Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

ARTICLE TYPE

Organic &

Biomolecular Chemistry

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Transition-metal-free Oxidative Carboazidation of Acrylamides via Cascade C-N and C-C Bond-Forming Reactions

Jun Qiu^{*a*} and Ronghua Zhang^{**a*}

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel transition-metal-free oxidative carboazidation of acrylamides using inexpensive NaN₃ and K₂S₂O₈ was achieved, which not only provided an efficient method to prepare various N₃-substituted oxindoles, but also 10 represented a novel strategy for C–N and C–C bond formation via a free-radical cascade process. This transformation exhibits excellent functional group tolerance, affording the desired oxindoles in good to excellent yields.

Organic azides are highly important and valuable ¹⁵ compounds which have attracted much attention not only because of their widespread application as versatile intermediates and building blocks in organic synthesis but also because of their remarkable biological activity.¹ Moreover, azides have been found intensive application as reactive

²⁰ functionalities in materials science,² supramolecular chemistry,³ medicinal chemistry⁴ and biotechnology⁵. In the past decades, the application of a radical pathway for direct C-H azidation has been significantly realized.⁶ Furthermore, the application of azidyl radicals to the C-H functionalization of ²⁵ unactivated alkenes, which provides a novel and concise

pathway to the synthesis of alkyl azides, have been widely reported.⁷

On the other hand, oxindole frameworks represent an important structural motif that be demonstrated significant 30 potential for use in a wide range of biological applications such as NMDA antagonist⁸ and calcium channel blockers⁹ as well as anti-angiogenic,¹⁰ anti-cancer,¹¹ and analgesic effects.¹² Recently, difunctionalization of alkenes involving direct C-H functionalization of arenes has received increasing 35 attention.¹³ In particular, metal-catalyzed C-H functionalization/cyclization of unactivated alkenes provides some versatile strategies for the synthesis of various functionalized oxindoles.¹⁴⁻¹⁸ For example, Fe-,¹⁵ Ag-,¹⁶ Cu-,¹⁷ Pd-18 catalyzed oxidative and tandem 40 difunctionalization/cyclization reaction of N-arylacrylamides, including arylphosphorylation,^{14a} alkylarylation,^{14d,15a,19a-b} diarylation,19c arylcarbonylation,^{19d} arylnitration, 19e-f aryltrifluoromethylation^{19g} and so on have independently developed. However, examples of metal-catalyzed azido-

45 carbocyclization of arylacrylamides via a radical pathway to

Scheme 1. Metal-free carboazidation of acrylamides

prepare azido oxindoles are quite rare. Jiao^{16c} and Yang^{16d} groups have independently reported a silver-catalyzed oxidative azido-carbocyclization of arylacrylamides to synthesize a variety of oxindoles using TMSN₃ as the N₃ so source in the presence of heavy metal oxidants (Scheme 1, Eq.1 and Eq. 2).

More recently, the transition-metal-free C–H functionalization reactions have attracted more attention due to the economical and environmental viewpoints.²⁰ It is so worthy of note that the transition-metal-free C-H functionalization/cyclization of unactivated alkenes is still an extremely attractive yet challenging task.^{19d, 19f, 21} In

This journal is © The Royal Society of Chemistry [year]

particular, only a few transition-metal-free approaches on azidoarylation of N-arylacrylamide to form azido oxindoles have been reported. Antonchick and co-workers^{21c} reported a metal-free oxidative azidoarylation of N-arylacrylamides ⁵ using the PhI(OCOCF₃)₂ as the oxidant and TMSN₃ as the azide source (Scheme 1, Eq.3). Although several elegant studies on the azidoarylation of N-arylacrylamides have been

- achieved, it is still highly desirable to develop new strategies to prepare azido oxindoles that are highly efficient and 10 utilizing cheap substrates and oxidants. Herein, we report a transition-metal-free radical cascade azidoarylation of arylacrylamide by using the very cheapest NaN₃ as the azide
- source and $K_2S_2O_8$ as the oxidant in aqueous solution, which allows for highly efficient access to oxindoles via cascade C– ¹⁵ N and C–C bond formation (Scheme 1).

