 10% Pd/C in ethyl acetate to provide saturated ¹⁰ derivatives **24b-d** respectively in yields (88-94%).

Scheme 4. Reagents and conditions: (a) for n = 1, H_2 , 5% Pd/C, 1% NH₃ in MeOH, 40%; (b) for n = 2-4, H_2 , Pd/C, 15 EtOAc, 88-94%.

The inhibitory potencies of acyclic and cyclic inhibitors were measured by the assay protocol of Toth and Marshall.³⁴ The results are shown in Tables 1 and 2. A number of selected ²⁰ compounds that showed potent enzyme inhibitory K_i

Table 1. Potency (K_i) of acyclic inhibitors



25

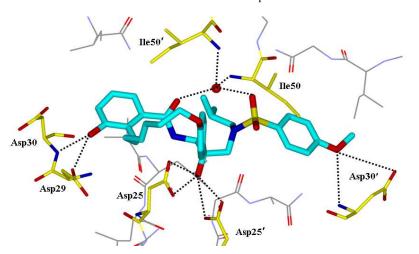
Compd	Ring size (after RCM)	n	$K_{i} (nM)^{a}$
7a	16	1	5
7b	17	2	7
7c	18	3	45
7d	19	4	30
23			0.41

^aDarunavir exhibited $K_i = 16 \text{ pM}$.

Table 2. Enzymatic inhibitory and antiviral activity of macrocyclic inhibitors

^a Human T-lymphoid (MT-2) cells were exposed to 100 TCID₅₀ values of HIV-1_{LAI} and cultured in the presence of each PI, and IC_{50} values were determined using the MTT assay. Darunavir exhibited K_i = 16 pM, IC_{50} = 0.003 μ M. ^bnt = not tested.

values were further evaluated in an antiviral assay. Antiviral activity was determined based upon previously published assay protocol.³⁵ As can be seen, acyclic inhibitors in Table 1 displayed enzyme inhibitory potency ranging from 5 nM to 45


- s nM. Acyclic ring opened product with P1-tyrosine side chain (compound **23**) showed enhanced potency ($K_i = 0.41$ nM). In general, inhibitors with longer chain showed reduction in potency. Interestingly, conversion of acyclic inhibitors to their corresponding cyclic derivatives after RCM resulted in
- ¹⁰ significant improvement in enzyme inhibitory activity. As shown in Table 2, acyclic inhibitor **7a** ($K_i = 5$ nM and antiviral IC₅₀ > 1µM) upon RCM provided 16-membered macrocycles **8a** (*E*/*Z*=1:1) which showed a K_i value of 0.2 nM. The mixture of isomers also displayed antiviral IC₅₀ value of 0.21µM in
- ¹⁵ MT-2 cells. Saturation of double bonds provided saturated inhibitor **24a** which showed comparable enzyme inhibitory activity. Acyclic inhibitor **7b** ($K_i = 7 \text{ nM}$) following RCM afforded cyclic inhibitor **8b** (E/Z = 3:1) which also showed improvement of enzyme K_i over its acyclic derivatives. The 17-
- ²⁰ membered macrocycles showed comparable antiviral activity to 16-membered inhibitors. The corresponding saturated inhibitor **24b** displayed reduction in inhibitory potency ($K_i = 2.3$ nM). However, this compound maintained similar antiviral activity as its unsaturated mixtures.
- Acyclic inhibitor **7c** upon cyclization provided cyclic inhibitor **8c** (E/Z = 5:1) which displayed K_i of 10 nM and antiviral activity of 420 nM. Interestingly, the corresponding saturated derivative **24c** showed improvement in enzyme inhibitory activity. The antiviral activity of inhibitor **24c** was
- ³⁰ reduced nearly a factor of 2 over its unsaturated derivative. Acyclic inhibitor **7d** ($K_i = 30$ nM) was subjected to RCM and provided cyclic derivative **8d** as a single *E*-isomer. This compound showed improvement in enzyme K_i over its acyclic derivative. Saturation of the double bond in **8d** provided ³⁵ saturated derivative **24d** which showed 5-fold reduction in inhibitory activity.

To gain insight into specific ligand-binding site interactions, an energy minimized model structure of inhibitor **24b** was created. The structure was modelled in the HIV-1

- ⁴⁰ protease active site based upon our published X-ray crystal structure of inhibitor **1** and HIV-1 protease complex (Protein Data Bank entry 1S6G) as a template.³⁶ As can be seen in Figure 4, the 3-hydroxy group of the P2-ligand appeared to be within proximity to form hydrogen bond with Asp30 backbone
- ⁴⁵ NH as well as with the side chain carboxylic acid. The P2carbonyl group appears to form effective hydrogen bonds with the tight-bound structural water molecule through one of the P2'-sulfonamide oxygens. The macrocyclic carbon chain is nicely accommodated in the S1-S2 hydrophobic pockets.
- ⁵⁰ Interestingly, saturation of the ring olefin in **8b** resulted in a more flexible carbon chain which may have resulted in unfavorable van der Waals interactions in the S2-subsite. This may explain the reduction of enzyme inhibitory activity for compound **24b**. It appears that the 16-membered saturated
- ⁵⁵ macrocycle in **24a** makes more favorable interactions in the S2-subsite of the protease active site than the corresponding 17-membered macrocycle in compound **24b**. The OMe-group on the P2'-sulfonamide of inhibitor **24b** appears to maintain hydrogen bonding interactions with Asp30' backbone NH as ⁶⁰ well as with the side chain carboxylic acid.

Conclusions

- In summary, a novel series of macrocyclic HIV-1 protease inhibitors has been designed, synthesized and evaluated. The design of macrocycles is based upon the hypothesis that the cyclic flexible chain would effectively pack the hydrophobic pocket in the S1 to S2 subsites. We have synthesized acyclic 70 derivatives involving P1-tyrosine and P2-3-hydroxy-2alkenylbenzamide derivatives. Ring-closing metathesis using Grubbs' 1st generation catalyst efficiently provided 16-19 membered macrocyclic rings containing both *E/Z* olefins as the
- P1-P2 ligands in these inhibitors. Catalytic hydrogenation 75 provided the corresponding saturated derivatives. In general, all cyclic inhibitors containing E/Z olefins showed improved enzyme inhibitory potency compared to their acyclic counterparts. The saturated derivatives are less potent than the

Figure 4. An energy-minimized model of 17-membered macrocyclic inhibitor **24b** in the HIV-1 protease active site. Putative hydrogen bonds are shown as dotted lines.

corresponding unsaturated derivatives. Compound **8a** showed the best enzyme inhibitory and antiviral activity in this series. A model of the *E*-isomer of **8b** was created to obtain ligandbinding site interactions. As it appears, the unsaturated

- ⁵ macrocyclic ring is nicely accommodated in the S1-S2 hydrophobic pocket. Saturation of the ring olefin most likely resulted in unfavorable Van der Waals interaction in the S2subsite. This may explain the reduction of enzyme inhibitory activity for the saturated compound **24b**. One of the important
- ¹⁰ features of these macrocyclic inhibitors is that the inhibitors contain only two asymmetric centers and can be synthesized efficiently using RCM reaction. Further design and optimization of these inhibitors are in progress.

15 Experimental Section

All reactions were carried out under an inert atmosphere, either N_2 or Ar, using magnetic stirring and oven-dried glassware. All solvents were anhydrous and distilled prior to use. Dichloromethane and triethylamine were distilled from calcium budride. Tatabudrafuran distull other and honzone were

- ²⁰ hydride. Tetrahydrofuran, diethyl ether, and benzene were distilled from sodium/benzophenone. All other solvents were HPLC grade or better. Flash column chromatography was performed using EM Science 60-200 mesh silica gel. Thinlayer chromatography was performed using 60 F-254 E. Merck
- ²⁵ silica gel plates. ¹H- and ¹³C-NMR were recorded using Bruker AV-500, Avance DRX-500, Varian Mercury-Vx-300, and Gemini-2300 spectrometers and use Me₄Si as an internal standard . Infrared spectra were recorded on a ATI Mattson Genesis Series FT-IR. Optical rotations were recorded on a ³⁰ Perkin-Elmer 341 polarimeter. A Thermo Finnigan LCQ
- Classic mass was used for MS analyses.

(1S,2R)-2-[1-Azido-2-(4-benzyloxyphenyl)-ethyl]-oxirane

- (10). To a suspension of magnesium turnings (101.6mg, 4.2 mmol) in 25 mL THF was added a solution of 4-Benzyloxybromobenzene (1.0 g, 3.8 mmol) in THF. The mixture was heated at 65 °C for 30 mins and the solution was cooled to room temperature. The Grignard solution was added dropwise to a solution of CuCN (26 mg, 0.30 mmol) and 40 butadiene monoxide 9 (220 mg, 3.1 mmol) in 80 mL of
- anhydrous THF at -78 °C. The reaction was stirred for 30 min at -78 °C, after which it was quenched with 15 mL of saturated NH₄Cl followed by 15 mL of NH₄OH and 15 mL saturated NH₄Cl. The aqueous layer was extracted twice with ethyl sector.
- ⁴⁵ acetate. The combined organic phases were dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash chromatography on silica gel with 15-20% ethyl acetate/hexanes to give *trans*-4-(4-benzyloxy)phenyl-2-buten-1-ol (308 mg, 1.21 mmol, 39% yield). ¹H-NMR (500 MHz,
- ⁵⁰ CDCl₃) δ 7.44 (d, 2H, *J* = 7.0 Hz), 7.39 (dt, 2H, *J* = 2.0, 7.0 Hz), 7.33 (tt, 1H, *J* = 2.5, 7.5 Hz), 7.11 (td, 2H, *J* = 2.5, 9.0 Hz), 6.92 (td, 2H, *J* = 2.0, 8.5 Hz), 5.84 (dtt, 1H, *J* =1.5, 6.5, 15.0 Hz), 5.69 (dtt, 1H, j=1.5, 6.0, 15.5 Hz), 5.05 (s, 2H), 4.12 (dd, 2H, *J* = 1.0, 55Hz), 3.34 (d, 2H, *J* = 7.0 Hz), 1.48(s, 1H); ⁵⁵ ¹³C-NMR (125 MHz, CDCl₃) δ 157.3, 137.2, 132.4, 132.0,
- 130.0, 129.6, 128.6, 128.0, 127.5, 114.9, 70.1, 63.6, 37.8

