Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Mercaptobenzoic acid-palladium(0) complexes as active catalysts for S-benzylation with benzylic alcohols via (η^3 -benzyl)palladium(II) cation in water

Hidemasa Hikawa* and Isao Azumaya*

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Mercaptobenzoic acid-palladium(0) complexes show high catalytic activity for S-benzylation with benzylic alcohols *via* the (η^3 -benzyl)palladium(II) cation in water. Notably, these palladium(0) complexes could play an important role in formation of active (η^3 -benzyl)palladium(II) cation complexes followed by S-benzylation. Hammett studies on the rate constants of S-benzylation by various substituted alcohols show good correlation between $\log(k_X/k_H)$ and the σ^+ value of the respective substituents. From the slope, negative ρ values are obtained, suggesting that there is a build-up of positive charge in the transition state. Water plays an important role in catalytic system for sp³ C-O bond activation and stabilization of the activated Pd(II) cation species. Catalytic system can be performed using only 2.5 mol % Pd₂(dba)₃ without phosphine ligand or other additives.

Introduction

 $(\eta^3$ -Benzyl)palladium catalysts are generating increasing interest for the formation of carbon-carbon or carbon-nitrogen bonds.¹ However, the potentiality for these complexes is still unrealized compared to other well-established Tsuji-Trost reactions, merely due to their more recent development. Palladium-catalyzed benzylations with benzylic alcohols via the (n³-benzyl)palladium(II) species are especially challenging, because the reactivity of benzylic alcohols towards Pd(0) is poor compared to benzylic halides, esters, carbonates, and phosphates. Therefore, the development of a direct substitution method of benzylic alcohols, which produces the desired products along with water as the sole co-product, is highly desired in organic chemistry. Only a few papers describe palladium-catalyzed benzylation with benzylic alcohols in aqueous media.² We have been developing a unique strategy for benzylation and C-H activation by the $(\eta^3$ -benzyl)palladium(II) system from a palladium catalyst and benzyl alcohol in water. Notably, water may activate the sp³ C-O bond, then stabilize the Pd(II) cation species by hydration, which can then undergo innovative direct transformation reactions. Recently we reported a palladium-catalyzed selective S-benzylation of unprotected mercaptobenzoic acids with benzylic alcohols using Pd(OAc)₂/TPPMS (sodium diphenylphosphinobenzene-3-sulfonate) catalysts in water.⁴ Classical approaches for Sbenzylation with benzyl alcohols, which are activated by Lewis acids such as boron trifluoride etherates,⁵ yttrium triflates,⁶ ZnI_2 ⁷, and $ZrCl_4^8$, have been reported.

Although palladium-catalyzed reactions of organosulfur compounds, e.g., thiols, are expected to be efficient methods for the synthesis of organosulfur compounds including the formation of new C–S bonds, the development of these methods is challenging due to poisoning of palladium catalysts by sulfur.⁹ Recently, there have been many reports on the stabilization of palladium nanoparticles by thiol ligands due to

the strong interaction between palladium and sulfur atoms.¹⁰ Fornasiero and co-workers reported the synthesis of variably functionalized thiol-protected palladium nanoparticles (Pd-NPs).^{10c} Palladium(II) complexes with a thiosalicylic acid (HSC₆H₄CO₂H) ligand have been synthesized and characterized.^{10a,f-h}

RSCPublishing

In light of our ongoing efforts to develop new methods for direct substitution reactions of benzyl alcohols, this paper describes new insights into the chemistry of thiol-protected (η^3 benzyl)palladium(II) cation complexes for *S*-benzylation. Based on observations made in this investigation, we can now provide support for the cationic (η^3 -benzyl)palladium(II) system in water. Notably, water-soluble mercaptobenzoic acid-Pd(0) species could play an important role in formation of active (η^3 benzyl)palladium(II) cation complexes followed by *S*benzylation in our catalytic system, while benzenethiol is ineffective due to poisoning of palladium catalysts by sulfur (Scheme 1). To the best of our knowledge, the phosphine-free palladium-catalyzed *S*-benzylation with benzyl alcohols *via* (η^3 -benzyl)palladium(II) complexes in water has not been described before.

S-Benzylated thiophenyl structures are key units in a wide range of relevant pharmacophores with a broad spectrum of activities.¹¹ The most traditional *S*-benzylation method is the reaction of thiolate anions with benzyl halides.^{11b-c,12} However, the use of excess benzyl halides leads to over-reaction of reactive functional groups. For example, the reaction of 2mercaptobenzoic acid with 4-methylbenzyl chloride (2 equiv) gives benzyl esters as the undesired products.¹³ Protection of reactive functional groups such as amino, hydroxyl, or carboxyl groups is essential in organic synthesis, not only for suppressing side reactions, but also for easy handling by decreased polarity. However, protection sometimes causes serious problems, e.g., increasing the number of synthetic steps and difficulty in deprotecting unstable compounds. Therefore,

Page 2 of 9

the development of syntheses without protecting groups should lead to a breakthrough in organic synthesis.¹⁴

Scheme 1. Activation of the ${\rm sp}^3$ C-O bond for S-benzylation. Classical approach and our approach.

Results and discussion

1. Effects of catalysts and solvents on S-benzylation. First, the mixture of 4-mercaptobenzoic acid 1a and benzyl alcohol (2a, 5 equiv) in the presence of $Pd_2(dba)_3$ (2.5 mol %) in water was heated at 120 °C for 16 h in a sealed tube. S-Benzylated product 4a was obtained in 81% conversion and 80% yield (Table 1, entry 1). The use of Pd(PPh₃)₄ also resulted in good vield (entry 2). Reduction of Pd(II) complexes in the presence of a phosphine ligand such as PPh_3 or TPPMS gave a Pd(0)species that could be used as a catalyst (entries 3 and 4). Since $Pd(OAc)_2$ instead of Pd(0) was ineffective (entry 5) and the reaction did not proceed in the absence of the palladium catalyst (entry 6), a S_N2 reaction mechanism was excluded in the formation of the S-benzylated product. The direct substitution of benzhydrol 3a also afforded desired 5a in good yield (entries 7 and 8). Since using organic solvents such as DMF, EtOH or 1,4-dioxane resulted in no reaction (entries 9-11), water must play an important role in our catalytic system. To compare $Pd_2(dba)_3$ with other efficient catalysts, we tested the reaction using Brønsted acids such as TsOH H₂O, and effective Lewis acids such as Sc(OTf)₃, Hf(OTf)₄, or CuCl₂. However, the reaction did not proceed or gave low yields (entries 12-15), clearly showing the superiority of Pd₂(dba)₃ for the S-benzylation of mercaptobenzoic acid 1a with benzhydrol **3a** in water. In the presence of a base such as NaOH (1 equiv), the reaction did not proceed (entry 16). Basset and co-workers reported that the π -allyl palladium intermediate was unstable under basic conditions.¹⁵ Since our results were consistent with these reports on the palladium-catalyzed allylation with allylic alcohols, $(\eta^3$ -benzyl)palladium was proposed to be an intermediate here in analogy to the allylic substitution reaction.