Table 1. Screening of reaction conditions.^a

		+ N ₃ source —	oxidant solvent temp. 8h		[∼] N₃ =O
Entry	Oxidant	Slovent	Azide	T(°C)	Yield(%) ^b
1	$K_2S_2O_8$	H ₂ O	NaN ₃	80	45
2	$K_2S_2O_8$	dioxane/H ₂ O	NaN ₃	80	n.d.
3	$K_2S_2O_8$	$\frac{(1.1)}{\text{THF/H}_2\text{O}}$ (1:1)	NaN ₃	80	n.d.
4	$K_2S_2O_8$	toluene/ H_2O	NaN ₃	80	n.d.
5	$K_2S_2O_8$	DCE/H_2O	NaN ₃	80	40
6	$K_2S_2O_8$	DMF/H_2O	NaN ₃	80	81
7	$K_2S_2O_8$	CH_3CN/H_2O	NaN ₃	80	88
8	$K_2S_2O_8$	(1.1) acetone/H ₂ O	NaN ₃	80	92
9	PIDA	(1.1) acetone/H ₂ O	NaN ₃	80	22
10	TBHP	(1.1) acetone/H ₂ O	NaN ₃	80	20
11	DDQ	(1.1) acetone/H ₂ O	NaN ₃	80	n.d.
12	DTBP	(1.1) acetone/H ₂ O	NaN ₃	80	n.d.
13	O_2^c	(1.1) acetone/H ₂ O	NaN ₃	80	n.d.
14	$K_2S_2O_8$	(1.1) acetone/H ₂ O (1.1)	NaN ₃	r.t.	n.d.
15	$K_2S_2O_8$	acetone/H ₂ O (1.1)	NaN ₃	50	62
16	$K_2S_2O_8$	acetone/H ₂ O $(1:1)$	NaN ₃	100	92
17	$K_2S_2O_8$	acetone/H ₂ O (1.1)	TMSN ₃	80	53
18	$K_2S_2O_8$	acetone/H ₂ O (1.1)	(PhO) ₂ PON ₃	80	n.d.

^{*a*} Reaction conditions: 1a (0.25 mmol), oxidant (2 equiv) and azide (2 equiv) in solvent (2.5 mL) with stirring at different temperature for 8 h. ^{*b*} Yields of isolated product. ^{*c*}O₂ (1 atm.). r.t. = room temperature, n.d. = not detected, PIDA= phenyliodine diacetate, DDQ= 2,3-dichloro-5,6-dicyanobenzo-quinone, TBHP= tert-butyl hydrogen peroxide (anhydrous, about 5.5 m in decane), DTBP= di-tert-butyl peroxide.

An initial study was carried out using the N-methyl-Nphenylmethacrylamide 1a and sodium azide as the model substrates, K₂S₂O₈ was used as the oxidant to examine 20 suitable reaction conditions, and the results were summarized in Table 1. A number of solvents including H₂O, dioxane/H2O, THF/H2O, toluene/H2O, DCE/H2O, DMF/H2O, CH₃CN/H₂O and acetone/H₂O were screened at 80°C for 8h (Table 1, entries 1-8). As we expected, treatment of 1a with ²⁵ NaN₃ in the presence of 2 equiv. of K₂S₂O₈ in water at 80 °C for 8 h, afforded the desired oxindole 2a in 45% isolated yield (Table 1, entry 1). We envisioned that this homogeneous phase system disfavored the reaction, and that two-phase system might be required to promote this reaction. The 30 transformation did not proceed in such aqueous solutions as dioxane/H₂O, THF/H₂O and toluene/H₂O (Table 1, entries 2-4). It should be noted that good yields of the desired product 2a were obtained using DMF/H₂O and CH₃CN/H₂O as the slovents (Table 1, entries 6-7). To our delight, further 35 optimization showed that acetone/H2O gave the best yield of 92% (Table 1, entry 8). To establish the reaction conditions that improve the reactivity, several oxidants such as $K_2S_2O_8$, DDQ, TBHP, PIDA, DTBP and O2 were screened in acetone/H₂O (1:1) at 80°C for 8h (Table 1, entries 8-13). It $_{40}$ was found that $K_2S_2O_8$ as the oxidant showed relative higher efficiency compared with other oxidants and thus was chosen as the oxidant for further optimization. Furthermore, the yields were remarkably diminished when TMSN₃ and (PhO)₂PON₃ were used as the azide sources instead of NaN₃ 45 (Table 1, entries 17-18). Screening of the reaction temperature revealed that 80 °C was the best one (Table 1, entry 8). Therefore, we chose N-arylacrylamide together with sodium azide (2 equiv) and $K_2S_2O_8$ (2 equiv) in acetone/H₂O (1:1) at 80 °C for 8 h as our optimized reaction conditions.