Molecular sieves (500 mg) were flame dried in a flask and then allowed to cool to room temperature. Dry dichloromethane (4 mL) and D-DET (11 mg, 0.05 mmol) were added and the suspension was cooled to -25 °C. To this, Ti(O*i*-Pr)₄ (20.7 μL, 0.07 mmol)) and TBHP (0.35 mL, 1.92 mmol) were added and the mixture was stirred at -25 °C for 30 minutes. A solution of (E)-4-(4-(benzyloxy)phenyl)but-2-en-1ol (211 mg, 0.87 mmol) in dry DCM (1 mL) was added to the shove mixture and it was kent in a freezer at about -25 °C for

- ⁶⁵ above mixture and it was kept in a freezer at about -25 °C for 18 h. To the reaction mixture H₂O (3 mL) was added and stirred at 0 °C for 30 minutes. A 10% aqueous NaOH was added and the mixture was warmed to room temperature for 1 h. The product was extracted with DCM (3x), dried with 70 NaSO₄, filtered, and concentrated under reduced pressure. Purification by flash column chromatography (30-40% EtOAc/Hexanes) afforded epoxy alcohol **10** (177 mg, 79%). $[\alpha]_D^{23}$ +12.5° (c 0.14 CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 7.45 (d, 2H, *J* = 7.0 Hz), 7.41, (t, 2H *J* = 5.5 Hz), 7.34 (t, 1H, *J* 75 = 7.5 Hz), 7.17 (td, 2H, *J* = 2.0, 8.5 Hz), 6.95 (td, 2H, *J* = 2.0, 8.5 Hz), 5.06 (s, 2H), 3.88 (dd, 1H, *J* = 2.5, 12.5 Hz), 3.60 (dd, 1H, *J* = 4.5, 12.5 Hz), 3.17 (dt, 1H, *J* = 2.5, 5.5 Hz), 2.98 (m, 1H), 2.86 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 157.7,
- 137.1, 130.1, 129.3, 128.6, 128.0, 127.5, 115.0, 70.1, 61.6, ⁸⁰ 58.4, 56.2, 37.0.

(1S,2R)-2-[1-Azido-2-(4-benzyloxyphenyl)-ethyl]-oxirane

- (11). Dry benzene (5 mL), $Ti(Oi-Pr)_4$ (160 μ L), and TMSN₃ (72 $\mu L)$ were refluxed for 5 hours. A solution of epoxy alcohol 85 50 (0.123 g, 0.455 mmol) in dry benzene (3 mL) was added and the solution was refluxed for 30 minutes. After cooling to room temperature, 5% H₂SO₄ (2 mL) was added and the solution was stirred at room temperature for 1 hour. The layers were separated and the aqueous portion was extracted with 90 ethyl acetate (3x). The organic solution was dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash column chromatography (40-50% EtOAc/Hexanes) gave (2R,3S)-3-Azido-4-(4benzyloxyphenyl)-1,2-butanediol (78.9 mg, 55% yield). $[\alpha]_D$ 95 +18.1° (c 0.19 CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 7.44 (d, 2H, J = 7.0 Hz), 7.39 (t, 2H, J = 7.5 Hz), 7.34 (t, 1H, J = 7.0 Hz), 7.19 (d, 2H, J = 8.5 Hz), 6.95 (td, 2H, J = 2.0, 8.5 Hz), 5.05 (s, 2H), 3.80-3.67 (m, 4H), 3.26 (bs, 1H), 2.99 (dd, 1H, J = 3.0, 14.0 Hz), 2.77-2.73 (m, 2H); ¹³C-NMR (125 MHz,
- 100 CDCl₃) δ 157.8, 137.0, 130.4, 129.5, 128.6, 128.0, 127.6, 115.1, 73.1, 70.1, 65.7, 63.3, 36.2; HRMS $m/z~(M~+~Na)^{+}$ calc'd for $C_{17}H_{19}N_3O_3Na$ 336.1324, found 336.1317.

(2R,3S)-3-Azido-4-(4-benzyloxyphenyl)-1,2-butanediol

- (84.4 mg, 0.269 mmol) and chloroform (3 mL) were cooled to 105 0 °C. 1-Chlorocarbonyl-1-methylethyl acetate (58.5 μ L, 0.404 mmol) was added and the solution was stirred at room temperature for 20 hours. A saturated solution of NaHCO_{3(aq)} was added and the mixture stirred for 15 minutes. The crude chloroacetate was extracted with chloroform , dried with
- ¹¹⁰ Na₂SO₄, filtered, and concentrated in vacuo. The residue was dissolved in dry THF (5 mL) and cooled to 0 °C. Solid NaOMe (24.7 mg) was added and the reaction was stirred at room temperature for 2 hours. The reaction was quenched with saturated NH₄Cl_(aq) and extracted with ethyl acetate. Drying
- ¹¹⁵ over Na₂SO₄, filtering, and concentrating under reduced pressure afforded a residue which was purified by flash column chromatography (12% EtOAc/Hexanes) to afford pure azido epoxide **11** (56.5 mg, 71% yield). $[\alpha]_D^{23}$ +11.3° (c 0.34 CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 7.44 (d, 2H, *J* = 7.5
- ¹²⁰ Hz), 7,40 (t, 2H, J = 8.0 Hz), 7,34 (t, 1H, J = 7.0 Hz), 7,17 (d, 2H, J = 11.0 Hz), 6.95 (td, 2H, J = 2.0, 11.5 Hz), 5.06 (s, 2H), 3.56 (quintet, 1H, J = 4.0, 5.0 Hz), 3.07-3.05 (m, 1H), 2.94 (dd, 1H, J = 4.5, 14.0 Hz), 2.84-2.82 (m, 1H), 2.81-2.75 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 157.9, 137.0, 130.4, 128.9, ¹²⁵ 128.6, 128.0, 127.5, 115.0, 70.1, 63.8, 53.0, 45.2, 37.4.

(2*R*,3*S*)-N-[3-Azido-4-(4-benzyloxyphenyl)-2-hydroxybutyl]-N-isobutyl-4-methoxy-benzenesulfonamide (12). To epoxide 11 (0.60 g, 2.03 mmol) and isopropanol (10 mL), was added isobutylamine (2 mL) and the solution was refluxed for 2 ⁵ hours. The reaction was concentrated in vacuo and used as is in the next reaction. The residue was taken up in DCM (10 mL), saturated aqueous NaHCO₃ (2 mL) and 4methoxybenzenesulfonyl chloride (0.50 g) were added and the reaction was stirred for 18 hours at room temperature. The ¹⁰ organic layer was separated and the aqueous portion was extracted with DCM. The combined organics were dried with

- extracted with DCM. The combined organics were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Flash column chromatography (15-25% EtOAc/Hexanes) afforded sulfonamide **12** (1.06 g, 97% yield over 2 steps). ¹H-
- ¹⁵ NMR (500 MHz, CDCl₃) δ 7.75 (dd, 2H, *J* = 2.0, 9.0 Hz), 7.45-7.43 (m, 2H), 7.39 (t, 2H, *J* = 7.5 Hz), 7.34-7.33 (m, 1H), 7.19 (d, 2H, *J* = 9.0 Hz), 7.01 (dd, 2H, *J* = 2.0, 9.0 Hz), 6.94 (dd, 2H, *J* = 2.0, 8.5 Hz), 5.06 (s, 2H), 3.83 (s, 3H), 3.78-3.75 (m, 1H), 3.59-3.55 (m, 2H), 3.24 (dd, 1H, *J* = 9.5, 15.5 Hz), 3.09-
- ²⁰ 3.02 (m, 3H), 2.80 (dd, 1H, J = 6.5, 13.5 Hz), 2.75 (dd, 1H, J = 9.0, 14.0 Hz), 1.71-1.69 (m, 1H), 0.94 (d, 3H, J = 6.5 Hz), 0.88 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 163.2, 157.8, 137.0, 130.4, 129.7, 129.5, 128.6, 128.0, 127.5, 115.1, 114.5, 71.8, 70.0, 66.7, 58.9, 55.7, 52.9, 36.0, 27.2, 20.2, 19.8; ²⁵ HRMS m/z (M + Na)⁺ calc'd for C₂₈H₃₄N₄O₅SNa 561.2148,
- 25 HKMS *m/z* (M + Na) calc u for $C_{28}H_{34}N_4O_5SNa$ 501.2148, found 561.2166.

(1*S*,2*R*)-{1-(4-Allyloxy-benzyl)-2-hydroxy-3-[isobutyl-(4-methoxy-benzenesulfonyl)-amino]-propyl}-carbamic acid

- and concentrated under reduced pressure. Flash column and concentrated under reduced pressure. Flash column and concentrated under reduced pressure. Flash column and concentrated under reduced pressure. Flash column
- ³⁵ chromatography (30% EtOAc/Hexanes) afforded (1*S*,2*R*)-{2-Hydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxybenzenesulfonyl)-amino]-propyl}-carbamic acid tert-butyl ester (40 mg, 75% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.68 (d, 2H, *J* = 8.5 Hz), 7.06 (m, 2H), 6.96 (d, 2H, *J* = 9.0 Hz), 6.73-
- ⁴⁰ 6.71 (m, 2H), 6.35-6.25 (bs, 1H), 4.78 (d, 1H, J = 8.0 Hz), 4.01-3.99 (m, 1H), 3.84 (s, 3H), 3.81-3.79 (m, 1H), 3.71-3.69 (m, 1H), 3.10-2.77 (m, 6H), 1.86-1.81 (m, 1H), 0.89-0.85 (m, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 163.0, 156.3, 154.7, 130.6, 129.8, 129.5, 129.3, 115.4, 114.4, 80.0, 72.8, 58.6, 55.6, 45 54.9, 53.6, 34.6, 28.3, 27.2, 20.1, 19.9.
- Above phenol derivative (13 mg, 0.02 mmol) was dissolved in acetone (2 mL), K_2CO_3 (5.2 mg) and allyl bromide (22 µL) were added, and the reaction was refluxed for 16 hours, then concentrated under reduced pressure. Flash column ⁵⁰ chromatography (25% EtOAc/Hexanes) afforded allylic ether **13** (13.4 mg, 96% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.69 (dd, 2H, J = 2.0, 6.5 Hz), 7.15 (d, 2H, J = 8.5 Hz), 6.97 (dd, 2H, J = 2.0, 7.0 Hz), 6.85 (dd, 2H, J = 2.0, 6.5 Hz), 6.08-6.02 (m, 1H), 5.41 (dd, 1H, J = 1.5, 17.5 Hz), 5.28 (dd, 1H, J = 1.0,⁵⁵ 10.5 Hz), 4.62-4.61 (m, 1H), 4.51 (dt, 2H, J = 1.5, 5.5 Hz), 3.86 (s, 3H), 1.35 (s, 9H), 0.90 (d, 3H, J = 6.5 Hz), 0.86 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 163.0, 157.3,
- 5 0.5 Hz), Certain (125 kinz, CECi3) 6 105.6, 157.5, 156.1, 133.4, 130.5, 129.9, 129.5, 117.6, 114.8 114.6, 114.3, 79.7, 72.7, 68.8, 58.7, 55.6, 54.7, 53.8, 34.5, 28.3, 27.2, 20.2, 60 19.9.