2. Scope of benzyl alcohols **2.** Results for the *S*-benzylation of 4-mercaptobenzoic acid (1a) with a number of benzyl alcohols substituted by electron-withdrawing and electron-donating groups using $Pd_2(dba)_3$ in water are summarized in Table 2. The benzyl alcohols with electron-donating methoxy, methyl,

and ethyl groups resulted in good yields (4b, 70%; 4c, 86%; 4d, 75%). The use of 4-fluorobenzyl alcohol also resulted in good yield (4e, 80%). The benzyl alcohols with bromo and chloro groups produced S-benzylated products in good yields with the carbon-halogen moiety left intact, which could be employed for further manipulation (4f, 79%; 4g, 78%). The use of 3methoxybenzyl alcohol also resulted in good yield (4h, 84%). A sterically demanding methyl group at the *ortho* position was tolerated in the S-benzylation (4i, 65%). A heteroaryl methyl alcohol, thienyl methyl, also resulted in good yield (4j, 85%; 4k, 86%), although palladium-catalyzed reactions with heteroaryl methyl alcohol derivatives are extremely rare.¹⁶ S-Benzylation with α -alkyl benzyl alcohols proceeded smoothly to give the desired product in good yields in spite of the possible formation of a vinylarene through β-hydride elimination from the benzylpalladium intermediate (41, 80%).¹ A sterically demanding cyclic benzyl alcohol also gave good yield (4m, 77%). In contrast, the reaction using a substrate with a strong electron-withdrawing nitro group resulted in no reaction.

3. Scope of benzhydryl alcohols **3.** Results for the reaction of 4-mercaptobenzoic acid (1a) with a number of benzhydryl alcohols **3** using $Pd_2(dba)_3$ in water are summarized in Table 3. The use of benzhydryl alcohols with electron-donating methoxy and methyl groups resulted in excellent yield (5b, 95%; 5c, 83%; 5d, 82%). In contrast, the reaction using substrates with electron-withdrawing chloro and fluoro groups proceeded slowly (5e, 62%; 5f, 78%), and the strong electron-withdrawing decafluorophenyl group resulted in no reaction.

4. Scope of mercaptobenzoic acids 1. The reaction of 2mercaptobenzoic acids with benzyl alcohol (2a) proceeded to give S-benzylated 4n-p in overall yields ranging from 65 to 71% despite the steric effect of the carboxyl group at the *ortho*position (Table 4). 3-Mercaptobenzoic acid smoothly underwent S-benzylation to give S-benzylated 4q in 80% yield. The use of benzhydryl alcohol (3a) also resulted in good yields (5g, 65%; 5h, 78%; 5i, 68%). The reaction of 4mercaptophenylcarboxylic acid or 4-mercaptohydrocinnamic acid instead of mercaptobenzoic acids resulted in moderate yields (5j, 50%; 5k, 51%).

5. Hammett studies. To demonstrate the electronic effect of substituents on the rates of the C-O bond cleavage and C-S bond formation reactions, a Hammett study was conducted on the reaction of **2a** or **3a** with substituted benzylic alcohols **2** or benzhydryl alcohols **3** in the presence of Pd₂(dba)₃ (2.5 mol %) to obtain the ratio of rate constants. The results are summarized in Figure 1 (see Tables S1 and S2 in SI). The relative rates of coupling of 4-mercaptobenzoic acid (**1a**) with *para*-substituted benzylic alcohols (OMe, Me, Br, F, and Cl groups) were examined. Hammett plots show a good correlation (A: $R^2 = 0.98$; B: $R^2 = 0.93$) between the log(k_X/k_H) and the σ^+ value of the respective substituents that resulted in a negative ρ value of 2.7. These results suggested that a cationic (η^3 -benzyl)palladium(II) species was formed that played an important role in our catalytic system.

RSCPublishing

ARTICLE

Table 1. Effect of catalysts and solvents "											
	HO ₂ C		catalyst (2.5 or 5 mol %)	HO ₂ C	R 						
	SH 1a	R=H: 2a (5 equiv Ph: 3a (1.2 equ	solvent) 80-120 ^o C, 16 h iv) sealed tube	R=H: 4a Ph: 5a	S Ph						
Entry	Catalyst (mol %)	Alcohols	Solvent	Temp. (°C)	Products	Conversion (%) ^b					
1	$Pd_2(dba)_3(2.5)$	2a	H ₂ O	120	4 a	81 (80% yield) ^c					
2	$Pd(PPh_3)_4(5)$	2a	H_2O	120	4a	(87% yield) ^{c,d}					
3	$PdCl_2(PPh_3)_2(5)$	2a	H_2O	120	4 a	(86% yield) ^{c,d}					
4	$Pd(OAc)_2(5)/TPPMS(10)$	2a	H ₂ O	120	4a	(88% yield) ^{c,d}					
5	$Pd(OAc)_2(5)$	2a	H ₂ O	120	4a	27					
6	none	2a	H ₂ O	120	4a	0					
7	$Pd_2(dba)_3(2.5)$	3a	H ₂ O	80	5a	72					
8	$Pd_2(dba)_3(2.5)$	3a	H_2O	100	5a	85 (84% yield) ^c					
9	$Pd_2(dba)_3(2.5)$	3a	DMF	80	5a	0					
10	$Pd_2(dba)_3(2.5)$	3a	EtOH	80	5a	trace					
11	$Pd_2(dba)_3(2.5)$	3a	1,4-dioxane	80	5a	trace					
12	$TsOH \cdot H_2O(5)$	3a	H_2O	80	5a	0					
13	$Sc(OTf)_3(5)$	3a	H ₂ O	80	5a	trace					
14	$Hf(OTf)_4(5)$	3 a	H ₂ O	80	5a	40					
15	$CuCl_2(5)$	3a	H ₂ O	80	5a	43					
16	$Pd_{2}(dba)_{3}(2.5)$	3a	NaOHaq. (1 equiv)	80	5a	0					

^{*a*} Reaction conditions: 4-mercaptobenzoic acid **1a** (1 mmol), catalyst (2.5 or 5 mol %), benzylic alcohols (**2a**: 5 equiv or **3a**: 1.2 equiv), solvent (4 mL), 80-120 °C, 16 h in sealed tube. ^{*b*} The conversion was determined by ¹H NMR analysis of the crude product using *p*-nitroanisole as an internal standard. ^{*c*} Yield of isolated product in parenthesis. ^{*d*} 24 h.

Table 2. Scope of benzyl alcohols 2.^a

^{*a*} Reaction conditions: 4-mercaptobenzoic acid **1a** (1 mmol), Pd₂(dba)₃ (2.5 mol %), benzyl alcohols **2** (1.2 equiv), H₂O (4 mL), 80 or 120 °C, 16 h in sealed tube. Yield of isolated product.

Table 3. Scope of benzhydryl alcohols **3**.^{*a*}

 a Reaction conditions: 1 (1 mmol), Pd₂(dba)₃ (2.5 mol %), benzhydryl alcohols 3 (1.2 equiv), H₂O (4 mL), 100-120 °C, 16 h in sealed tube. Yield of isolated product.