With the optimized reaction conditions established, various substrates were subjected to the reaction and representative results were summarized in Table 2. To our delight, a variety of N-protected N-arylmethacrylamides, which have substituents at para and meta as well as ortho positions in the 55 aniline, could be smoothly converted into the corresponding azide-substituted oxindoles in moderate to excellent yields (up to 96 %). For N-arylmethacrylamides bearing various electron- donating substituents (e.g., Me, OMe, OEt, t-Bu) in the ortho-position of the aromatic rings, the reactions were 60 compatible with the process and could be successfully converted into the desired products in excellent yields (90-96%, table 2, 2b-2e). It is noteworthy that the halosubstituted (F, Cl, Br) N-methyl-N-phenylmethacrylamides were also reacted well and afforded the corresponding halo-65 substituted azido oxindoles in good yields (78-86 %, table 2, 2f-2h). Interestingly, the electronic effect of the substituents on aromatic ring was observed. For example, 90-96% yields were obtained when the substrates bearing an electrondonating group on the aromatic ring, while a little lower 70 yields (78-86%) were provided that bearing electronwithdrawing groups (F, Cl, Br) on the para-position. Furthermore, the substrate bearing meta substituents on Narylacrylamides underwent carboazidation smoothly and readily converted to a mixture of two regioisomers in

^{*a*} All reactions were carried out in the presence of 0.5 mmol of 1a-1t, NaN₃ (2.0 equiv.), K₂S₂O₈ (2.0 equiv.) in acetone/H₂O (1:1, 5 mL) at 80 °C for 8h. ^{*b*} Isolated yield.

moderate to good yields (75–89 %) with poor regioselectivity (Table 2, 2i–2m and 2i'-2m'). The N-arylacrylamides containing the ortho-position substituent groups exhibited a s particularly distinct steric hindrance effect, and lower yields were observed as a result (Table 2, 2n–2q). For example, when the methyl group on the aromatic ring of acrylamide was changed from para-, meta- to ortho-, the yields decreased from 95%, 88% to 65% (Table 2, 2b, 2i and 2n). In addition,

- ¹⁰ 2,4-disubstituted N-arylacrylamides were also well tolerated in this carboazidation process, affording the azide oxindoles with good yields (Table 2, **2r** and **2s**). Gratifyingly, when the benzene ring was changed to naphthalene, the substrate also successfully provided the product of **2t** in 94% yield.
- ¹⁵ Encouraged by the above results, we further investigated the reactions between the N-protected-Nphenylmethacrylamides and sodium azide under the standard reaction conditions. To our delight, an investigation into different N-protection groups revealed that the electron-
- ²⁰ donating protecting groups such as ethyl, n-Butyl and phenyl were appropriate for the reactions and furnished the corresponding oxindoles in very good yields (Table 3, 4a, 4b and 4c). Much to our surprise, substrates bearing benzyl and protecting group was tolerated but only a trace amount of the
- 25 desired oxindole was isolated (Table 3, 4d). Unfortunately, replacement of the methyl substituent with a hydrogen atom or tosyl did not work at all and not furnish corresponding products (Table 3, 4e). To our best knowledge, Tetrahydroisoquinoline structural motifs are commonly
- ³⁰ founed in many biologically active compounds. Acrylamides prepared from these amines provided the corresponding tricyclic oxindole derivatives in excellent yield under the developed reaction conditions (Table 3, **4f**). In addition, the substitutent on the alkene moiety was changed from methyl to
- ³⁵ phenyl, the yield decreased to 71% (Table 3, **4g**). However, when the frameworks of the substrates were changed by

 Table 3. Metal- free Carboazidation of Different Arylacrylamides.^{*a,b*}

 H^{R^2}
 H^{R^2}

^{*a*} All reactions were carried out in the presence of 0.5 mmol of 3a-3h, NaN₃ (2.0 equiv.), K₂S₂O₈ (2.0 equiv.) in acetone/H₂O (1:1, 5 mL) at 80 °C for 8h. ^{*b*} Isolated yield.

replacing the heteroatoms from N to O, no desired product was observed (Table 2, **4h**).