(1*S*,2*R*)-{1-(4-(3-butenyloxy)-benzyl)-2-hydroxy-3-[isobutyl-(4-methoxy-benzenesulfonyl)-amino]-propyl}carbamic acid tert-butyl ester (14). (1*S*,2*R*)-{2-Hydroxy-1-65 (4-hydroxybenzyl)-3-[isobutyl-(4-methoxy-benzenesulfonyl)- amino]-propyl}-carbamic acid tert-butyl ester (36.4 mg, 0.07 mmol) was dissolved in acetone (5 mL). To this was added K₂CO₃ (24 mg) and 4-bromo-1-butene (7 μ L) and the reaction was refluxed for 18 hours. After concentrating under reduced ⁷⁰ pressure, the product was purified by flash column chromatography (25% EtOAc/Hexanes) to afford **14** (37 mg, 96% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.69 (dd, 2H, *J* = 2.0, 9.0 Hz), 7.14 (d, 2H, *J* = 8.5 Hz), 6.96 (dd, 2H, *J* = 2.0, 9.0 Hz), 6.83 (d, 2H, *J* = 9.0 Hz), 5.94-5.86 (m, 1H), 5.16 (ddd,

- ⁷⁵ 1H, J = 1.5, 2.0, 17.0 Hz), 5.10 (ddd, 1H, J = 1.0, 1.5, 10.0 Hz), 4.64 (d, 1H, J = 8.0 Hz), 3.98 (t, 2H, J = 7.0 Hz), 3.94-3.92 (m, 1H), 3.86 (s, 3H), 3.78-3.75 (m, 1H), 3.71-3.68 (m, 1H), 3.10-2.77 (m, 6H), 2.55-2.51 (m, 2H), 1.84-1.79 (m, 1H), 1.35 (s, 9H), 0.89 (d, 3H, J = 6.5 Hz), 0.85 (d, 3H, J = 6.5 Hz); ¹³C-
- 80 NMR (125 MHz, CDCl₃) δ 163.0, 157.6, 156.1, 134.5, 130.5, 130.0, 129.8, 129.5, 117.0, 114.6, 114.3, 79.6, 72.7, 67.2, 58.6, 55.6, 54.7, 53.8, 34.5, 29.3, 28.3, 27.2, 20.2, 19.9.
- 85 (1S,2R)-2-Hydroxy-3-[isobutyl-(4-methoxybenzenesulfonyl)-amino]-1-(4-(4-pentenyloxy)-benzyl)propyl]-carbamic acid tert-butyl ester (15). (1S,2R)-{2-Hydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-hydroxybenzyl)-3-[isobutyl-(4-methoxyhydroxy-1-(4-methoxy-1-(4-methoxyhydroxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-1-(4-methoxy-
- benzenesulfonyl)-amino]-propyl}-carbamic acid tert-butyl ester 90 (54.8 mg, 0.105 mmol), K₂CO₃ (43.5 mg), and 5-bromo-1pentene (62 μL) were added to acetone (3 mL). The mixture was refluxed for 18 hours, then concentrated under reduced pressure. Flash column chromatography (30% EtOAc/Hexanes) afforded olefin **15** (59.6 mg, 94% yield). ¹H-
- ⁹⁵ NMR (500 MHz, CDCl₃) δ 7.69 (d, 2H, J = 8.0 Hz), 7.14 (d, 2H, J = 8.5 Hz), 6.96 (dd, 2H, J = 2.0, 7.0 Hz), 6.82 (d, 2H, J = 8.5 Hz), 5.89-5.80 (m, 1H), 5.05 (ddd, 1H, J = 1.5, 2.0, 17.0 Hz), 4.99 (dd, 1H, J = 1.5, 10.0 Hz), 4.65 (d, 1H, J = 8.0 Hz), 3.94 (t, 2H, J = 6.5 Hz), 3.86 (s, 3H), 3.77 (m, 1H), 3.70 (m,
- ¹⁰⁰ 1H), 3.07-3.03 (m, 2H), 2.95-2.86 (m, 3H), 2.81-2.77 (m, 1H), 2.23 (q, 2H, J = 7.0 Hz), 1.90-1.82 (m, 3H), 1.35 (s, 9H), 0.90-0.86 (m, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 163.0, 157.7, 156.1, 137.9, 130.5, 130.0, 129.6, 129.5, 115.2, 114.5, 114.3, 79.6, 72.7, 67.2, 58.6, 55.6, 54.7, 53.7, 34.5, 30.1, 28.5, 28.3, ¹⁰⁵ 27.2, 20.2, 19.9; HRMS m/z (M + Na)⁺ calc'd for C₃₁H₄₆N₂O₇SNa 613.2923, found 613.2906.

(1*S*,2*R*)-{1-(4-(5-hexenyloxy)-benzyl)-2-hydroxy-3-[isobutyl-110 (4-methoxy-benzenesulfonyl)-amino]-propyl}-carbamic

- acid tert-butyl ester (16). (1S,2R)-{2-Hydroxy-1-(4hydroxybenzyl)-3-[isobutyl-(4-methoxy-benzenesulfonyl)amino]-propyl}-carbamic acid tert-butyl ester (51.5 mg, 0.0985 mmol), K₂CO₃ (40.9 mg), and 6-bromo-1-hexene (66 μ L) were
- added to acetone (3 mL). The mixture was refluxed for 16 hours, then concentrated under reduced pressure. Flash column chromatography (25% EtOAc/Hexanes) afforded olefin **16** (58.5 mg, 96% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.69 (ddt, 2H, J = 3.0, 8.5 Hz), 7.14 (d, 2H, J = 8.5 Hz), 6.96 (ddt,
- ¹²⁰ 2H, J = 2.5, 9.0 Hz), 6.82 (d, 2H, J = 8.5 Hz), 5.86-5.78 (m, 1H), 5.04 (ddd, 1H, J = 1.5, 2.0, 17.0 Hz), 4.96 (ddd, 1H, J =1.0, 2.0, 10.5 Hz), 4.65 (d, 1H, J = 8.5 Hz), 3.93 (t, 2H, J = 6.5Hz), 3.86 (s, 3H), 3.77 (m, 1H), 3.70 (m, 1H), 3.07-3.02 (m, 2H), 2.93-2.86 (m, 3H), 2.81-2.78 (m, 1H), 2.12 (q, 2H, J = 7.0
- ¹²⁵ Hz), 1.85-1.76 (m, 3H), 1.59-1.53 (m, 2H), 1.35 (s, 9H), 0.89 (d, 3H, J = 6.5 Hz), 0.86 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl3) δ 163.0, 157.8, 156.1, 138.6, 130.5, 130.0, 129.6, 129.5, 114.8, 114.5, 114.3, 79.6, 72.7, 67.8, 58.6, 55.6, 54.7, 53.7, 34.5, 33.5, 28.8, 28.3, 27.2, 25.3, 20.2, 19.9; HRMS

(21).

m/z (M + Na)⁺ calc'd for C₃₂H₄₈N₂O₇S 627.3080, found 627.3087.

- 2-(Triphenylphosphoranylidene)-succinic acid 1-ethyl ester (18). To a solution of acetone (100 mL) and PPh₃ (28.8 g, 0.11 mol) was added a solution of maleic anhydride (17, 10.8 g, 0.11 mol) in acetone (100 mL). After stirring at room temperature for 1 hour, the suspension was cooled to 0 °C. The product was isolated by filtering through a scintered glass funnel and washing with cold acetone. The product was then dried under vacuum. To the resulting solid, EtOH (200 mL)
- was added and the solution was stirred for 2 days after which the mixture was concentrated under reduced pressure. The carboxylic acid was recrystallized from 1:1 EtOAc/Hexanes to 15 afford **18** (15.8 g, 35% over 2 steps) as a tan solid. ¹H-NMR
- (500 MHz, CDCl₃) δ 7.63-7.59 (m, 9H), 7.51-7.47 (m, 6H), 3.80 (q, 2H, J = 7.0 Hz), 2.83 (d, 2H, J = 14.5 Hz), 0.75 (t, 3H, J = 7.0 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 172.8, 172.7, 170.3, 133.8, 133.7, 133.7, 129.5, 129.4, 122.6, 121.8, 61.1, 20 39.6, 39.0, 35.2, 13.8.