Table 4. Scope of mercaptobenzoic acid 1.^a

 a Reaction conditions: 1 (1 mmol), Pd₂(dba)₃ (2.5 mol %), alcohol 2 or 3 (5 or 1.2 equiv), H₂O (4 mL), 80-120 °C, 16 h in sealed tube. Yield of isolated product.

Figure 1. Hammett plots for the rate constants of benzylation by various substituted benzylic alcohols (Table S1-2 in SI).

Table 5. Effect of Carboxyl Group.^a

RSCPublishing

ARTICLE

		R ¹ _USH	+ HO Ph R ² =H: 2a (5 equiv) Ph: 3a (1.2 equiv)	catalysts 80 or 120 °C 16 h, sealed tube	R^{1}	Ph		
Entry	Catalysts	\mathbf{R}^1	Hammett const.	\mathbb{R}^2	Solvents	Temp.	Additive	Yield of 7
	(mol %)		σ_p values			(°C)	(equiv)	(%)
1	$Pd_2(dba)_3(2.5)$	2-CO ₂ Me (6a)	-	Ph (3a)	H ₂ O or toluene	80	None	0
2	Pd ₂ (dba) ₃ (2.5)	4-CO ₂ Me (6b)	0.45	Ph (3a)	H_2O	80	None	0
3	Pd ₂ (dba) ₃ (2.5)	2-CO ₂ Me (6a)	-	Ph (3a)	H ₂ O	80	AcOH (1)	0
4	Pd(OAc) ₂ (5)/ TPPMS (10)	2-CO ₂ Me (6a)	-	H (2a)	H ₂ O	120	None or AcOH (1)	0
5	$Pd(OAc)_2(5)/TPPMS(10)$	Н (6с)	0	H (2a)	H_2O	120	None or AcOH (4)	0
6	$Pd_2(dba)_3(5)$	$NO_2(6d)$	0.778	Ph (3a)	H ₂ O	80	None	69 (7a)

Scheme 2. Effect of the position of carboxyl groups.

 a Reaction conditions: 1 (1 mmol), Pd₂(dba)₃ (2.5 mol %), 3a (1.2 equiv), H₂O (4 mL), 80 °C, 16 h.

6. Role of Carboxyl Group. To evaluate the role of the carboxyl group¹⁸ of the mercaptobenzoic acids, S-benzylations 2-mercaptobenzoic acid methyl ester (6a), of 4mercaptobenzoic acid methyl ester (6b), benzenethiol (6c), and 4-nitrobenzenethiol (6d) were carried out (Table 5). The reaction of ester 6a or 6b with benzhydryl alcohol (3a) using Pd₂(dba)₃ in water or toluene did not afford the S-benzylated products 7 (entries 1 and 2). In the presence of AcOH (1 equiv), the reaction also did not proceed (entry 3). In the presence of TPPMS, thiol 6a or 6c also did not afford S-benzylated 7. In contrast, the use of benzenethiol with strong electronwithdrawing nitro group afforded the desired 7a in 69% yield (entry 6). These results suggested that the electron-withdrawing property at the *para*-position on benzene rings causes an increase in the acidity of the mercapto groups, followed by

formation of thiolate-Pd(II) species or thiolate anions as a nucleophile in our catalytic system. Indeed, while the carboxyl groups at the *ortho*-or *para*-position resulted in good yields (**5a**, 72%; **5g**, 68%), those at the *meta*-position resulted in low yield (**5i**, 48%) (Scheme 2). Additionally, mercaptophenylcarboxylic acid (**1c**) or 4-mercaptobhydrocinnamic acid (**1b**) resulted in no reaction. However, 4-mercaptobenzoic acid **1a** (σ_p value: 0.45) resulted in good yield (72%), while the reaction of ester **6a** (σ_p value: 0.45) did not proceed (see Scheme 2 and Table 5). Therefore, the carboxylate anion **1a'** as a base would play an important role in deprotonation of mercapto group **9** in water (Scheme 3).

7. Mechanism. These results and our previous report suggest the following mechanism for the S-benzylation of 4mercaptobenzoic acid 1a with benzylic alcohols 2 using $Pd_2(dba)_3$ in water (Scheme 3). In the absence of a strong stabilizer such as a phosphine ligand for Pd(0), the low reactive precipitate of Pd black is produced. In contrast, $Pd_2(dba)_3$ ligates with thiol **1a** to form thiol-protected Pd(0) species **8**.¹⁰ Next, oxidative addition of alcohol 2 to thiol-Pd(0) species 8 affords the cationic $(\eta^3$ -benzyl)palladium(II) complex 9. These processes should be favored by electron-donating R groups on intermediate 16, since these will stabilize the positive charge on Pd(II). Hammett studies show a negative ρ value of 2.7, suggesting that there is a build-up of positive charge in the transition state. Indeed the benzylation using 4-nitrobenzyl alcohol 2b or decafluorobenzhydryl alcohol 3b does not proceed, since alcohols 2b or 3b cannot form cationic intermediates 9 (see Table 3). The carboxyl group of mercaptobenzoic acid and water activate the benzyl alcohol for the smooth generation of the cationic Pd(II) species 9, which is stabilized by hydration. Indeed the reaction does not occur in organic solvents (see Table 1). Next, a thiolate-Pd(II) species is formed, then the nucleophilic thiolate anion ligand attacks the electrophilically active (η^3 -benzyl) ligand of intermediate 9 to afford the desired product 4 and regenerate Pd(0). Formation of the thiolate-Pd(II) species should be favored by electronwithdrawing R groups on intermediate **9**, since these will stabilize the negative charge. Indeed, the use of benzene thiols with electron-withdrawing carboxyl groups at the *ortho-* or *para*-position proceeded smoothly compared with the *meta*-position (see Scheme 2).

Additionally, thiol-stabilized Pd nanoparticles featuring carboxylic functional end-groups at the edge of the selfassembled monolayer have been conveniently prepared starting from Pd(II) and 11-mercaptoundecanoic acid in aqueous media.^{11c} Therefore, mercaptobenzoic acids (1) might form a monolayer in water, which is important in our catalytic system. Although the characterization of thiol-protected (η^3 benzyl)palladium(II) cation complexes are very difficult, there have been many reports on the stabilization of palladium nanoparticles by thiol ligands due to the strong interaction palladium atoms.¹⁰ between and sulfur and palladium(II)/thiosalicylic acid complexes have been characterized.^{10a,f-h} In addition, we could propose the formation of thiol-protected (η^3 -benzyl)palladium(II) cation complexes by Hammett studies.

Scheme 3. Plausible mechanism.

Scheme 4. Pd-catalyzed reaction of disulphide 10.

In general, thiols undergo oxidative homocoupling to produce disulfide byproducts. As shown in Scheme 4, disulfide 10 did not afford *S*-benzylated 5i, suggesting that disulfide 10 was not an intermediate and oxidative homocoupling did not occur in our catalytic system. Additionally, although the direct use of thiols has drawbacks due to their foul smell, the use of mercaptobenzoic acid can solve this problem.¹⁹

Conclusions

In summary, we have demonstrated a phosphine-free palladiumcatalyzed S-benzylation with benzylic alcohols in water. The thiolprotected (η^3 -benzyl)palladium(II) cation complexes are highly efficient catalysts for S-benzylation. Water-soluble mercaptobenzoic acid-Pd(0) species could play an important role in the formation of active (η^3 -benzyl)palladium(II) cation complexes followed by Sbenzylation in our catalytic system. Hammett studies on the rate constants of benzylation by various substituted alcohols show a good correlation. The negative ρ values showed that there is a build-up of positive charge in the transition state. Notably, our catalytic system and the proposed mechanism provide a scope for the development of palladium-catalyzed reactions for the direct modification of thiols, which are pharmaceutically active compounds, and electro materials.