In order to gain more insight into the reaction mechanism, several control experiments were performed. As illustrated in Scheme 2. First, we used the well-known radical-trapping reagents 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 2,6-ditertbutyl-4-methylphenol (BHT) as the radical 45 scavengers. Chemical trapping was carried out using 1a with NaN₃ and K₂S₂O₈ in the presence of 1.0 equiv radical scavenger under standardized reaction conditions, and only a trace of desired products were obtained with 87% and 76% of 1a recovered. This observation was consistent with the 50 hypothesis that the reaction likely involved free-radical intermediates and proceeded via a single-electron-transfer (SET) process triggered by a free radical.

Although the mechanism is not completely clear yet, a plausible mechanism for our methodology is hypothesized on ⁵⁵ the basis of literature^{6-7, 13-21} and the above mechanistic studies (Scheme 3). Initially, potassium peroxydisulphate may decompose to the sulfate radical anion upon heating. Then, NaN₃ reacts with the sulfate radical anion to form the azidyl radical. Subsequently, the addition of the azidyl radical to the ⁶⁰ activated alkene **1a** results in the formation of the radical intermediate **A**, followed by intramolecular carbocyclization to generate the corresponding radical intermediate **B**. Further intermediate **B** undergoes one-electron oxidation reaction with

Scheme 3. Plausible Mechanism for Carboazidation of Arylacrylamides

sulfate radical anion to release the intermediate C via a single electron transfer (SET) process. Finally, hydrogen abstraction of cationic intermediate C by $K_2S_2O_8$ leads to the final oxindole 2a.

- $_{\rm 5}$ In conclusion, we have demonstrated a novel transitionmetal-free oxidative azido-carbocyclization of activated alkenes for the synthesis of azido oxindoles using the $K_2S_2O_8$ as oxidant. Radical addition and C-H functionalization processes are involved in this transformation with the
- ¹⁰ cascade-type formation of C-N and C-C bonds. This methodology provides an economical and efficient way for the construction of azido-containing oxindoles, which avoids prefunctional azides and expensive transition metals and oxidants. Further applications of this new transformation to ¹⁵ other substrates and the synthesis of more valuable

compounds are underway in our group.

We are grateful to the Natural Science Foundation of China (no. 20972113/B020502) for support.

Notes and references

- ²⁰ ^a Department of Chemistry, Tongji University, Shanghai 200092, P. R. China, and Key Laboratory of Yangtze River Water Environment, Ministry of Education, Siping Road 1239, Shanghai, 200092, P. R. China.. E-mail: rhzhang@tongji.edu.cn
- † Electronic Supplementary Information (ESI) available: Experiment 25 procedure and NMR data. See DOI: 10.1039/b000000x
- (a) T. M. V. D. Pinho e Melo, In Organic Azides: Syntheses and Applications, Bräse, S., Banert, K., Eds. Wiley-VCH: Weinheim, 2010, 53. (b) S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188. (c) S. Bräse, K. Banert, In Organic
- Azides Wiley-VCH: Weinheim, 2010. (d) N. Jung, S. Bräse, Angew. Chem. Int. Ed. 2012, 51, 12169. (e) D. M. Huryn, M. Okabe, Chem. Rev. 1992, 92, 1745. (f) M. Minozzi, D. Nanni, Spagnolo, P. Chem.-Eur. J. 2009, 15, 7830. (g) G. Lapointe, A. Kapat, K. Weidner, P. Renaud, Pure. Appl. Chem. 2012, 84, 1633. (h) S. Chiba, Synlett
- 2012, 23, 21. (i) E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297. (j) T. G. Driver, Org. Biomol. Chem. 2010, 8, 3831. (k) B. Zhang, A. Studer, Org. Lett. 2014, 16, 1790.
- 2 (a) P. Wu, A. K. Feldman, K. Nugent, C. J. A. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Fréchet, K. B. Sharpless, V. V. Fokin, *Angew*.
- Chem., Int. Ed. 2004, 43, 3928. (b) D. I. Rozkiewicz, D. Jañczewski,
 W. Verboon, B. J. Ravoo, D. N. Reinhoudt, Angew. Chem., Int. Ed.
 2006, 45, 5292. (c) H. Nandivada, X. Jiang, J. Lahann, Adv. Mater.
 2007, 19, 2197. (d) W. H. Binder, R. Macromol. Sachsenhofer, Rapid
 Commun.2007, 28, 15. (e) J. F. Lutz, Angew. Chem. Int. Ed. 2007, 46,
- ⁴⁵ 1018. (f) P. Wu, M. Malkoch, J. N. Hunt, R. Vestberg, E. Kaltgrad, M. G. Finn, V. V. Fokin, K. B. Sharpless, C. J. Hawker, *Chem. Commun.*2005, 5775.
- 3 (a) Ryu, E.H. Zhao, Y. Org. Lett. 2005, 7, 1035. (b) J. D. Megiatto, D. I. Schuster, J. Am. Chem. Soc. 2008, 130, 12872.
- 50 4 (a) A. D. Moorhouse, A. M. Santos, M. Gunaratnam, M. Moore, S. Neidle, J. E.Moses, J. Am. Chem. Soc. 2006, **128**, 15972. (b) D. Hein,