3-Trimethylsilanyl-propenal (19). Magnesium turnings (24.35 g, 1.00 mol were added to dry THF (500 mL). Ethyl ²⁵ bromide (75 mL, 1.00 mmol was slowly added dropwise by addition funnel over 1.5 hours. The mixture was heated at 50 °C for 1 hour, then cooled to 0 °C. Propargyl alcohol (20.8 mL, 0.36 mol) in dry THF (21 mL) was then added over 1 hour, and the mixture was stirred at room temperature ³⁰ overnight. The mixture was cooled to 0 °C and TMSCI (127

- mL, 1.91 mol) was slowly added, followed by refluxing for 2 hours. After cooling to room temperature, 1.4 M H₂SO₄ (400 mL) was slowly added and the reaction was stirred for 10 minutes. The reaction was extracted with diethyl ether, washed ³⁵ with water, brine, dried with Na₂SO₄, and concentrated under
- reduced pressure. Short-path distillation afforded 3trimethylsilanyl-1-hydroxy-2-propyne (39.9 g, 87% yield). ¹H-NMR (500 MHz, CDCl₃) δ 4.27 (s, 2H), 1.61 (s, 1H), 0.18 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃) δ 130.8, 90.8, 51.7, -0.2.
- ⁴⁰ Dry diethyl ether (10 mL) and Red-Al (6.2 mL, 21.8 mmol, 3.5 M in toluene) were cooled to 0 °C. 3-trimethylsilanyl-1-hydroxy-2-propyne (1.86 g, 14.5 mmol) and dry ether (15 mL) were added dropwise and the solution was stirred at room temperature for 2 hours. The reaction was
- ⁴⁵ cooled to 0 °C and 3.6 M H₂SO₄ (15 mL) was added. After extraction with diethyl ether (3x), drying with Na₂SO₄, filtering, and concentrating under reduced pressure, the residue was purified by flash column chromatography (2-15% EtOAc/Hexanes) to give 3-trimethylsilanyl-1-hydroxy-2-⁵⁰ propene (1.19 g, 63% yield).

To 3-trimethylsilanyl-1-hydroxy-2-propene (0.11 g, 0.84 mmol) and dry DCM (5 mL) was added MnO_2 (0.51 g, 5.87 mmol) and the reaction was stirred for 30 minutes at room temperature and 3 hours at reflux. After cooling to room

- ⁵⁵ temperature, 2 additional equivalents of MnO₂ were added and the mixture was stirred at room temperature for 16 hours. Silica gel was added, the mixture was filtered through a silica gel plug washing with DCM, and concentrated under reduced pressure to provide conjugated aldehyde **19** (102 mg, 95%). ⁶⁰ ¹H-NMR (300 MHz, CDCl₃) δ 9.49 (d, 1H *J* = 7.5 Hz), 7.19 (d,
- ⁶⁰ HENRIK (500 MHz, CDCl₃) δ 9.49 (d, 1H J = 7.5 Hz), 7.19 (d, 1H, J = 18.9 Hz), 6.50 (dd, 1H, J = 7.5, 20.7 Hz), 0.17 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃) δ 194.7, 158.7, 144.0, -2.0.

- 65 (3E,5E)-3-ethoxycarbonyl-6-trimethylsilyl-hexadienoic acid (20). To a solution of aldehyde 19 (1.2 g, 7.8 mmol) in toluene (50 mL) was added Wittig reagent 18 (3.8 g, 9.4 mmol) and hydroquinone (8.6 mg) and the reaction was stirred for 2 days at room temperature. After concentrating the reaction under
- ⁷⁰ reduced pressure, flash column chromatography (0-20% EtOAc/Hexanes) afforded diene **20** (1.98 g, 83% yield). FT-IR (film) 1711, 1628, 1414, 1373, 1285, 1249, 1206, 1076, 990, 858, 841 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 7.30 (d, 1H, *J* = 11.0 Hz), 6.72 (ddd, 1H, *J* = 1.0, 10.0, 18.0 Hz), 6.45 (d, 1H, *J* 75 = 18.0 Hz), 4.23 (q, 2H, 7.0 Hz), 3.52 (s, 2H), 1.29 (dt, 3H, *J* = 1.0, 7.0 Hz), 0.12 (d, 9H, 1.0 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 176.8, 167.5, 147.2, 143.0, 137.3, 123.5, 61.2, 32.5, 14.2, -1.6.

80

- Ethyl-2-(3-butenyl)-3-hydroxybenzoate
- Diisopropylamine (2.41 mL, 17.19 mmol) and dry THF (50 mL) were cooled to 0 °C. To this, *n*-Buli (11.5 mL, 18.4 mmol, 1.6 M in hexane) was added and the solution was stirred so for 30 minutes at 0 °C. After adding DMPU (3.86 mL), acid **20** (2.05 g) in dry THF (10 mL) was added and the reaction was stirred at 0 °C for 1 hour. After cooling the mixture to -78° C, 4-bromo-1-butene (0.89 mL, 8.8 mmol) was added and the reaction was stirred for 1 hour, followed by 2 hours at 0 °C.
- ⁹⁰ The reaction was quenched with 5% $HCl_{(aq)}$, extracted with diethyl ether, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Filtration through a 10g silica gel column eluting with 15% EtOAc/Hexanes (100mL) afforded the crude tris-olefin, which was used as is in the next step. Dry
- ⁹⁵ THF (10 mL) was added to the crude olefin (0.42 g, 1.35 mmol), followed by TFAA (0.38 mL) and TEA (0.57 mL). The reaction was stirred at room temperature for 2 hours. The reaction was quenched with 5% $HCl_{(aq)}$ and extracted with diethyl ether. After drying with Na₂SO₄, filtration, and
- ¹⁰⁰ concentrating under reduced pressure, the residue was taken up in absolute ethanol (10 mL). The reaction was cooled to 0 °C and NaBH₄ (0.11 g, 2.71 mmol) was added. The mixture was stirred at room temperature for 2 hours, after which it was quenched with 5% HCl_(aq). The crude product was extracted
- ¹⁰⁵ with diethyl ether, dried with Na₂SO₄, filtered, and concentrated in vacuo. Flash column chromatography (10% EtOAc/Hexanes) afforded aromatic ester **21** (0.85 g, 48% yield, 2 steps). ¹H-NMR (500 MHz, CDCl₃) δ 7.40 (d, 1H, *J* = 1.0, 8.0 Hz), 7.11 (t, 1H, *J* = 8.0 Hz), 6.93 (dd, 1H, *J* = 1.0, 8.0 Hz), 110 5.98-5.90 (m, 1H), 5.31 (bs, 1H), 5.09 (ddd, 1H, *J* = 1.5, 3.5, 17.5 Hz), 4.99 (dd, 1H, *J* = 1.0, 10.0 Hz), 4.36 (q, 2H, *J* = 7.5 Hz), 3.01 (dd, 2H, *J* = 7.5, 9.5 Hz), 2.39-2.35 (m, 2H). 1.39 (t
- Hz), 3.01 (dd, 2H, J = 7.5, 9.5 Hz), 2.39-2.35 (m, 2H), 1.39 (t, 3H, J = 7.0 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 168.2, 154.2, 138.5, 132.2, 129.2, 126.6, 122.7, 118.7, 115.0, 61.1, 34.0, ¹¹⁵ 26.5, 14.3.

2-(3-butenyl)-3-hydroxybenzoic acid (22). Ester **21** (23.7 mg, 0.11 mmol) was taken up in MeOH (3 mL) and 2N KOH_(aq) (3 mL) was added. The reaction was refluxed for 36 hours. The MeOH was removed under reduced pressure and the aqueous mixture was acidified to pH = 2 with 6N HCl_(aq). Crude acid was extracted with EtOAc, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. Flash ¹²⁵ column chromatography (20-50% EtOAc/Hexanes) afforded pure acid **22** (18.5 mg, 89% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.61 (d, 1H, *J* = 8.0 Hz), 7.17 (t, 1H, *J* = 8.0 Hz), 7.01 (d, 1H, *J* = 8.0 Hz), 5.96 (m, 1H), 5.09 (dd, 1H, *J* = 1.5, 17.0 Hz), 5.01 (dd, 1H, *J* = 1.0, 10.0 Hz), 3.12 (t, 2H, *J* = 7.5

Hz), 2.39 (dd, 2H, J = 7.5, 15.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 173.1, 154.2, 138.5, 130.6, 130.2, 126.7, 124.0, 119.9, 115.2, 34.0, 26.4. HRMS m/z (M - H)⁺ calc'd for C₁₁H₁₂O₃ 191.0708, found 191.0706.

5

(1*S*,2*R*)-N-{1-(4-Allyloxy-benzyl)-2-hydroxy-3-[isobutyl-(4-methoxy-benzenesulfonyl)-amino]-propyl}-2-(3-butenyl)-3-hydroxy-benzamide (7a). Boc-amine 13 (8.1 mg, 0.014
¹⁰ mmol) was dissolved in DCM (1 mL) and stirred with 30% TFA/DCM (2 mL) for 2 hours at room temperature. After concentration under reduced pressure, the residue was taken up in DMF (2 mL). To the solution HOBt (2.1 mg), EDCI (3 mg),

- acid **22** (3 mg), and TEA (3 μ L) were added. The reaction was stirred for 18 hours, and then brine was added. The crude product was extracted with ethyl acetate, dried with Na₂SO₄, filtered, and concentrated. Flash column chromatography (30-40% EtOAc/Hexanes) afforded diene **7a** (6.4 mg, 70% yield over 2 steps). ¹H-NMR (500 MHz, CDCl₃) δ 7.68 (dd, 2H, *J* =
- ²⁰ 2.0, 7.0 Hz), 7.19 (d, 2H, J = 9.0 Hz), 6.98-6.95 (m, 2H), 6.92 (d, 1H, J = 8.0 Hz), 6.85 (d, 2H, J = 8.5 Hz), 6.75 (d, 1H, J = 8.0 Hz), 6.54 (d, 1H, J = 7.5 Hz), 6.28 (bs, 1H), 6.10-6.08 (m, 2H), 5.74-5.72 (m, 1H), 5.40 (dd, 1H, J = 1.5, 17.0 Hz), 5.28 (dd, 1H, J = 1.5, 10.5 Hz), 4.93 (dd, 1H, J = 1.5, 17.0 Hz), 4.88
- ²⁵ (d, 1H, J = 10.0 Hz), 4.50 (d, 2H), 450-4.49 (m, 2H), 4.13-4.11 (m, 1H), 3.86 (s, 3H), 3.15-3.13 (m, 1H), 3.09-3.04 (m, 2H), 2.96-2.92 (m, 2H), 2.84-2.82 (m, 1H), 2.55-2.49 (m, 2H), 2.19-2.18 (m, 2H), 2.05-2.03 (m, 1H), 0.92 (d, 3H, J = 6.5 Hz), 0.87 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 170.6, 162 Hz, 154.5 128.4 127.6 122, 120.2 120.8 120.7
- ³⁰ 163.1, 157.4, 154.5, 138.4, 137.6, 133.3, 130.3, 129.8, 129.7, 129.4, 126.9, 126.4, 118.7, 117.7, 117.1, 114.9, 114.9, 114.4, 73.1, 68.8, 58.9, 55.7, 54.3, 53.6, 33.9, 27.4, 26.5, 20.2, 19.9.

