Organic & Biomolecular **Chemistry**

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

CuI-catalyzed Cross-coupling of Terminal Alkynes with Dialkoxycarbenes: A General Method for the Synthesis of Unsymmetrical Propargylic Acetals

Tiebo Xiao, Ping Zhang, Yang Xie, Jun Wang, and Lei Zhou*

⁵*Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX* **DOI: 10.1039/b000000x**

A general source of dialkoxycarbenes: 2,2-dialkoxy-5,5-dimethyl-Δ³-1,3,4-oxadiazolines have been successfully employed as the coupling partners in CuI-catalyzed cross-coupling reactions with terminal alkynes, which afforded various unsymmetrical propargylic acetals in good yields.

¹⁰**1. Introduction**

Transition-metal-catalyzed coupling reactions are now serving as one of the most powerful tools in organic synthesis.¹ Through the gradual expansion of available nucleophilic and electrophilic coupling partners, various previously unknown synthetic 15 disconnects are now realized. In the recent years, diazo compounds, which are commonly used as carbene precursors, have emerged as a new type of cross-coupling partner in transition-metal-catalyzed reactions.² In particular, with copper catalysts, diazo compounds or *N*-tosylhydrazones can be coupled ²⁰ with terminal alkynes,^{3,4} 1,3-azoles,⁵ *N*-iminopyridinium ylides,⁶

and $TMSCF₃$.⁷ In these transformations, the formation of Cu carbene and its subsequent migratory insertion are proposed as the characteristic steps in the mechanism (Scheme 1). Despite the progress in this field, carbenes bearing electron-donating ²⁵substituents are difficult to derive from diazo compounds or *N*tosylhydrazones because of their instability, which restricts the applications of these types of cross-coupling reactions with remarkable wide scopes.

Scheme 1 Migratory insertion of Cu carbene.

2,2-Dialkoxy-5,5-dimethyl-∆³-1,3,4-oxadiazolines 1 are generally employed as a source of dialkoxycarbenes through 35 thermal decomposition (scheme $2)^8$. The chemical and mechanistic aspects of oxadiazolines **1** have been studied extensively by Warkentin and co-workers over the past decades.⁹ These compounds are also widely used as dienophiles in Diels-Alder type $[4 + 1]$ cycloaddition reactions.¹⁰ However, to the best ⁴⁰of our knowledge, the use of oxadiazolines **1** as coupling partners in transition-metal-catalyzed reactions has not been reported. As a continuation of our interest in cross-coupling reactions involving metal-carbenes, $3b,3g,11$ we report a copper-catalyzed

cross-coupling of oxadiazolines **1** with terminal alkynes, which ⁴⁵gave a series of unsymmetrical propargylic acetals in good yields.

Scheme 2 Generation of dialkoxycarbene

2. Results and discussion

Initially, oxadiazolines **1a-i** were prepared via a three-step operation according to the reported procedure (Scheme 3).^{10d} Then the reaction of oxadiazoline **1a** and 4-ethynyltoluene **2a** ⁵⁵was carried out in the presence of 10 mol% of CuCl in toluene at 110 $^{\circ}$ C. To our delight, the desired cross-coupling product propargylic acetal **3a** was formed in 27% yield (Table 1, entry 1). After a comprehensive screening, we found that CuI was superior over other copper salts, such as $CuCl₂$, $CuBr$, and $CuBr₂$ with a ⁶⁰high level of efficiency (Table 1, entries 2-5). It was observed that the use of inorganic bases such as t -BuOK and Cs_2CO_3 disfavoured the reaction (Table 1, entries 6 and 7), while a slight increase in the yield was observed when 20% mol of pyridine was used as an additive (Table 1, entry 8). Generally, 65 temperatures higher than 110 $^{\circ}$ C were necessary to effectively

Scheme 3 Synthesis of oxadiazolines **1a-h.**

promote the reaction. Lower temperatures slowed reaction rates and gave rise to low conversion ratios (Table 1, entries 9 and 10). However, diminished yield was obtained when the reaction was carried out at 120° C, which attributed to the fast decomposition ⁵of **1a** (Table 1, entry 11). There have been several reports on the

- metal-free direct O-H insertion reactions of dialkoxycarbenes with various alcohols.¹² The formal C−H insertion of *N*heterocyclic carbene to acetylene was also reported by Arduengo and co- workers.¹³ However, the control experiment showed that
- ¹⁰none of the desired propargylic acetal **3a** was detected in the absence of copper catalyst (Table 1, entry 12), which indicates the direct C-H insertion of carbene into terminal alkyne is less likely for the cross-coupling reaction described in this paper.