C. X. M. Liu, D. Wang, *Pharm. Res.* 2008, **25**, 2216. (*d*) A. D. Moorhouse, J. E. Moses, *ChemBioChem.* 2008, **3**, 715.

- (a) Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, M.
 G. Finn, J. Am. Chem. Soc. 2003, **125**, 3192. (b) A. E. Speers, B. F. Cravatt, Chem. Biol. 2004, **11**, 535. (c) G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y. Eichen, T. Carell, J. Am. Chem. Soc. 2006, **128**, 1398. (d) R. Breinbauer, M. Kohn, ChemBioChem. 2003, **4**, 1147. (e) R. Manetsch, A. Krasiñski, Z. Radiæ, J. Raushel, P. Taylor, K. B. Sharpless, H. C. Kolb, J. Am. Chem. Soc. 2004, **126**, 12809. (f) C. Park, H. Kim, S. Kim, C. Kim, J. Am. Chem. Soc. 2009. **131**, 16614.
- 6 (a) W. Song, S. I. Kozhushkov, L. Ackermann, Angew. Chem. 2013, 125, 6706.; Angew. Chem. Int. Ed. 2013, 52, 6576. (b) C. Tang, N.
 ⁵ Jiao, J. Am. Chem. Soc. 2012, 134, 18924. (c) D. Lu-briks, I. Sokolovs, E. Suna, J. Am. Chem. Soc. 2012, 134, 15436. (d) H. Tohma, M. Egi, M. Ohtsubo, H. Watanabe, S. Takiza-wa, Y. Kita, Chem. Commun. 1998, 173. (e) C. Viuf, M. Bols, Angew.
- Chem.2001, 113, 643. Angew. Chem. Int. Ed. 2001, 40, 623. (f) A. P.
 Krasutsky, C. J. Kuehl, V. V. Zhdankin, Synlett 1995, 1081. (g) Y.
 Kita, H. Tohma, M. Inagaki, K. Hatanaka, T. Yakura, Tetrahedron Lett. 1991, 32, 4321. (h) V. V. Zhdankin, A. P. Krasutsky, C. J.
 Kuehl, A. J. Simonsen, J. K. Woodward, B. Mis-mash, J. T. Bolz, J.
 Am. Chem. Soc. 1996, 118, 5192. (i) P. V. Chouthaiwale, G.
 Suryavanshi, A. Sudalai, Tetrahedron Lett. 2008, 49, 6401. (j) P.
 Magnus, J. Lacour, W. Weber, J. Am. Chem. Soc. 1993, 115, 9347.
 (k) M. V. Vita, J. Waser, Org. Lett. 2013, 15, 3246. (l) Q. H. Deng, T. Bleith, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc. 2013, 135, 5356.
- ⁸⁰ 7 (a) R. Chung, E. Yu, C. D. Incarvito, D. J. Austin, Org. Lett. 2004, 6, 3881. (b) G. Bencivenni, T. Lanza, M. Minozzi, D. Nanni, P. Spagnolo, G. Zanardi, Org. Biomol. Chem. 2010, 8, 3444. (c) A. Hassner, L. A. Levy, J. Am. Chem. Soc. 1965, 87, 4203. (d) P. Magnus, J. Lacour, P. A. Evans, M. B. Roe, C. Hulme, J. Am. Chem. Soc. 1996, 118, 3406. (e) W. S. Trahanovsky, M. D. Rob-bins, J. Am. Chem. Soc. 1971, 93, 5256. (f) W. E. Fristad, T. A. Brandvold, J. R. Peterson, S. R. Thompson, J. Org. Chem. 1985, 50, 3647. (g) M. Tiecco, L. Testaferri, C. Santi, C. Tomassini, F. Marini, L. Bagnoli, A. Temperini, Angew. Chem. 2003, 115, 3239. Angew. Chem. Int. Ed. 2003, 42, 3131. (h) A. Kapat, A. Kçnig, F. Montermini, P.