³⁵ (1*S*,2*R*)-2-(3-butenyl)-N-{1-(4-(3-butenyloxy)-benzyl)-2hydroxy-3-[isobutyl-(4-methoxy-benzenesulfonyl)-amino]propyl}-3-hydroxy-benzamide (7b). Boc-protected amine 13 (0.15 g) and 30% TFA/DCM (2 mL) were stirred at room temperature for 2 hours, then concentrated under vacuum. The

- ⁴⁰ residue was taken up in DMF (2 mL) and acid **22** (48.8 mg), EDCI (53.5 mg), HOBt (37.7 mg), and TEA (53 μ L) were added. The solution was stirred at room temperature for 16 hours. Brine was added and the reaction was extracted with EtOAc, dried over Na₂SO₄, filtered, and concentrated under
- ⁴⁵ reduced pressure. Flash column chromatography (30-50% EtOAc/Hexanes) afforded diene **7b** (0.1295 g, 78% yield over 2 steps). ¹H-NMR (500 MHz, CDCl₃) δ 7.66 (d, 2H, *J* = 9.0 Hz), 7.17 (d, 2H, *J* = 8.5 Hz), 6.94 (d, 2H, *J* = 9.0 Hz), 6.88 (t, 1H, *J* = 7.5 Hz), 6.82 (d, 2H, *J* = 8.5 Hz), 6.75 (d, 1H, 7.5 Hz),
- ⁵⁰ 6.50 (d, 1H, J = 7.5 Hz), 6.19 (d, 1H, J = 8.5 Hz), 5.93-5.84 (m, 1H), 5.75-5.67 (m, 1H), 5.15 (ddd, 1H, J = 1.5, 2.0, 15.5 Hz), 5.09 (dd, 1H, J = 1.5 Hz, 10.5), 4.89 (dd, 1H, J = 1.5, 17.5 Hz), 4.83 (d, 1H, J = 10.0 Hz), 4.33-4.28 (m, 1H), 3.99-3.95 (m, 3H), 3.83 (s, 3H), 3.18-3.04 (m, 3H), 2.98-2.85 (m, 3H),
- ⁵⁵ 2.61-2.46 (m, 4H), 2.17 (q, 2H, J = 7.0, 7.5 Hz), 1.91-1.83 (m, 1H), 0.90 (d, 3H, J = 6.5 Hz), 0.86 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 170.9, 163.1, 162.9, 157.7, 155.0, 138.6, 137.4, 134.5, 130.3, 129.7, 129.7, 129.4, 126.8, 126.5, 118.2, 117.1, 114.8, 114.6, 114.4, 73.0, 67.2, 58.8, 55.7, 54.3, 53.6, 23.0, 23.7, 21.7, 73.2, 75.2, 02.2, 10.9; HPMS m/C M +
- ⁶⁰ 53.6, 33.9, 33.7, 31.7, 27.3, 26.5, 20.2, 19.9; HRMS m/z (M + H)⁺ calc'd for C₃₆H₄₇N₂O₇S 651.3104, found 651.3098.

(1*S*,2*R*)-2-(3-butenyl)-3-hydroxy-N-[2-hydroxy-3-[isobutyl-65 (4-methoxy-benzenesulfonyl)-amino]-1-(4-(4-pentenyloxy)-

benzyl)-propyl]-benzamide (7c). Boc-amine **14** (40.4 mg, 0.0668 mmol) and 30% TFA/DCM (4 mL) were stirred for 3 hours at room temperature, then concentrated in vacuo. The residue was taken up in DMF (2 mL) and acid **22** (12.8 mg), 70 HOBt (9.0 mg), EDCI (12.8 mg), and TEA were stirred for 18 hours at room temperature. Brine was added and the product was extracted with ethyl acetate. After drying with Na₂SO₄, filtering, and concentrating under reduced pressure, the product was purified by flash column chromatography (30%)

- ⁷⁵ EtOAc/Hexanes) to afford diene **7c** (26.6 mg, 60% over 2 steps). ¹H-NMR (500 MHz, CDCl₃) δ 7.69 (d, 2H, J = 8.0 Hz), 7.19 (d, 2H, J = 8.5 Hz), 6.98-6.95 (m, 3H), 6.83 (d, 2H. J = 8.5 Hz), 6.77 (dd, 1H, J = 1.0, 8.0 Hz), 6.57 (dd, 1H, J = 1.0, 7.5 Hz), 6.02 (d, 1H, 8.5 Hz), 5.89-5.80 (m, 1H), 5.78-5.72 (m,
- ⁸⁰ 1H), 5.65 (bs, 1H), 5.06 (ddd, 1H, J = 1.5, 2.0, 17.0 Hz), 5.00 (dd, 1H, J = 1.5, 10.0 Hz), 4.95 (dd, 1H, J = 1.5, 17.0 Hz), 4.90 (d, 1H), 4.33-4.29 (m, 1H), 4.24 (bs, 1H), 3.99-3.96 (m, 1H), 3.94 (t, 2H, J = 6.5 Hz), 3.87 (s, 3H), 3.15 (d, 1H, J = 8.5 Hz), 3.10-3.04 (m, 2H), 2.99-2.90 (m, 2H), 2.85-2.81 (m, 1H), 2.62-
- ⁸⁵ 2.51 (m, 2H), 2.26-2.20 (m, 4H), 1.91-1.85 (m, 3H), 1.68-1.61 (m, 1H), 0.93 (d, 3H, *J* = 6.5 Hz), 0.88 (d, 3H, *J* = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 170.5, 163.1, 157.9, 154.3, 138.4, 137.8, 137.7, 130.3, 129.8, 129.4, 127.0, 126.3, 118.9, 117.1, 115.2, 115.0, 114.7, 114.4, 73.0, 67.2, 59.0, 55.7, 54.3, 53.7, ⁹⁰ 34.0, 30.1, 28.5, 27.4, 26.5, 20.2, 19.9; HRMS *m/z* (M + Na)⁺
- $^{\circ}$ 34.0, 30.1, 28.5, 27.4, 26.5, 20.2, 19.9; HKMS *m/z* (M + Na) calc'd for C₃₇H₄₈N₂O₇SNa 687.3080, found 637.3086.

(1*S*,2*R*)-2-(3-butenyl)-N-{1-(4-(5-hexenyloxy)-benzyl)-2-

- ⁹⁵ hydroxy-3-[isobutyl-(4-methoxy-benzenesulfonyl)-amino]propyl}-3-hydroxy-benzamide (7d). Boc-amine 16 (37.8 mg, 0.061 mmol) and 30% TFA/DCM (5 mL) were stirred at room temperature for 6 hours, then concentrated under reduced pressure. The residue was taken up in DMF (2 mL) and acid
- ¹⁰⁰ **22** (11.7 mg), EDCI (11.7 mg), HOBt (8.3 mg), and TEA (12.8 μ L) were added and the reaction stirred at room temperature for 18 hours. Brine was added to the solution, and the product was extracted with ethyl acetate. After drying with Na₂SO₄, filtering, and concentrating under reduced pressure, the product
- ¹⁰⁵ was purified by flash column chromatography (25% EtOAc/Hexanes) to afford diene **7d** (25.7 mg, 62% yield for 2 steps). ¹H-NMR (500 MHz, CDCl₃) δ 7.69 (d, 2H, *J* = 9.0 Hz), 7.19 (d, 2H, *J* = 8.5 Hz), 6.99-6.95 (m, 3H), 6.83 (d, 2H, *J* = 8.5 Hz), 6.77 (dd, 1H, *J* = 1.0, 8.0 Hz), 5.77 (dd, 1H, *J* = 1.0,
- ¹¹⁰ 7.5 Hz), 6.04 (d, 1H, J = 9.0 Hz), 5.87-5.71 (m, 3H), 5.05 (ddd, 1H, J = 1.5, 2.0, 17.0 Hz), 4.98-4.93 (m, 2H), 4.99 (d, 1H, J =10.0 Hz), 4.33-4.29 (m, 1H), 4.26-4.25 (bs, 1H), 3.99-3.96 (m, 1H), 3.93 (t, 2H, J = 6.5 Hz), 3.86 (s, 3H), 3.19-3.13 (m, 1H), 3.09-3.03 (m, 2H), 3.00-2.90 (m, 2H), 2.84-2.80 (m, 1H), 2.63-
- ¹¹⁵ 2.49 (m, 2H), 2.22-2.18 (m, 2H), 2.12 (q, 2H, J = 7.0 Hz), 1.91-1.85 (m, 1H), 1.82-1.76 (m, 2H), 1.60-1.53 (m, 2H), 0.93 (d, 3H, J = 6.5 Hz), 0.88 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl3) δ 170.5, 1631, 157.9, 154.3, 138.5, 138.4, 137.7, 130.3, 129.8, 129.4, 127.0, 126.4, 118.9, 117.1, 115.0, 114.9,
- $_{120}$ 114.8, 114.7, 114.4, 73.0, 67.8, 59.0, 55.7, 54.3, 53.7, 34.0, 33.5, 29.7, 28.8, 27.4, 26.5, 25.4, 20.2, 19.9; HRMS m/z (M + Na)⁺ calc'd for C_{38}H_{50}N_2O_7SNa 701.3236, found 701.3217.
- ¹²⁵ (2'*R*,3''*S*)-N-[2'-Hydroxy-2-(10-hydroxy-5-oxo-17-oxa-4aza-tricyclo[16.2.2.06,11]docosa-1(21),6,8,10,14,18(22),19heptaen-3''-yl)-ethyl]-N-isobutyl-4-methoxy-

benzenesulfonamide (8a). Diene **7a** (12 mg, 0.02 mmol) was dissolved in dry DCM (5 mL). First generation Grubbs' ¹³⁰ catalyst (2 mg) was added and the reaction was stirred for 4 h.