Experimental

General procedure: A mixture of mercaptobenzoic acids 1 (1 mmol), $Pd_2(dba)_3$ (23 mg, 0.025 mmol), and benzylic alcohols (2a: 5 mmol or 3a: 1.2 mmol), in H_2O (4 mL) was heated at 80-120 °C for 16 h in sealed tube. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over $MgSO_4$ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc) to give desired product 4 or 5.

4-Benzylthiobenzoic acid 4a (Table 1)

195 mg (80%); white solid; mp 188-190 °C; IR (KBr) (cm⁻¹) 3401, 2925, 1676, 1589, 1419, 1289; ¹H NMR (400 MHz, DMSO-d₆): δ 4.35 (s, 2H), 7.23 (t, *J*=7.2 Hz, 1H), 7.32 (dd, *J*=7.2, 7.2 Hz, 2H), 7.41 (d, *J*=7.2 Hz, 2H), 7.42 (d, *J*=8.4 Hz, 2H), 7.82 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 35.3, 126.4, 127.2, 127.4, 128.5, 128.8, 129.7, 136.8, 143.0, 166.9; MS (EI): *m/z* (%) 244 (M⁺, 35.0), 91 (100).

4-(4-Methoxybenzylthio)benzoic acid 4b (Table 2)⁴

191 mg (70%); white solid; mp 200-202 °C; IR (KBr) (cm⁻¹) 2955, 1683, 1589, 1505, 1419, 1294; ¹H NMR (400 MHz, DMSO-d₆): δ 3.72 (s, 3H), 4.29 (s, 2H), 6.87 (d, *J*=8.8 Hz, 2H), 7.33 (d, *J*=8.8 Hz, 2H), 7.40 (d, *J*=8.8 Hz, 2H), 7.83 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 34.8, 55.0, 113.9, 126.4, 127.3, 128.4, 129.7, 130.0, 143.3, 158.4, 166.9; MS (EI): *m/z* (%) 274 (M⁺, 9.4), 121 (100).

4-(4-Methylbenzylthio)benzoic acid **4c** (Table 2) 4

288 mg (86%); white solid; mp 210-212 °C; IR (KBr) (cm⁻¹) 2916, 1681, 1588, 1418, 1288; ¹H NMR (400 MHz, DMSO-d₆): δ 2.26 (s, 3H), 4.30 (s, 2H), 7.11 (d, *J*=8.0 Hz, 2H), 7.29 (d, *J*=8.0 Hz, 2H), 7.41 (d, *J*=8.4 Hz, 2H), 7.82 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 20.6, 35.1, 126.4, 127.3, 128.7, 129.0, 129.7, 133.6, 136.4, 143.1, 166.9; MS (EI): *m/z* (%) 258 (M⁺, 13.9), 105 (100).

4-(4-Ethylbenzylthio)benzoic acid 4d (Table 2)⁴

204 mg (75%); white solid; mp 203-205 °C; IR (KBr) (cm⁻¹) 2963, 1680, 1587, 1417, 1288; ¹H NMR (400 MHz, DMSO-d₆): δ 1.15 (t, *J*=8.0 Hz, 3H), 2.56 (q, *J*=8.0 Hz, 2H), 4.31 (s, 2H), 7.15 (d, *J*=8.0 Hz, 2H), 7.32 (d, *J*=8.0 Hz, 2H), 7.41 (d, *J*=8.4 Hz, 2H), 7.83 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 15.5, 27.8, 35.0, 126.3, 127.3, 127.9, 128.8, 129.7, 133.9, 142.8, 143.2, 167.0; MS(EI): *m/z* (%) 272 (M⁺, 12.4), 119 (100).

4-(4-Fluorobenzylthio)benzoic acid 4e (Table 2)

210 mg (80%); off-white solid; mp 197-199 °C; IR (KBr) (cm⁻¹) 2821, 1675, 1589, 1503, 1415, 1286; ¹H NMR (400 MHz, DMSO-d₆): δ 4.35 (s, 2H), 7.14 (d, *J*=8.8 Hz, 2H), 7.42 (d, *J*=8.4 Hz, 2H), 7.45 (dd, *J*=8.8, 5.6 Hz, 2H), 7.83 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 34.5, 115.1, 115.4, 126.5, 127.5, 129.7, 130.8, 133.0, 133.1, 142.7, 160.1, 162.5, 166.9; MS (EI): *m/z* (%) 262 (M⁺, 48.7), 109 (100).

4-(4-Chlorobenzylthio)benzoic acid 4f (Table 2)⁴

220 mg (79%); white solid; mp 210-212 °C; IR (KBr) (cm⁻¹) 2842, 1685, 1589, 1419, 1295; ¹H NMR (400 MHz, DMSO-d₆): δ 4.36 (s, 2H), 7.34-7.46 (m, 6H), 7.83 (d, *J*=8.0 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 34.5, 126.6, 127.6, 128.4, 129.7, 130.7, 131.8, 136.1, 142.5, 166.9; MS(EI): *m/z* (%) 280 (M⁺+2, 6.6), 278 (M⁺, 17.2), 125 (100).

4-(4-Bromobenzylthio)benzoic acid 4g (Table 2) 4

252 mg (78%); white solid; mp 222-224 °C; IR (KBr) (cm⁻¹) 2879, 1684, 1589, 1419, 1291; ¹H NMR (400 MHz, DMSO-d₆): δ 4.34 (s, 2H), 7.38 (d, *J*=8.4 Hz, 2H), 7.41 (d, *J*=8.0 Hz, 2H), 7.50 (d, *J*=8.4 Hz, 2H), 7.83 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 34.5, 120.3, 126.6, 127.6, 129.7, 131.0, 131.3, 136.5, 142.5, 166.9; MS(EI): *m/z* (%) 324 (M⁺+2, 17.8), 322 (M⁺, 17.2), 169 (100).

4-(3-Methoxybenzylthio)benzoic acid **4h** (Table 2)

230 mg (84%); white solid; mp 145-147 °C; IR (KBr) (cm⁻¹) 2834, 1675; ¹H NMR (400 MHz, DMSO-d₆): δ 3.72 (s, 3H), 6.82 (ddd, *J*=8.3, 2.5, 0.9 Hz, 1H), 6.98-7.01 (m, 2H), 7.24 (dd, *J*=4.8 Hz, 1H), 7.42 (d, *J*=8.7 Hz, 2H), 7.83 (d, *J*=8.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 35.8, 55.5, 113.2, 115.0, 121.6, 126.9, 127.9, 130.1, 130.2, 138.8, 143.6, 159.8, 167.5; MS (EI): *m/z* (%) 274 (M⁺, 26), 121 (100); Anal. Calcd for C₁₅H₁₄O₃S: C, 65.67; H, 5.14; N, 0. Found: C, 65.44; H, 4.83; N, 0.