 - Renaud, J. Am. Chem. Soc. 2011, 133, 13890. (i) P. Renaud, C. Ollivier, P. Panchaud, Angew. Chem. 2002, 114, 3610. Angew. Chem. Int. Ed.2002, 41, 3460. (j) B. B. Snider, H. Lin, Synth. Commun. 1998, 28, 1913.
- 95 8 T. H. Kang, Y. Murakami, K. Matsumoto, H. Takayama, M. Kitajima, N. Aimi, H. Watanabe, *Eur. J. Pharmacol.* 2002, **455**, 27.
- 9 (a) A. M. Swensen, J. Herrington, R. M. Bugianesi, G. Dai, R. J. Haedo, K. S. Ratliff, M. M. Smith, V. A. Warren, S. P. Arneric, C. Eduljee, D. Parker, T. P. Snutch, S. B. Hoyt, C. London, J. L. Duffy, G. J. Kaczorowski, O. B. McManus, *Mol. Pharmacol.* 2012, **81**, 488.
 - J. L. Whatmore, E. Swann, P. Barraja, J. J. Newsome, M. Bunderson, H. D. Beall, J. E. Tooke, C. J. Moody, *Angiogenesis* 2002, 5, 45.
 - 11 S. Peddibhotla, *Curr. Bioactive Compd.* 2009, **5**, 20.
- 12 C. Abbadie, O. B. McManus, S. Y. Sun, R. M. Bugianesi, G. Dai, R. J. Haedo, J. B. Herrington, G. J. Kaczorowski, M. M. Smith, A. M. Swensen, V. A. Warren, B. Williams, S. P. Arneric, C. Eduljee, T. P. Snutch, E. W. Tringham, N. Jochnowitz, A. Liang, D. Euan MacIntyre, E. McGowan, S. Mistry, V. V. White, S. B. Hoyt, C. London, K. A. Lyons, P. B. Bunting, S. Volksdorf, J. L.Duffy, *J. Pharmacol. Exp. Ther.* 2010, **334**, 545.
- 13 (a) X. Mu, T. Wu, H. Wang, Y. Guo, G. Liu, J. Am. Chem. Soc. 2012, 134, 878. (b) J. Tsuji, Palladium Reagents and Catalysts, Wiley, New York, 2004. (c) K. Muñiz, Angew. Chem. Int. Ed., 2009, 48, 9412. (d) H. Du, B. Zhao, Y. Shi, J. Am. Chem. Soc., 2007, 129, 762. (e) H. Du, W. Yuan, B. Zhao, Y. Shi, J. Am. Chem. Soc., 2007, 129, 11688. (f) A. Minatti, K. Muñiz, Chem. Soc. Rev., 2007, 36, 1142. (g) L.V. Desai, M. S. Sanford, Angew. Chem. Int. Ed., 2007, 46, 5737. (h) C. H. Hövelmann, J. Streuff, L. Brelot, K. Muñiz, Chem. Soc., 2006, 128, 7179. (j) E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc., 2005, 127, 7690. (k) Y. Li, D. Song, V. M. Dong, J. Am. Chem. Soc., 2008, 130, 2962. (l) Y. Zhang, M. S. Sigman, J. Am. Chem. Soc.,

75

80

2007, **129**, 3076. (m) M. J. Schultz, M. S. Sigman, J. Am. Chem. Soc., 2006, **128**, 1460. (n) F. E. Michael, B. M. Cochran, J. Am. Chem. Soc., 2006, **128**, 4246