The solution was concentrated and purified by flash column chromatography (35% EtOAc/hexanes) to afford olefin **8a** (9.6 mg, 83 % yield) as an inseparable 1:1 mixture of cis/trans isomers. Mixture of diastereomers. ¹H-NMR (500 MHz, 5 CDCl₃) δ 7.76-7.73 (m, 4H), 7.02-6.87 (m, 12 H) 6.76-6.69 (m, 4 H), 5.86 (dd, 2H, J = 9.5, 21.5 Hz), 5.56-5.54 (m, 2H), 5.41-5.36 (m, 2H), 5.30-5.25 (m, 2H), 4.55-4.51 (m, 2H), 4.44-4.35 (m, 4H), 3.97-3.95 (m, 2H), 2.91-2.85 (m, 2H), 2.69-2.57 (m, 4H), 1.94-1.90 (m, 2H), 0.98 (dd, 3H, J = 2.5, 6.5 Hz), 0.92 (d,

- ⁴¹¹, ^{1.94–1.20} (m, ²¹¹), ^{0.96} (ad, ⁵¹¹, ^J = ^{2.9}, ^{0.5} Hz), ^{0.92} (d, ¹⁰ 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 170.0, 169.7, ^{163.2}, 157. 2, 155.8, 154.6, 139.8, 138.8, 137.5, 137.1, 133.0, ^{131.8}, 131.2, 130.4, 129.6, 129.5, 128.7, 127.1, 126.9, 126.8, ^{125.2}, 124.8, 124.3, 122.8, 122.3, 122.2, 122.1, 119.2, 118.9, ^{117.2}, 116.5, 114.5, 73.8, 72.1, 70.0, 59.2, 55.7, 54.2, 54.0, ¹⁵ 53.8, 34.8, 30.3, 29.7, 29.3, 27.4, 27.4, 26.6, 25.1, 20.2, 19.9;
- HRMS m/z (M-H)⁺ cale'd C₃₃H₃₉N₂O₇S 607.2478, found 607.2479.
- ²⁰ (2'*R*,3''*S*)-N-[2'-Hydroxy-2-(10-hydroxy-5-oxo-18-oxa-4aza-tricyclo[17.2.2.06,11]tricosa-1(22),6,8,10,14,19(23),20heptaen-3''-yl)-ethyl]-N-isoDityl-4-methoxy-benzene

sulfonamide (8b). Diene 7b (7.5 mg) was dissolved in dry DCM (3 mL) and Grubbs' first generation catalyst (0.9 mg)
²⁵ was added. The reaction was stirred for 4 hours at room temperature, and then concentrated. Flash column chromatography (30-50% EtOAc/Hexanes) gave olefin 8b (5.6 mg, 78% yield) as an inseparable 3:1 (by ¹H-NMR analysis) mixture of isomers. ¹H-NMR (500 MHz, CDCl₃) δ 7.73 (d,

- ³⁰ 2H, J = 9.0 Hz), 6.99-6.96 (m, 3H), 6.89-6.85 (m, 3H), 6.71-6.70 (m, 1H), 6.64 (d, 1H, J = 7.5 Hz), 6.59 (d, 1H, J = 8.5 Hz), 6.14-6.12 (m, 1H), 5.33-5.28 (m, 1H), 5.15-5.09 (m, 1H), 4.47-4.41 (m, 1H), 4.36-4.32 (m, 1H), 4.20-4.17 (m, 1H), 3.98-3.95 (m, 1H), 3.85 (s, 3H), 3.31 (m, 1H), 3.18-3.15 (m, 1H), 3.08-2.01 (m, 2H) 2.02.20 (m, 2H) 2.52-17 (m, 2H), 3.08-
- $_{35}$ 3.01 (m, 2H), 2.92-2.88 (m, 1H), 2.53-2.45 (m, 1H), 2.42-2.40 (m, 1H), 2.30-2.26 (m, 2H), 1.93-1.89 (m, 2H), 1.76-1.73 (m, 1H), 1.38-1.33 (m, 1H), 0.95 (s, 3H), 0.91 (s, 3H); $^{13}\text{C-NMR}$ (125 MHz, CDCl₃) δ 170.5, 163.2, 158.6, 154.5, 138.7, 133.1, 129.6, 129.5, 126.7, 126.3, 125.5, 118.1, 116.3, 114.5, 73.6,

⁴⁰ 66.6, 58.9, 55.7, 53.9, 53.8, 35.8, 34.5, 34.5, 32.2, 27.3, 20.2, 19.9; HRMS m/z (M + Na)⁺ calc'd for C₃₄H₄₂N₂O₇SNa 645.2610, found 645.2622.

45 (2'*R*,3''*S*)-N-[2'-Hydroxy-2-(10-hydroxy-5-oxo-19-oxa-4aza-tricyclo[18.2.2.06,11]tetracosa-1(23),6,8,10,14,20(24),21heptaen-3''-yl)-ethyl]-N-isobutyl-4-methoxy-

benzenesulfonamide (8c). To a solution of diene 7c (12.4 mg, 0.0187 mmol) and dry DCM (5 mL) was added Grubbs' first
⁵⁰ generation catalyst (1.2 mg) and the reaction was stirred for 4 hours, then concentrated under reduced pressure. Flash column chromatography (30-40% EtOAc/Hexanes) afforded olefin 8c (10.5 mg, 85% yield) as a 5:1 (by ¹H-NMR analysis) mixture of inseparable isomers. ¹H-NMR (500 MHz, CDCl₃) δ 7.76

- 55 (dd, 2H, J = 2.0, 7.0 Hz), 7.08 (d, 2H, J = 8.5 Hz), 7.02-6.99 (m, 3H), 6.81 (d, 2H, J = 8.5 Hz), 6.75-6.07 (m, 2H), 5.86 (d, 1H, J = 9.5 Hz), 5.32 (bs, 1H), 5.26-5.20 (m, 1H), 5.12-5.06 (m, 1H), 4.35-4.29 (m, 1H), 4.14-4.11 (m, 1H), 3.98-3.92 (m, 2H), 3.87 (s, 3H), 3.82-3.77 (bs, 1H), 3.30 (dd, 1H, J = 9.5
- ⁶⁰ 15.0 Hz), 3.14 (dd, 2H, J = 2.5, 15.0 Hz), 3.07 (dd, 1H, J = 3.5, 13.0 Hz), 2.90 (dd, 1H, J = 6.5, 13.5 Hz), 2.52-2.47 (m, 1H), 2.36-2.28 (m, 1H), 2.19-2.11 (m, 2H), 2.07-2.00 (m, 1H), 1.97-1.91 (m, 1H), 1.75-1.55 (m, 3H), 1.41-1.35 (m, 1H), 0.99 (d, 3H, J = 6.5 Hz), 0.94 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, 65 CDCl₃) δ 169.9, 163.2, 158.9, 154.3, 138.5, 134.0, 130.1,

129.6, 127.3, 126.9, 125.9, 118.4, 116.5, 115.4, 114.5, 73.6, 66.6, 59.2, 55.7, 54.7, 54.0, 35.1, 32.0, 29.7, 29.4, 28.3, 27.7, 27.4, 20.2, 19.9; HRMS m/z (M + Na)⁺ calc'd for $C_{35}H_{44}N_2O_7SNa$ 659.2767, found 659.2766.

70

(2'*R*,3''*S*)-N-[2'-Hydroxy-2-(10-hydroxy-5-oxo-20-oxa-4aza-tricyclo[19.2.2.06,11]pentacosa-

- 1(24),6,8,10,14,21(25),22-heptaen-3"-yl)-ethyl]-N-isobutyl-75 4-methoxy-benzenesulfonamide (8d). To diene 7d (12.8 mg, 0.019 mmol) and dry DCM (4 mL) was added first generation Grubbs' catalyst (1.2 mg). The solution was stirred for 4 hours at room temperature, then concentrated under reduced pressure. Flash column chromatography (25-40% EtOAc/Hexanes)
- ⁸⁰ afforded olefin **8d** (10.7 mg, 87% yield) as a single (by ¹H-NMR analysis) isomer. ¹H-NMR (500 MHz, CDCl₃) δ 7.76 (dd, 2H, J = 2.0, 7.0 Hz), 7.10 (d, 2H, J = 8.5), 7.04-6.98 (m, 3H), 6.82-6.76 (m, 4H), 5.94 (d, 1H, J = 10.0 Hz), 5.30-5.22 (m, 3H), 4.36-4.33 (m, 1H), 4.15-4.06 (m, 2H), 3.98-3.95 (m,
- ⁸⁵ 1H), 3.87 (s, 3H), 3.82-3.80 (bs, 1H), 3.31 (dd, 1H, J = 9.0, 15.5 Hz), 3.20-3.04 (m, 3H), 2.89 (dd, 1H, J = 6.5, 13.5 Hz), 2.53 (t, 1H, J = 13.0 Hz), 2.38 (dt, 1H, J = 3.5, 11.5 Hz), 2.09-2.05 (m, 2H), 1.95-1.77 (m, 6H); ¹³C-NMR (125 MHz, CDCl3) δ 169.9, 163.2, 156.9, 154.1, 138.3, 130.7, 130.0, 129.9, 129.6,
- ⁹⁰ 129.5, 126.9, 126.4, 118.7, 116.7, 115.2, 114.5, 73.7, 67.1, 59.2, 55.7, 54.3, 54.1, 34.9, 32.7, 30.9, 27.9, 27.4, 26.5, 24.0, 20.2, 19.9; HRMS m/z (M + H)⁺ calc'd for C₃₄H₄₆N₂O₇SNa 673.2923, found 673.2921.
- ⁹⁵ Inhibitor 23 and Saturated inhibitor 24a. To a stirred solution of olefin 8a (9 mg, 0.02 mmol) in 5 mL of 1% NH₃ in MeOH solution, 5% Pd/C (1 mg) was added, and the resulting suspension was stirred at 23 °C under a hydrogen filled balloon for 4 h. The mixture was filtered through Celite and ¹⁰⁰ concentrated. Silica gel chromatography (40% EtOAc/hexanes) afforded ring-opening acyclic product 23 (2.5 mg, 27% yield) and saturated macrocycle 24a. (3.6 mg, 40% yield).