4-(2-Methylbenzylthio)benzoic acid **4i** (Table 2)⁴

168 mg (65%); white solid; mp 173-175 °C; IR (KBr) (cm⁻¹) 2866, 1678, 1587, 1415, 1286; ¹H NMR (400 MHz, DMSO-d₆): δ 2.38 (s, 3H), 4.33 (s, 2H), 7.10-7.25 (m, 3H), 7.32 (d, *J*=7.2 Hz, 1H), 7.44 (d, *J*=8.0 Hz, 2H), 7.86 (d, *J*=8.0 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 18.7, 34.1, 126.0, 126.6, 127.5, 127.6, 129.7, 130.4, 134.1, 136.7, 143.3, 167.0; MS(EI): *m/z* (%) 258 (M⁺, 16.7), 105 (100).

4-(Thiophen-3-ylmethylthio)benzoic acid 4j (Table 2)

213 mg (85%); white solid; mp 188-190 °C; IR (KBr) (cm⁻¹) 2558, 1683; ¹H NMR (400 MHz, DMSO-d₆): δ 4.36 (s, 2H), 7.11 (dd, *J*=5.0, 1.4 Hz, 1H), 7.41 (d, *J*=8.7 Hz, 2H), 7.45 (s, 1H), 7.49 (dd, *J*=5.0, 3.0 Hz, 1H), 7.83 (d, *J*=8.5 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 30.6, 124.0, 126.8, 127.1, 127.8, 128.8, 130.2, 137.6, 143.6, 167.5; MS (EI): *m/z* (%) 250 (M⁺, 19), 97 (100); Anal. Calcd for C₁₂H₁₀O₂S₂: C, 57.58; H, 4.03; N, 0. Found: C, 57.53; H, 3.79; N, 0.

4-(Thiophen-2-ylmethylthio)benzoic acid 4k (Table 2)⁴

215 mg (85%); off-white solid; mp 136-138 °C; IR (KBr) (cm⁻¹) 2838, 1678, 1589, 1417, 1290; ¹H NMR (400 MHz, DMSO-d₆): δ 4.60 (s, 2H), 6.93 (dd, *J*=5.2, 3.6 Hz, 1H), 7.07 (d, *J*=3.6 Hz, 1H), 7.40 (dd, *J*=5.2, 1.2 Hz, 1H), 7.45 (d, *J*=8.4 Hz, 2H), 7.84 (d, *J*=8.0 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 30.1, 125.6, 126.8, 126.9, 127.7, 129.7, 140.1, 142.2, 166.9; MS (EI): *m/z* (%) 250 (M⁺, 30.7), 97 (100).

4-(1-Phenylethylthio)benzoic acid **4I** (Table 2)⁴

207 mg (80%); white solid; mp 172-174 °C; IR (KBr) (cm⁻¹) 3430, 2974, 2920, 1683, 1591, 1426, 1301; ¹H NMR (400 MHz, DMSO-d₆): δ 1.59 (d, *J*=6.8 Hz, 3H), 4.81 (q, *J*=6.8 Hz, 1H), 7.23 (t, *J*=7.2 Hz, 1H), 7.32 (t, *J*=7.2 Hz, 2H), 7.40 (d, *J*=8.4 Hz, 2H), 7.45 (d, *J*=7.2 Hz, 2H), 7.80 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 22.3, 44.6, 127.2, 127.3, 127.9, 128.2, 128.5, 129.6, 142.0, 142.5, 166.9; MS (EI): *m/z* (%) 258 (M⁺, 57.5), 105 (100).

4-(1,2,3,4-Tetrahydronaphthalen-1-ylthio)benzoic acid **4m** (Table 2) 4

218 mg (77%); off-white solid; mp 169-171 °C; IR (KBr) (cm⁻¹) 2936, 1684, 1590, 1418, 1286; ¹H NMR (400 MHz, DMSO-d₆): δ 1.70-1.80 (m, 1H), 1.90-2.10 (m, 3H), 2.65-2.85 (m, 2H), 4.98 (s, 1H), 7.10-7.20 (m, 3H), 7.38 (d, *J*=7.2 Hz, 1H), 7.53 (d, *J*=8.0 Hz,

2H), 7.90 (dd, *J*=8.4, 1.2 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 18.2, 27.9, 28.3, 44.6, 125.7, 127.2, 128.0, 129.1, 129.9, 130.4, 134.3, 137.5, 142.6, 166.9; MS (EI): *m/z* (%) 284 (M⁺, 6.0), 131 (100).

2-Benzylthiobenzoic acid 4n (Table 4)⁴

159 mg (65%); white solid; mp 187-189 °C; IR (KBr) (cm⁻¹) 3413, 2920, 1674, 1459, 1411, 1262; ¹H NMR (400 MHz, DMSO-d₆): δ 4.21 (s, 2H), 7.18-7.23 (m, 1H), 7.27 (t, *J*=6.0 Hz, 1H), 7.34 (t, *J*=7.2 Hz, 2H), 7.40-7.60 (m, 2H), 7.48-7.52 (m, 2H), 7.89 (d, *J*=7.6 Hz, 1H), 13.0 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 35.7, 124.0, 125.7, 127.1, 127.6, 128.5, 129.2, 130.9, 132.3, 136.6, 141.2, 167.4; MS(EI): *m/z* (%) 244 (M⁺, 25.1), 91 (100).

2-Benzylthio-5-fluorobenzoic acid **40** (Table 4)⁴

184 mg (70%); white solid. mp 153-155 °C; IR (KBr) (cm⁻¹) 3034, 2912, 1690, 1465, 1424, 1246; ¹H NMR (400 MHz, DMSO-d₆): δ 4.21 (s, 2H), 7.27 (t, *J*=7.2 Hz, 1H), 7.34 (t, *J*=7.2 Hz, 2H), 7.38-7.44 (m, 3H), 7.51 (dd, *J*=9.0, 5.2 Hz, 1H), 7.63 (dd, *J*=9.0, 2.8 Hz, 1H), 13.4 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 36.1, 117.0, 117.3, 119.3, 119.5, 127.2, 128.3, 128.4, 128.5, 129.1, 129.9, 130.0, 136.2, 136.5, 157.8, 160.2, 166.4; MS(EI): *m/z* (%) 262 (M⁺, 18.7), 91 (100).

2-Benzylthio-5-chlorobenzoic acid 4p (Table 4)⁴

198 mg (71%); white solid; mp 162-164 °C; IR (KBr) (cm⁻¹) 2924, 1681, 1462, 1317, 1250; ¹H NMR (400 MHz, DMSO-d₆): δ 4.23 (s, 2H), 7.27 (t, *J*=7.2 Hz, 1H), 7.34 (t, *J*=6.0 Hz, 2H), 7.43 (d, *J*=7.2 Hz, 2H), 7.51 (d, *J*=8.6 Hz, 1H), 7.58 (dd, *J*=8.6, 2.4 Hz, 1H), 7.84 (d, *J*= 2.4 Hz, 1H), 13.4 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 35.7, 127.3, 127.7, 128.5, 129.1, 130.1, 131.9, 136.3, 140.2, 166.2; MS (EI): *m/z* (%) 280 (M⁺+2, 13.3), 278 (M⁺, 35.8), 91 (100).