- 14 (a) Y. M. Li, Sun, M. H. L. Wang, Q. P. Tian, S. D. Yang, Angew.
 ⁵ Chem. Int. Ed. 2013, **52**, 3972. (b) J. Xie, P. Xu, H. Li, Q. Xue, H. Jin, Y. Cheng, C. Zhu, Chem. Commun.2013, **49**, 5672. (c) J. E. M. N. Klein, R. J. K. Taylor, Eur. J. Org. Chem. 2011, **34**, 6821. (d) M. Zhou, C. Wang, R. Song, Y. Liu, W. Wei, J. Li, Chem. Commun. 2013, **49**, 10817.
- 10 15 (a) W. T. Wei, Zhou, B. M. J. H. Fan, W. Liu, R. J. Song, Y. Liu, M. Hu, P. Xie, J. H. Li, Angew. Chem. Int. Ed. 2013, 52, 3638. (b) X. Xu, Y. Tang, X. Li, G. Hong, M. Fang, X. Du. J. Org. Chem. 2014, 79, 446. (c) F. Jia, K. Liu, H. Xi, S. Lu, Z. Li. Tetrahedron Letters 2013, 54, 6337. (d) T. Shen, Y. Yuan, S. Song, N. Jiao. Chem. Commun., 2014, 50, 4115.
- 16 (a) H. Wang, L. Guo, X. Duan Chem. Commun., 2013, 49, 10370. b) F. Yin, X. Wang, Org. Lett. 2014, 16, 1128. (c) Y. Yuan, T. Shen, K. Wang, N. Jiao. Chem. Asian J. 2013, 8, 2932. (d) Y. Li, M. Sun, H. Wang, Q. Tian, S. Yang. Angew. Chem. Int. Ed. 2013, 52, 3972. (e)
- H. Wang, L. Guo, X. Duan. Adv. Synth. Catal. 2013, 355, 2222. (f) X.
 H. Wei, Y. M. Li, A. X. Zhou, T. T. Yang, S. D. Yang, Org. Lett. 2013, 15, 4158.
- (a) S. L. Zhou, L. N. Guo, H. Wang, X. H. Duan. Chem. Eur. J. 2013, 19, 12970. (b) H. Egami, R. Shimizu, M. Sodeoka, Journal of
- ²⁵ Fluorine Chemistry 2013, 152, 51. (c) F. Yang, P. Klumphu, Y. M. Liang, B. H. Lipshutz. Chem. Commun., 2014, **50**, 936. (d) B. Zhou, W. Hou, Y. Yang, H. Feng, Y. Li. Org. Lett., 2014, **16**, 1322. (e) S. L. Zhou, L. N. Guo, S. Wang, X. H. Duan. Chem. Commun., 2014, **50**, 3589. (f) Z. Li, Y. Zhang, L. Zhang, Z. Q. Liu. Org. Lett., 2014, **16**, 382.
- 18 (a) S. Jaegli, J. Dufour, H. L. Wei, T. Piou, X. H. Duan, J. P. Vors, L. Neuville, J. Zhu, Org. Lett. 2010, 12, 4498. (b) T. Wu, X. Mu, G. Liu, Angew. Chem. Int. Ed. 2011, 50, 12578. (c) S. Jaegli, J. Dufour, H. Wei, T. Piou, X. Duan, J. Vors, L. Neuville, J. Zhu, Org.
- Lett. 2010, 12, 4498. (d) S. Jaegli, W. Erb, P. Retailleau, J. Vors, L. Neuville, J. Zhu, Chem. Eur. J. 2010, 16, 5863. (e) T. Wu, X. Mu, G. Liu, Angew. Chem.2011, 123, 12786. Angew. Chem. Int. Ed. 2011, 50, 12578. (f) X. Mu, T. Wu, H. Wang, Y. Guo, G. Liu, J. Am. Chem. Soc. 2012, 134, 878. (g) G. Broggini, V. Barbera, E. M. Beccalli, E.
- Borsini, S. Galli, G. Lanza, G. Zecchi, *Adv. Synth. Catal.* 2012, 354, 159. (*h*) G. An, W. Zhou, G. Zhang, H. Sun, J. Han, Y. Pan, *Org. Lett.* 2010, 12, 4482. (*i*) A. Pinto, Y. Jia, L. Neuville, J. Zhu, *Chem. Eur. J.* 2007, 13, 961. (*j*) X. Han, X. Lu, *Org. Lett.* 2009, 11, 2381.