15 Table 1 Optimization of Reaction Conditions.^{*a*}

a Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Cu catalyst (10 mol%), toluene (2.5 mL), N2 atmosphere, 18 h. *^b* Yields were measured by ${}^{1}H$ NMR with MeNO₂ as internal standard.

- ²⁰The reaction of terminal alkynes with ortho esters in the presence of a zinc halide catalyst has become a routine method for the preparation of acetylenic acetals.¹⁴ Other methods involving the use of $SnCl₄$, $TiCl₄$ as the catalysts have also been reported.¹⁵ Although these methods have provided efficient routes
- ²⁵for the preparation of symmetrical acetylenic acetals, general methods for the synthesis of unsymmetrical propargylic acetals are rare.¹⁶ With the optimized reaction conditions for coppercatalyzed cross coupling of terminal alkynes with diethyoxylcarbene in hand, we next examined the scope of the ³⁰reaction by using 4-ethynyltoluene **2a** with various
- unsymmetrical dialkoxycarbenes, which would give a series of unsymmetrical propargylic acetals. As shown in table 2, when one ethyl moiety in oxadiazoline **1a** was replaced by a simple phenyl group, the desired acetal **3b** was isolated in 63% yield
- ³⁵(Table 2, entry 2). Similarly, unsymmetrical propargylic acetals **3c** and **3d** were obtained from corresponding oxadiazolines **1c** and **1d** in the yields of 67% and 80% respectively (Table 2, entries 3 and 4). A chloroethylated oxadiazoline **1e** was also a suitable substrate for the reaction under the optimal condition
- ⁴⁰(Table 2, entry 5). In addition, the acryl group presented in oxadiazoline **1f** could be survived, yielded the cross-coupling

Table 2 Copper-catalyzed cross-coupling of 4-ethynyltoluene **2a** with various oxadiazolines*^a*

a Reaction conditions: oxadiazoline **1** (0.2 mmol), 4-ethynyltoluene **2a** ⁴⁵(0.3 mmol), CuI (10 mol%), pyridine (20 mol%), toluene (2.5 mL), 110 ^oC, N₂ atmosphere, 18h. ^{*b*} Isolated yield.

product **3f** in 61% (Table 2, entry 6). This new method also provides opportunities for the construction of oxygen-containing 1,n-enynes and 1,n-diynes, which are important substrates in so transition-metal catalyzed cycloisomerization reactions.¹⁷ As exemplified in table 2, 1,6-enyne **3g** was smoothly prepared via CuI-catalyzed cross-coupling of 4-ethynyltoluene and oxadiazoline **1g** (Table 3, entry 7). Treatment of 4-ethynyltoluene

with oxadiazoline **1h** gave 1,7-diyne **3h** in the yield of 65% (Table 2, entry 8).

Interestingly, when oxadiazoline **1i** was employed to react with 4-tolylacetylene under the standard conditions, a benzofuran ⁵derivative **4** was isolated with a yield of 43% (Scheme 4). A possible pathway for the generation of **4** was proposed in scheme 4. First, the thermal decomposition of oxadiazoline **1i** formed aryloxyethxoycarbene **I**, which cyclized to give an exocyclic vinylcarbene **II**. 9e The CuI-catalyzed cross-coupling of 4-

10 tolylacetylene with the resulted benzofuryl carbene **II** afforded the benzofuran derivative **4**.

Scheme 4 CuI-catalyzed cross-coupling of 4-ethynyltoluene **2a** and oxadiazoline **1i**.