3-Benzylthiobenzoic acid 4q (Table 4)⁴

195 mg (80%); white solid; mp 129-131 °C; IR (KBr) (cm⁻¹) 2847, 1689, 1579, 1433, 1288; ¹H NMR (400 MHz, DMSO-d₆): δ 4.30 (s, 2H), 7.23 (t, *J*=7.2 Hz, 1H), 7.30 (t, *J*=7.2 Hz, 2H), 7.35-7.39 (m, 2H), 7.42 (t, *J*=8.0 Hz, 1H), 7.55-7.60 (m, 1H), 7.73 (dt, *J*=8.0, 1.2 Hz, 1H), 7.84 (t, *J*=1.6 Hz, 1H), 13.1 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 36.4, 126.7, 127.1, 128.4, 128.6, 128.8, 129.2, 131.5, 132.3, 136.9, 137.1, 166.8; MS(EI): *m/z* (%) 244 (M⁺, 67.1), 91 (100).

4-(Benzhydrylthio)benzoic acid **5a** (Table 1)⁴

269 mg (84%); off-white solid; mp 179-181 °C; IR (KBr) (cm⁻¹) 3021, 1685, 1591, 1488, 1417, 1282; ¹H NMR (400 MHz, DMSO-d₆): δ 6.13 (s, 1H), 7.23 (t, *J*=7.2 Hz, 2H), 7.30-7.40 (m, 6H), 7.52 (d, *J*=7.6 Hz, 4H), 7.75 (d, *J*=8.4 Hz, 2H), 12.9 (brs, 1H); ¹³C NMR (400 MHz, DMSO-d₆): δ 53.3, 127.4, 127.8, 128.0, 128.7, 129.6, 140.5, 142.2, 166.8; MS(EI): *m/z* (%) 320 (M⁺, 2.1), 167 (100).

4-[Bis(4-methoxyphenyl)methylthio]benzoic acid **5b** (Table 3)

293 mg (95%); white solid; mp 160-162 °C; IR (KBr) (cm⁻¹) 2830, 1686, 1600; ¹H NMR (400 MHz, DMSO-d₆): δ 3.71 (s, 6H), 6.04 (s, 1H), 6.88 (d, *J*=8.9 Hz, 4H), 7.34 (d, *J*=8.7 Hz, 2H), 7.39 (d, *J*=8.9 Hz, 4H), 7.74 (d, *J*=8.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 52.6, 55.6, 114.5, 127.7, 128.1, 129.6, 130.1, 133.2, 143.3, 158.8, 167.4; MS (FAB): *m*/z 381 [M+H]⁺; Anal. Calcd for C₂₂H₂₀O₄S: C, 69.45; H, 5.30; N, 0. Found: C, 69.18; H, 5.00; N, 0.

4-[4-Methoxyphenylphenylmethylthio]benzoic acid **5c** (Table 3) 291 mg (83%); white solid; mp 183-185 °C; IR (KBr) (cm⁻¹) 2841, 1684; ¹H NMR (400 MHz, DMSO-d₆): δ 3.71 (s, 3H), 6.08 (s, 1H), 6.88 (d, *J*=8.7 Hz, 2H), 7.23 (tt, *J*=7.3, 1.1 Hz, 1H), 7.32 (dd, *J*=7.8, 7.8 Hz, 2H), 7.35 (d, *J*=8.7 Hz, 2H), 7.42 (d, *J*=8.7 Hz, 2H), 7.49 (d, *J*=8.0 Hz, 2H), 7.75 (d, *J*=8.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 52.6, 54.9, 113.9, 127.2, 127.5, 127.8, 128.5, 129.1, 129.5, 132.2140.7, 142.4, 158.3, 166.7; MS (FAB): *m/z* 331 [M+H]⁺; Anal. Calcd for C₂₁H₁₈O₃S: C, 71.98; H, 5.18; N, 0. Found: C, 71.98; H, 4.92; N, 0.

4-[Phenyl(*p*-tolyl)methylthio]benzoic acid **5d** (Table 3)

Page 8 of 9

Journal Name

274 mg (82%); white solid; mp 187-189 °C; IR (KBr) (cm⁻¹) 3025, 1676; ¹H NMR (400 MHz, DMSO-d₆): δ 2.24 (s, 3H), 6.09 (s, 1H), 7.13 (d, *J*=7.8 Hz, 2H), 7.23 (dt, *J*=7.3, 1.4 Hz, 1H), 7.28-7.42 (m, 6H), 7.49 (d, *J*=7.1 Hz, 2H), 7.74 (d, *J*=8.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 21.1, 53.5, 127.9, 128.3, 128.4, 128.5, 129.2, 129.8, 130.1, 137.2, 138.0, 141.2, 142.9, 167.4; MS (FAB): *m/z* 335 [M+H]⁺; Anal. Calcd for C₂₁H₁₈O₂S: C, 75.42; H, 5.43; N, 0. Found: C, 75.28; H, 5.12; N, 0.

4-[(4-Chlorophenyl)phenylmethylthio]benzoic acid **5e** (Table 3)

220 mg (62%); white solid; mp 173-175 °C; IR (KBr) (cm⁻¹) 3004, 1685; ¹H NMR (400 MHz, DMSO-d₆): δ 6.19 (s, 1H), 7.25 (dd, *J*=6.4, 6.4 Hz, 1H), 7.30-7.47 (m, 6H), 7.49 (d, *J*=8.5 Hz, 2H), 7.54 (d, *J*=8.5 Hz, 2H), 7.76 (d, *J*=8.5 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 53.0, 128.1, 128.5, 129.2, 129.3, 130.2, 130.4, 132.5, 140.1, 140.6, 142.3, 167.3; MS (FAB): *m/z* 357 [M+2+H]⁺, 355 [M+H]⁺; Anal. Calcd for C₂₀H₁₅ClO₂S: C, 67.70; H, 4.26; N, 0. Found: C, 67.44; H, 4.11; N, 0.

4-[Bis(4-fluorophenyl)methylthio]benzoic acid 5f (Table 3)

278 mg (78%); white solid; mp 179-181 °C; IR (KBr) (cm⁻¹) 2991, 1683; ¹H NMR (400 MHz, DMSO-d₆): δ 6.22 (s 1H), 7.17 (dd, *J*=8.9, 8.9 Hz, 4H), 7.38 (d, *J*=8.7 Hz, 2H), 7.52 (d, *J*=8.7 Hz, 2H), 7.55 (d, *J*=8.7 Hz, 2H), 7.77 (d, *J*=8.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 52.1, 116.1 (d, *J*=21.0 Hz), 128.2, 128.6, 130.2, 130.5 (d, *J*=7.6 Hz), 137.1 (d, *J*=2.9 Hz), 142.3, 161.8 (d, *J*=243 Hz), 167.3; MS (FAB): *m/z* 337 [M+H]⁺; Anal. Calcd for C₂₀H₁₄F₂O₂S: C, 67.40; H, 3.96; N, 0. Found: C, 67.37; H, 3.94; N, 0.