- 19 (a) Y. Meng, L. Guo, H. Wang, X. Duan, Chem. Commun.2013, 49,
 7540. (b) Z. Zhou, H. Hua, J. Luo, Z. Chen, P. Zhou, X. Liu, Y. Liang, Tetrahedron 2013, 69, 10030. (c) W. Fu, F. Xu, Y. Fu, M. Zhu, J. Yu, C. Xu, D. J. Zou, Org. Chem. 2013, 78, 12202. (d) M. Zhou, R. Song, X. Ouyang, Y. Liu, W. Wei, G. Deng, J. Li, Chem. Sci. 2013, 4, 2690. (e) T. Shen, Y. Yuan, N. Jiao, Chem. Commun.
- 50 2014, **50**, 554. (f) Y. Li, X. Wei, X. Li, S. Yang, Chem. Commun. 2013, **49**, 11701. (g) P. Xu, J. Xie, Q. Xue, C. Pan, Y. Cheng, C. Zhu, Chem. Eur. J.2013, **19**, 14039.
- 20 (a) W. Tu, L. Liu, P. E. Floreancig, Angew. Chem. Int. Ed. 2008, 47, 4184. (b) C. L. Sun, H. Li, D. G. Yu, M. Yu, X. Zhou, X. Y. Lu, K.
- ⁵⁵ Huang, S. F. Zheng, B. J. Li, Z. J. Shi, *Nat. Chem.*, 2010, 2, 1044.
 (c) W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He, H. Wang, F. Y. Kwong, A. Lei, *J. Am. Chem. Soc.*, 2010, 132, 16737.
 (d) H. J. Kim, J. Kim, S. H. Cho, S. Chang, *J. Am. Chem. Soc.*, 2011, 133, 16382. (e) T. Froehr, C. P. Sindlinger, U. Kloeckner, P.
- Finkbeiner, B. J. Nachtsheim, Org. Lett., 2011, 13, 3754. (f) T. Truong, O. Daugulis, J. Am. Chem. Soc., 2011, 133, 4243. (g) S. Ghosh, S. De, B. N. Kakde, S. Bhunia, A. Adhikary, A. Bisai, Org. Lett., 2012, 14, 5864. (h) W. Liu, F. Tian, X. Wang, H. Yu, Y. Bi, Chem. Commun., 2013, 49, 2983. (i) B. Li, X. Qin, J. You, X. Cong, J. Lan, Org. Biomol. Chem., 2013, 11, 1290.
- (a) T. Wu, H. Zhang, G. Liu, *Tetrahedron* 2012, 68, 5229. (b) X. Li, X. Xu, P. Hu, X. Xiao, C. Zhou, J. Org. Chem. 2013, **78**, 7343. (c) K. Matcha, R. Narayan, A. P. Antonchick, *Angew. Chem. Int. Ed.* 2013, **52**, 7985. (d) H. Wang, L. N. Guo, X. H. Duan, Org. Lett., 2013, **15**,
- ⁷⁰ 5254. (e) L. Li, M. Deng, S. Zheng, Y. Xiong, B. Tan, X. Y. Liu. Org. Lett., 2014, 16, 504. (f) H. L. Wei, T. Piou, J. Dufour, L. Neuville, J.

Zhu. Org. Lett., 2011, 13, 2244. (g) M. Stodulski, A. Goetzinger, S. V.
K, T, Gulder. Chem. Commun., 2014, 50, 3435. (h) D. C. Fabry, M.
Stodulski, S. Hoerner, T. Gulder. Chem. Eur. J. 2012, 18, 10834. (i) T.
Shen, Y. Yuan, N. Jiao. Chem. Commun., 2014, 50, 554. (j) K.
Matcha, R. Narayan, A. P. Antonchick. Angew. Chem. Int. Ed. 2013, 52, 7985. (k) Z. Z. Zhou, H. L. Hua, J. Y. Luo, Z. S. Chen, P. X. Zhou, X. Y. Liu, Y. M. Liang. Tetrahedron 2013, 69, 100.