Compound 23: ¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, 2 H, *J* 105 = 9 Hz), 7.14 (d, 2 H, *J* = 8.5 Hz), 6.99-6.96 (m, 3 H), 6.78-6.75 (m, 3 H), 6.56 (d, 1 H, *J* = 7.5 Hz), 5.99 (d, 1 H, *J* = 8.5 Hz), 5.21 (bs, 1 H), 5.09 (bs, 1 H), 4.32-4.29 (m, 1 H), 4.20 (m, 1 H), 3.97-3.96 (m, 1 H), 3.87 (s, 3 H), 3.15-3.02 (m, 3 H), 2.98-2.82 (m, 3 H), 2.56-2.47 (m, 2 H), 1.91-1.88 (m, 1 H), 1.49-1.43 (m, 2 H), 1.27-1.24 (m, 3 H), 0.93 (d, 3 H, *J* = 7.0 Hz), 0.89 (d, 3 H, *J* = 6.5 Hz), 0.85 (t, 3 H, *J* = 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 170.5, 163.1, 154.5, 154.1, 137.6, 130.5, 129.8, 129.6, 129.4, 127.2, 126.8, 119.0, 117.0, 115.5, 114.4, 72.9, 58.9, 55.6, 54.3, 53.7, 34.0, 32.1, 29.9, 29.7, 27.4, 115 26.9, 22.5, 20.1, 19.9, 14.0. LRMS-ESI (*m*/*z*): 635.6 (M + Na)⁺; HRMS *m*/*z* (M + H)⁺ calc'd for C₃₃H₄₄N₂O₇SH 613.2947, found 613.2955.

Saturated macrocycle **24a:** ¹H NMR (500 MHz, CDCl₃): δ ¹²⁰ 7.76 (d, 2 H, J = 9.0 Hz), 7.23 (d, 1 H, J = 9.5 Hz), 7.045-7.015 (m, 2 H), 6.99 (d, 2 H, J = 9 Hz), 6.91 (d, 1 H, J = 8 Hz), 6.82 (d, 2 H, J = 9.5 Hz), 6.77 (d, 1 H, J = 8 Hz), 5.80 (d, 1 H, J =9.5 Hz), 4.89 (s, 1 H), 4.30-4.26 (m, 2 H), 4.15-4.11 (m, 1 H), 3.95 (m, 1 H), 3.86 (s, 3 H), 3.72 (d, 1 H, J = 2 Hz), 3.28-3.22 ¹²⁵ (m, 2 H), 3.12-3.04 (m, 3 H), 2.86 (dd, 1 H, J = 6.5, 13.5 Hz), 2.59-2.53 (m, 2 H), 2.24 (td, 1 H, J = 4.0, 12.8 Hz), 2.01-1.96 (m, 1 H), 1.94-1.90 (m, 1 H), 1.27-1.245 (m, 3H), 0.99 (d, 3H, J = 6.5 Hz), 0.93 (d, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 169.4, 163.1, 159.5, 154.8, 137.0, 130.8, 130.5, ¹³⁰ 129.5, 129.1, 127.8, 126.6, 119.7, 119.2, 117.3, 117.1, 114.5,

73.8, 69.5, 59.2, 55.6, 54.1, 53.8, 34.8, 30.8, 27.9, 27.4, 26.9, 26.0, 20.2, 19.9. LRMS-ESI m/z: 633.5 (M + Na)⁺; HRMS m/z $(M + Na)^{+}$ calc'd for $C_{33}H_{42}N_2O_7SNa$ 633.2610, found 633.2631.

Saturated inhibitor 24b. Olefin 8b (3.5 mg), EtOAc (2 mL), and 10% Pd/C (0.5 mg) was stirred under a hydrogen balloon for 2 hours. The reaction was filtered through Celite and concentrated. Flash column chromatography (30%) 10 EtOAc/Hexanes) afforded saturated macrocycle 24b (3.3 mg,

- 94% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.75 (td, 2H, J = 3.0, 9.0), 7.13-7.05 (m, 1H), 6.98 (td, 2H, J = 2.0, 9.0 Hz), 6.92 (t, 1H, J = 7.5 Hz), 6.88 (d, 2H, J = 6.0 Hz), 6.71 (d, 2H, J = 9.0 Hz), 6.10 (bs, 1H), 6.04 (d, 1H, J = 9.5 Hz), 4.40-4.37 (m,
- 15 1H), 4.33-4.29 (m, 1H), 4.22 (td, 1H, J = 4.0, 12.0 Hz), 4.00-3.96 (m, 1H), 3.85 (s, 3H), 3.30 (dd, 1H, J = 9.0, 15.0 Hz),3.16-3.11 (m, 2H), 3.05 (dd, 1H, J = 8.5, 13.0 Hz), 2.89 (dd, 1H, J = 6.5, 13.5 Hz), 2.57-2.51 (m, 1H), 2.38 (dt, 1H, J = 4.0, 13.0 Hz), 1.94-1.90 (m, 1H), 1.80-1.72 (m, 2H), 1.49-1.40 (m,
- ²⁰ 2H), 1.30-1.22 (m, 2H), 1.20-1.12 (m, 3H), 0.97 (d, 3H, J = 6.5 Hz), 0.92 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 170.1, 163.2, 158.0, 154.6, 137.7, 130.3, 130.2, 129.6, 129.5, 127.7, 126.5, 118.6, 117.2, 116.8, 114.5, 73.7, 68.2, 59.1, 55.7, 54.1, 53.9, 34.6, 29.1, 28.1, 27.4, 26.8, 24.0, 20.2, 19.9; HRMS $25 m/z (M + Na)^+$ calc'd for C₃₄H₄₄N₂O₇SNa 647.2767, found 647.2761.

Saturated inhibitor 24c. Olefin 8c (4.0 mg, 0.0063 mmol) was dissolved in ethyl acetate (5 mL) and 10% Pd/C (1 mg) 30 was added. The mixture was stirred under a hydrogen balloon for 4 hours and then filtered through Celite. After concentration under reduced pressure, the product was purified by flash column chromatography (30% EtOAc/Hexanes) to afford macrocycle 24c (3.5 mg, 88% yield). ¹H-NMR (500

- $_{35}$ MHz, CDCl₃) δ 7.76 (ddd, 2H, J = 2.0, 3.0, 9.0 Hz), 7.09-7.04 (m, 3H), 6.99 (ddd, 2H, J = 2.0, 3.0, 9.0 Hz), 6.87 (dd, 1H, J =1.0, 7.5 Hz), 6.82 (d, 2H, J = 8.5 Hz), 6.80 (dd, 1H, J = 1.0, 8.0 Hz), 5.90 (d, 1H, J = 9.0 Hz), 4.91 (bs, 1H), 4.37 (dt, 1H, J = 4.0, 12.0 Hz), 4.28-4.23 (m, 1H), 4.17-4.13 (m, 1H), 3.98-3.95
- 40 (m, 1H), 3.86 (s, 3H), 3.30 (dd, 1H, J = 9.0, 15.5 Hz), 3.17-3.13 (m, 2H), 3.06 (dd, 1H, J = 8.6, 13.0 Hz), 2.87 (dd, 1H, J = 6.5, 13.5 Hz), 2.71-2.65 (m, 1H), 2.60 (dd, 1H, J = 12.0, 14.5 Hz), 2.03-1.97 (m, 1H), 1.96-1.90 (m, 2H), 1.62-1.55 (m, 3H), 1.45-1.42 (m, 2H), 1.39-1.34 (m, 1H), 1.05-1.01 (m, 3H), 0.98 $_{45}$ (d, 3H, J = 6.5 Hz), 0.92 (d, 3H, J = 6.5 Hz); 13 C-NMR (125)
- MHz, CDCl₃) δ 170.1, 163.1, 156.9, 154.3, 137.3, 130.1, 129.7, 129.7, 129.5, 127.5, 126.7, 119.2, 117.1, 115.8, 114.5, 73.6, 68.0, 59.2, 55.7, 55.0, 54.0, 34.9, 29.7, 29.4, 28.9, 27.6, 27.4, 26.7, 26.1, 25.4, 20.2, 19.9; HRMS m/z (M + Na)⁺ calc'd for 50 C35H46N2O7SNa 661.2923, found 661.2921.

Saturated inhibitor 24d. Olefin 8d (4.5 mg, 0.0069 mmol) was dissolved in EtOAc (3 mL) and 10% Pd/C (0.5 mg) was added. The mixture was stirred under a H₂ balloon for 4 hours, 55 then filtered through celite and concentrated under reduced pressure. Flash column chromatography (40%)EtOAc/Hexanes) afforded saturated macrocycle 24d (4.0 mg, 89% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.75 (ddd, 2H, J = 2.0, 2.5, 9.0 Hz), 7.12 (d, 2H, J = 8.5 Hz), 7.03 (t, 1H, J = 8.0

 $_{60}$ Hz), 7.00 (ddd, 2H, J = 3.0, 4.0, 9.0 Hz), 6.82 (d, 2H, J = 9.0Hz), 6.80-6.76 (m, 2H), 5.94 (d, 1H, J = 9.5 Hz), 5.05 (bs, 1H), 4.40-4.34 (m, 1H), 4.18-4.12 (m, 2H), 3.99-3.95 (m, 1H), 3.87 (s, 3H), 3.31 (dd, 1H, J = 9.0, 15.0 Hz), 3.15-3.11(m, 2H), 3.07(dd, 1H, J = 9.0, 13.5 Hz), 2.88 (dd, 1H, J = 6.5, 13.5 Hz), 2.59 $_{65}$ (dd, 1H, J = 12.0, 14.5 Hz), 2.50 (dt, 1H, J = 3.5, 12.5 Hz),

1.96-1.90 (m, 1H), 1.90-1.82 (m, 1H), 1.75-1.71 (m, 1H), 1.65-1.54 (m, 4H), 1.50-1.44 (m, 1H), 1.36-1.33 (m, 2H), 1.10-1.03 (m, 4H), 0.99 (d, 3H, J = 6.5 Hz), 0.93 (d, 3H, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 170.1, 163.2, 156.8, 154.1, 138.0, 70 129.9, 129.6, 129.6, 129.5, 127.1, 126.7, 119.0, 116.8, 115.1, 114.5, 73.7, 67.0, 59.2, 55.7, 54.2, 54.0, 34.7, 30.0, 29.7, 28.3, 27.4, 27.1, 27.0, 26.8, 26.2, 23.0, 20.2, 19.9; HRMS m/z (M + Na)⁺ calc'd for $C_{36}H_{48}N_2O_7SNa\ 675.3080$, found 675.3086.