2-(Benzhydrylthio)benzoic acid **5g** (Table 4)

208 mg (65%); white solid; mp 209-211 °C; IR (KBr) (cm⁻¹) 3024, 1681; ¹H NMR (400 MHz, DMSO-d₆): δ 5.99 (s, 1H), 7.13 (dd, *J*=6.9, 1.6 Hz, 1H), 7.24 (tt, *J*=7.3, 1.1 Hz, 2H), 7.28-7.38 (m, 6H), 7.49 (dt, *J*=8.0, 1.4 Hz, 4H), 7.84 (dd, *J*=8.9, 1.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 53.4, 124.7, 127.4, 127.8, 128.7, 128.8, 129.2, 131.3, 132.5, 140.7, 141.3, 168.0; MS (FAB): *m/z* 334 [M+H]⁺; Anal. Calcd for C₂₀H₁₆O₂S: C, 74.97; H, 5.03; N, 0. Found: C, 74.61; H, 4.70; N, 0.

2-(Benzhydrylthio)-5-fluorobenzoic acid 5h (Table 4)

264 mg (78%); white solid; mp 166-168 °C; IR (KBr) (cm⁻¹) 3066, 1687; ¹H NMR (400 MHz, DMSO-d₆): δ 6.00 (s, 1H), 7.20-7.30 (m, 4H), 7.33 (dd, *J*=7.3, 7.3 Hz, 4H), 7.47 (d, *J*=7.1 Hz, 4H), 7.58 (dd, *J*=9.4, 3.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 53.9, 117.5 (d, *J*=22.9 Hz), 119.7 (d, *J*=21.9 Hz), 127.9, 128.7, 129.2, 130.2 (d, *J*=7.6 Hz), 131.4 (d, *J*=6.7 Hz), 135.5 (d, *J*=2.9 Hz), 141.1, 159.6 (d, *J*=243 Hz), 167.1; MS (FAB): *m*/z 339 [M+H]⁺; Anal. Calcd for C₂₀H₁₅FO₂S: C, 70.99; H, 4.47; N, 0. Found: C, 70.80; H, 4.31; N, 0. 3-(Benzhydrylthio)benzoic acid **5i** (Table 4)

218 mg (68%); white solid; mp 127-129 °C; IR (KBr) (cm⁻¹) 2559, 1693; ¹H NMR (400 MHz, DMSO-d₆): δ 6.02 (s, 1H), 7.22 (dd, *J*=7.3, 7.3 Hz, 2H), 7.28-7.38 (m, 5H), 7.50 (d, *J*=7.3 Hz, 4H), 7.54 (dt, *J*=8.7, 0.9 Hz, 1H), 7.69 (dt, *J*=7.8, 1.1 Hz, 1H), 7.82 (t, *J*= 1.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 55.0, 127.7, 127.9, 128.6, 129.1, 129.6, 130.4, 131.9, 134.0, 136.8, 141.2, 167.2; MS (FAB): *m*/z 321 [M+H]⁺; Anal. Calcd for C₂₀H₁₆O₂S: C, 74.97; H, 5.03; N, 0. Found: C, 74.74; H, 4.76; N, 0.

2-[4-(Benzhydrylthio)phenyl]acetic acid 5j (Table 4)

167 mg (50%); white solid; mp 99-101 °C; IR (KBr) (cm⁻¹) 3026, 1695; ¹H NMR (400 MHz, DMSO-d₆): δ 3.48 (s, 2H), 5.91 (s, 1H), 7.10 (d, *J*=8.5 Hz, 2H), 7.15-7.28 (m, 4H), 7.31 (dd, *J*=7.1, 7.1 Hz, 4H), 7.49 (d, *J*=7.1 Hz, 4H); ¹³C NMR (100 MHz, DMSO-d₆): δ 40.5, 55.3, 127.7, 128.6, 129.1, 129.8, 130.5, 133.8, 134.1, 141.7, 173.0; MS (FAB): *m/z* 334 [M]⁺; Anal. Calcd for C₂₁H₁₈O₂S•0.2H₂O: C, 74.62; H, 5.49; N, 0. Found: C, 74.70; H, 5.31; N, 0.

3-[4-(Benzhydrylthio)phenyl]propanoic acid 5k (Table 4)

178 mg (51%); white solid; mp 97-99 °C; IR (KBr) (cm⁻¹) 3026, 1707; ¹H NMR (400 MHz, DMSO-d₆): δ 2.61 (t, *J*=8.0 Hz, 2H), 2.86 (t, *J*=8.0 Hz, 2H), 5.49 (s, 1H), 7.01 (d, *J*=8.2 Hz, 2H), 7.15 (d, *J*=8.2 Hz, 2H), 7.18-7.24 (m, 2H), 7.29 (dd, *J*=7.1, 7.1 Hz, 4H), 7.40 (d, *J*=6.9 Hz, 4H), 7.84 (dd, *J*=8.0, 1.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 30.3, 35.4, 55.5, 127.7, 128.5, 129.1, 129.3, 130.2, 133.2, 139.8, 141.7, 174.2; MS (FAB): *m/z* 348 [M]⁺; Anal. Calcd for C₂₂H₂₀O₂S•0.6H₂O: C, 73.55; H, 5.95; N, 0. Found: C, 73.52; H, 5.63; N, 0.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Number 25460026.

Notes and references

Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan. E-mail: hidemasa.hikawa@phar.toho-u.ac.jp and isao.azumaya@phar.toho-u.ac.jp

[†] Electronic Supplementary Information (ESI) available: [Copies of ¹H and ¹³C NMR spectra for new compounds.]. See DOI: 10.1039/c000000x/

- (a) S. Ueno, S. Komiya, T. Tanaka, R. Kuwano, Org. Lett., 2012, 14, 1 338-341; (b) P. Xie, Y. Xie, B. Qian, H. Zhou, C. Xia, H. Huang, J. Am. Chem. Soc., 2012, 134, 9902-9905; (c) B. M. Trost, L. C. Czabaniuk, J. Am. Chem. Soc., 2012, 134, 5778-5781; (d) S. Zhang, Y. Wang, X. Feng, M. Bao, J. Am. Chem. Soc., 2012, 134, 5492-5495; (e) B. Peng, S. Zhang, X. Yu, X. Feng, M. Bao, Org. Lett., 2011, 13, 5402-5405; (f) S. L. Marquard, Hartwig, J. F. Angew. Chem., Int. Ed., 2011, 50, 7119-7123; (g) S. L. Marquard, D. C. Rosenfeld, J. F. Hartwig, Angew. Chem., Int. Ed., 2010, 49, 793-796; (h) B. M. Trost, L. C. Czabaniuk, J. Am. Chem. Soc., 2010, 132, 15534-15536; (i) R. Kuwano, Synthesis, 2009, 1049-1061; (j) A. M. Johns, M. Utsunomiya, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 1828-1839; (k) R. Kuwano, Y. Konda, Y. Matsuyama, J. Am. Chem. Soc., 2003, 125, 12104-12105; (1) Y. Becker, J. K. Stille, J. Am. Chem. Soc., 1978, 100, 845-850.
- (a) G. Verspui, G. Papadogianakis, R. A. Sheldon, *Catal. Today*, 1998, **42**, 449–458; (b) G. Papadogianakis, L. Maat, R. A. Sheldon, *J. Chem. Tech. Biotechnol.*, 1997, **70**, 83–91.
- 3 (a) H. Hikawa, N. Matsuda, H. Suzuki, Y. Yokoyama, I. Azumaya, *Adv. Synth. Catal.*, 2013, **355**, 2308–2320; (b) H. Hikawa, Y. Yokoyama, *RSC Adv.*, 2013, **3**, 1061–1064; (c) H. Hikawa, H. Suzuki, Y. Yokoyama, I. Azumaya, *Catalysts*, 2013, **3**, 486–500; (d) H. Hikawa, Y. Ino, H. Suzuki, Y. Yokoyama, *J. Org. Chem.*, 2012, **77**, 7046–7051; (e) H. Hikawa, Y. Yokoyama, *Org. Lett.*, 2011, **13**, 6512–6515.
- 4 H. Hikawa, Y. Yokoyama, Org. Biomol. Chem., 2012, 10, 2942– 2945.
- 5 M. Jha, O. Enaohwo, A. Marcellus, *Tetrahedron Lett.*, 2009, **50**, 7184–7187.
- 6 M. Jha, O. Enaohwo, S. Guy, *Tetrahedron Lett.*, 2011, **52**, 684–687.
- Y. Guindon, R. Frenette, R. Fortin, J. Rokach, J. Org. Chem., 1983, 48, 1357–1359.
- H. Firouzabadi, N. Iranpoor, M. Jafarpour, *Tetrahedron Lett.*, 2006, 47, 93–97.
- 9 Reviews: T. Kondo, T. Mitsudo, Chem. Rev., 2000, 100, 3205-3220.

- (a) G. Corthey, A. A. Rubert, A. L. Picone, G. Casillas, L. J. Giovanetti, J. M. Ramallo-Lopez, E. Zelaya, G. A. Benitez, F. G. Requejo, M. Jose-Yacaman, R. C. Salvarezza, M. H. Fonticelli, J. Phys. Chem. C, 2012, 116, 9830-9837; (b) E. Gao, F. Guan, X. Gao, M. Zhu, L. Liu, C. Wang, W. Zhang Y. Sun, J. Biol. Inorg. Chem. 2012, 17, 263-274; (c) M. Cargnello, N. L. Wieder, P. Canton, T. Montini, G. Giambastiani, A. Benedetti, R. J. Gorte, P. Fornasiero, Chem. Mater., 2011, 23, 3961-3969; (d) F. Lu, J. Ruiz, D. Astruc, Tetrahedron Lett., 2004, 45, 9443-9445; (e) W. Henderson, B. K. Nicholson, Inorganica Chemica Acta, 2003, 346, 7-11; (f) L. L. Maisela, A. M. Crouch, J. Darkwa, I. A. Guzei, Polyhedron, 2001, 20, 3189-3200; (g) W. Henderson, L. J. McCaffrey, B. K. Nicholsn, J. Chem. Soc., Dalton Trans., 2000, 2753-2760; (h) W. H. Meyer, R. Brull, H. G. Raubenheimer, C. Thompson, G. J. Kruger, J. Organomet. Chem., 1998, 553, 83-90.
- (a) K. Islam, H. F. Chin, A. O. Olivares, L. P. Saunders, E. M. De La Cruz, T. M. Kapoor, *Angew. Chem. Int. Ed.*, 2010, **49**, 8484–8488;
 (b) A. S. Mehanna, J. Y. Kim, *Bioorg. Med. Chem.*, 2005, **13**, 4323– 4331;
 (c) A. Zarghi, M. Faizi, B. Shafaghi, A. Ahadian, H. R. Khojastehpoor, V. Zanganeh, S. A. Tabatabai, A. Shafiee, *Bioorg. Med. Chem. Lett.*, 2005, **15**, 3126–3129.
- (a) F. Dai, S. Gong, P. Cui, G. Zhang, X. Qui, F. Ye, D. Sun, Z. Pang, L. Zhang, G. Dong, C. Zhang, New J. Chem., 2010, 34, 2496–2501; (b) N. Azizi, A. K. Amiri, M. Bolourtchian, M. R. Saidi, J. Iran. Chem. Soc., 2009, 6, 749–753; (c) A. Togninelli, C. Carmi, E. Petricci, C. Mugnaini, S. Massa, F. Corelli, M. Botta, Tetrahedron Lett., 2006, 47, 65–67; (d) B. C. Ranu, R. Jana, Adv. Synth. Catal. 2005, 347, 1811–1818.
- 13 G. Flouret, T. Majewski, L. Balaspiri, W. Brieher, K. Mahan, O. Chaloin, L. Wilson Jr, J. Slaninova, J. Peptide Sci., 2002, 8, 314–326.
- (a) H. Hikawa, Y. Yokoyama, Org. Biomol. Chem., 2011, 9, 4044–4050; (b) H. Hikawa, Y. Yokoyama, J. Org. Chem., 2011, 76, 8433–8439; (c) N. A. Afagh, A. K. Yudin, Angew. Chem. Int. Ed., 2010, 49, 262–310; (d) Y. Yokoyama, N. Takagi, H. Hikawa, S. Kaneko, N. Tsubaki, H. Okuno, Adv. Synth. Catal. 2007, 349, 662–668; (e) Y. Yokoyama, H. Hikawa, M. Mitsuhashi, A. Uyama, Y. Hiroki, Y. Murakami, Eur. J. Org. Chem., 2004, 6, 1244–1253; (f) Y. Yokoyama, H. Hikawa, M. Mitsuhashi, A. Uyama, Y. Murakami, Tetrahedron Lett., 1999, 40, 7803–7806.
- 15 J.-M. Basset, D. Bouchu, G. Godard, I. Karame, E. Kuntz, F. Lefebvre, N. Legagneux, C. Lucas, D. Michelet, J. B. Tommasino, *Organometallics*, 2008, 27, 4300–4309.
- (a) T. Mukai, K. Hirano, T. Satoh, M. Miura, Org. Lett., 2010, 12, 1360–1363; (b) C. C. Lindsey, B. M. O'Boyle, S. J. Mercede, T. R. R. Pettus, *Tetrahedron Lett.*, 2004, 45, 867–868.
- 17 (a) J.-Y. Legros, G. Primault, M. Toffano, M.-A. Rivière, J.-C. Fiaud, Org. Lett., 2000, 2, 433–436; (b) J.-Y. Legros, M. Toffano, J.-C. Fiaud, *Tetrahedron*, 1995, 51, 3235–3246.
- 18 Carboxylic acids enhance the formation of the π -allyl complex in aqueous media. (*a*) S.-C. Yang, Y.-C. Hsu, K.-H. Gan, *Tetrahedron* 2006, **62**, 3949–3958; (*b*) K. Manabe, S. Kobayashi, *Org. Lett.*, 2003, **5**, 3241–3244.
- 19 M. Matoba, T. Kajimoto, M. Nobe, Synth. Commun., 2008, 38, 1194-1200.