- Acknowledgements: The financial support of this work is provided by the National Institute of Health (GM 53386). This work was also supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute,
- 80 National Institutes of Health and in part by a Grant-in-aid for Scientific Research (Priority Areas) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Monbu Kagakusho), a Grant for Promotion of AIDS Research from the Ministry of Health, Welfare, and Labor of Japan
- 85 (Kosei Rohdosho: H15-AIDS-001), and the Grant to the Cooperative Research Project on Clinical and Epidemiological Studies of Emerging and Reemerging Infectious Diseases (Renkei Jigyo: No. 78, Kumamoto University) of Monbu-Kagakusho. We would like to thank Dr. Kalapala
- 90 Venkateswara Rao (Purdue University) for helpful discussions.

References and notes

^aDepartments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA. Fax: +1 765 4961612; Tel: 95 +1 765 4945323; E-mail: **H**ghosh@purdue.edu

Deptarment of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064

Rumamoto University School of Medicine, Department of Hematology and Infectious diseases, Kumamoto 860-8556, Japan;

¹⁰⁰ ^dExperimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Electronic Supplementary Information (ESI) available: Characterization of new compounds; copies of ¹H NMR and ¹³C-NMR 105 spectra are available. See DOI:

- Hue, S.; Gifford, R. J.; Dunn, D.; Fernhill, E.; Pillay, D.; 1. U. K. J. Virol. 2009, 83, 2645-2654.
- Conway, B. Future Virol. 2009, 4, 39-41. 110 2.
 - Gupta, R.; Hill, A.; Sawyer, A. W.; Pillay, D. Clin. Infect. 3. Dis. 2008, 47, 712-722
 - 4 Wainberg, M. A.; Friedland, G. J. Med. Chem. Assoc. 1998, 279, 1977-1983.
- Ghosh, A. K.; Dawson, Z. L.; Mitsuya, H. Bioorg. Med. 115 5. Chem. Lett.. 2007, 15, 7576-7580.
 - Ghosh, A. K.; Chapsal, B. D.; Weber, I. T.; Mitsuya, H. 6. Acc. Chem. Res. 2008, 41, 78-86.
- 7. Koh, Y.; Nakata, H.; Maeda, K.; Ogata, H.; Bilcer, G.; Devasamudram, T.; Kincaid, J. F.; Boross, P.; Wang, Y. 120
 - F.; Tie, Y.; Volarath, P.; Gaddis, L.; Harrison, R. W.; Weber, I. T.; Ghosh, A. K.; Mitsuya, H. Antimicrob. Agents Chemother. 2003, 47, 3123-3129.
- 8. Ghosh, A. K.; Anderson, D. D.; Weber, I. T.; Mitsuya, H. Angewandte. Chemie. 2012, 51, 1778-1802. 125
- 9. Ghosh, A. K.; Kulkarni, S.; Anderson, D. D.; Hong, L.; Baldridge, A.; Wang, Y. F.; Chumanevich, A. A.; Kovalevsky, A. Y.; Tojo, Y.; Amano, M.; Koh, Y.; Tang, J.; Weber, I. T.; Mitsuya, H. J. Med. Chem. 2009, 52, 7689-7705.
- 130

80

85

90

- Ghosh, A. K.; Swanson, L.; Liu, C.; Cho, H.; Hussain, A.; Walters, D. E.; Holland, L. *Bioorg. Med. Chem. Lett.* 2002, 12, 1993-1996.
- Ghosh, A. K.; Swanson, L. M.; Cho, H.; Leshchenko, S.;
 Hussain, K. A.; Kay, S.; Walters, D. E.; Koh, Y.; Mitsuya, H. J. Med. Chem. 2005, 48, 3576-3585.
- Kempf, D. J.; Marsh, K. C.; Paul, D. A.; Knigge, M. F.; Norbeck, D. W.; Kohlbrenner, W. E.; Codacovi, L.; Vasavanonda, S.; Bryant, P.; Wang, X. C.; Wideburg, N.E.; Clement, L. L.; Bridtaer, L. L.; Frideson, J.
- ¹⁰ N.E.; Clement, J. J.; Plattner, J. J.; Erickson, J. Antimicrob. Agents Chemother. **1991**, 35, 2209-2214.
 - 13. Baldwin, E. T.; Bhat, T. N.; Liu, B.; Pattabiraman, N.; Erickson, J. W. *Nat. Struct. Biol.* **1995**, *2*, 244-249.
- Reid, R. C.; Pattenden, L. K.; Tyndall, J. D. A.; Martin, J.
 L.; Walsh, T.; Fairlie, D. P. J. Med. Chem. 2004, 47, 1641-1651.
 - Yoshimura, K.; Kato, R.; Kavlick, M. F.; Nguyen, A.; Maroun, V.; Maeda, K.; Hussain, K. A.; Ghosh, A. K.; Gulnik, S. V.; Erickson, J. W.; Mitsuya, H. *J. Virol.* 2002, 76, 1349-1358.
- Kaldor, S. W.; Kalish, V. J.; Davies, J. F., 2nd; Shetty, B. V.; Fritz, J. E.; Appelt, K.; Burgess, J. A.; Campanale, K. M.; Chirgadze, N. Y.; Clawson, D. K.; Dressman, B. A.; Hatch, S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. D. M.; Chirgadze, D. C. M. S. M. S. C. M. S. M.
- P.; Muesing, M. A.; Patick, A. K.; Reich, S. H.; Su, K. S.; Tatlock, J. H. J. Med. Chem. 1997, 40, 3979-3985.
- Kozisek, M.; Bray, J.; Rezacova, P.; Saskova, K.; Brynda, J.; Pokorna, J.; Mammano, F.; Rulisek, L.; Konvalinka, J. *J. Mol. Biol.* 2007, *374*, 1005-1016.
- ³⁰ 18. Ghosh, A. K.; Thompson, W. J.; Holloway, M. K.; McKee, S. P.; Duong, T. T.; Lee, H. Y.; Munson, P. M.; Smith, A. M.; Wai, J. M.; Darke, P. L. *J. Med. Chem.* **1993**, *36*, 2300-2310.
- 19. Fernandes, R. A.; Bodas, M. S.; Kumar, P. *Tetrahedron*, **2002**, *58*, 1223-1227.
- Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamue, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780.
- 21. Caron, M.; Carlier, K.; Sharpless, K. B. J. Org. Chem. 1988, 53, 5185-5187.
- 22. Ghosh, A. K.; McKee, S. P.; Lee, H. Y.; Thompson, W. T. *J. Chem. Soc. Chem. Comm.* **1992**, 273-274.
- Ghosh, A. K.; Sridhar, P. R.; Leshchenko, S.; Hussain, A. K.; Li, J.; Kovalevsky, A. Y.; Walters, D. E.; Wedekind, J.
- 45 E.; Grum-Tokars, V.; Das, D.; Koh, Y.; Maeda, K.; Gatanaga, H.; Weber, I. T.; Mitsuya, H. J. Med. Chem. 2006, 49, 5252-5261.
- 95

20

- Hudson, R. F.; Chopard, P. A. Helv. Chimica. Acta 1963, 46, 2178.
- ⁵⁰ 25. Doulut, S.; Dubuc, I.; Rodriguez, M.; Vecchini, F.; Fulcrand, H.; Barelli, F.; Checler, E.; Bourdel, E.; Aumeles, A. *J. Med. Chem.* **1993**, *36*, 1369-1379.
- Bacaloglu, R.; Blasko, A.; Bunton, C. A.; Cerichelli, G.; Castaneda, F.; Rivera, E. J. Chem. Soc., Perkin Trans. 2
 1995, 5, 965-972.
 - 27. Jones, T. K.; Denmark, S. E. Org. Synth., Coll. Vol. VII 1990, 524.
 - Ostwald, R.; Chavant, P-Y.; Stadtmüller, H.; Knochel, P. J. Org. Chem. 1994, 59, 4143-4153.
- 60 29. Serra, S.; Fuganti, C.; Moro, A. J. Org. Chem. 2001, 66, 7883-7888.
- 30. Brenna, E.; Fuganti, C.; Perozzo, V.; Serra, S. *Tetrahedron*, **1997**, *53*, 15029-15040.
- 31. Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. C. Angew. Chem. Inter. Ed. **1995**, *34*, 2039-2041.
- 32. Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543-6554.
- 33. Sajiki, H.; Hirota, K. Tetrahedron 1998, 54, 13981-13996.
- 34. Toth, M. V.; Marshall, G. R. Int. J. Pep. Prot. Res. 1990, 36, 544-550.
- Amano, M.; Koh, Y.; Das, D.; Wang, Y.-F.; Boross, P. I.; Li, J.; Leschenko, S.; Weber, I. T.; Ghosh, A.K.; Mitsuya, H. Antimicrob Agents Chemother. 2007, 51, 2143-2155.
- Tie, Y.; Boross, P. I.; Wang, Y. F.; Gaddis, L.; Hussain,
 A. K.; Leshchenko, S.; Ghosh, A. K.; Louis, J. M.; Harrison, R. W.; Weber, I. T. J. Mol. Biol. 2004, 338, 341-352