¹⁵Next, the generality of these conditions for the reactions of various terminal alkynes was examined. As shown in table 3, the reactions proceeded smoothly with substrates having various functional groups, which included halogens (F, Cl, and Br), methoxy, ester, ketone, nitro, and aryl groups. Both electron-rich

- ²⁰and electron-deficient aryl substituted alkynes were effective, furnishing the corresponding products in moderate to good yields. We were delighted to find that 1-ethynylnaphthalene and oxadiazoline **1h** coupled smoothly to form the propargylic acetal **5f** in 56% yield. A heterocyclic acetylene 3-ethynylthiophene
- ²⁵also reacted with oxadiazolines **1d** and **1e** efficiently, affording the desired products **5l** and **5n** in good yields. It is worth mentioning that the alkyl terminal alkynes 1-hexyne and cyclopropyl acetylene were suitable substrates for the reaction, generating the corresponding propargylic acetals **5o** and **5p** with
- ³⁰yields of 75% and 71%, respectively. In another case, the coupling of 4-phenyl-1-butyne and oxadiazolines **1e** gave the expected propargylic acetal **5m** with 50% yield.

 A plausible mechanism for this copper-catalyzed crosscoupling reaction of terminal alkynes with dialkoxycarbenes was ³⁵described in scheme 5. First, copper acetylide **A** is formed from terminal alkyne. Reaction of copper acetylide **A** with dialkoxycarbene **B**, which is generated *in situ* from the thermal decomposition of oxadiazoline **1**, leads to the formation of copper carbene species $C^{3,4}$ Migratory insertion of alkynyl group to the

 40 carbenic carbon gives intermediate D^{3-7} . The final propargylic acetal product **3** is formed by protonation of intermediate **D,** in company with the regeneration of Cu(I) catalyst.

3. Conclusions

⁴⁵^a Reaction conditions: oxadiazoline **1** (0.2 mmol), terminal alkyne **2** (0.3) mmol), CuI (10 mol%), pyridine (20 mol%), toluene (2.5 mL), 110 °C, N2 atmosphere, 18h. *^b* Isolated yield.

Scheme 5 Proposed Reaction Mechanism.

50

In conclusion, $2,2$ -dialkoxy-5,5-dimethyl- Δ^3 -1,3,4oxadiazolines, a general source of dialkoxycarbenes, have been successfully employed as the coupling partners in CuI-catalyzed cross-coupling reactions with terminal alkynes. Various ⁵unsymmetrical propargylic acetals were obtained in moderate to

- good yields, which are difficult to synthesize by using previously reported methods. Moreover, this methodology also provides a novel route for the preparation of propargylic benzofuran derivatives via a sequential cyclization/coupling process. Further
- 10 investigations on the substrate scopes, mechanism and their synthetic applications are currently underway in our laboratory.

4. Experimental section

General details

- 1_H NMR and 13_C NMR spectra were chemicals recorded on 15 Varian 300 or Bruker 400 MHz spectrometer in CDCl₃ solution. Mass spectra were obtained on Micro mass ZAB-HS Magnetic mass spectrometer or ZAB-HS Double Focussing Mass Spectrometer, and HRMS were performed at analytical center of Sun Yat-Sen University on Thermo MAT95XP mass
- ²⁰spectrometer. Compounds described in the literature were characterized by comparing their 1 H NMR and 13 C NMR to the reported values. Oxadiazolines **1a-i** were prepared according to literature known procedures.^{10d} Unless otherwise noted, materials obtained from commercial suppliers were used without further 25 purification.
	- **2,2-Diethoxy-5,5-dimethyl-2,5-dihydro-1,3,4-oxadiazole (1a):** light yellow liquid (76%); ¹H NMR (300 MHz, CDCl₃) δ 3.74-
- 3.59 (m, 4H), 1.46-1.44 (m, 6H), 1.20-1.14 (m, 6H); ¹³C NMR (75 MHz, CDCl³) δ 137.1, 118.6, 60.5, 24.3, 15.4; EI-MS (m/z, 30 relative intensity): 143 (M⁺-OEt, 100), 131 (35), 119 (64), 102
- (30), 71 (30), 59 (54); HRMS (EI) calcd. for $C_6H_{11}O_2N_2$ [M-OEt]⁺ 143.0815, found: 143.0820.

2-Ethoxy-5,5-dimethyl-2-phenoxy-2,5-dihydro-1,3,4 -

- **oxadiazole (1b):** light yellow liquid (73%) ; ¹H NMR (300 MHz, CDCl³ ³⁵) δ 7.29-2.24 (m, 2H), 7.19-7.09 (m, 3H), 4.04-3.87 (m, 2H), 1.55-1.54 (m, 6H), 1.28 (t, *J*= 8.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 152.1, 136.6, 129.3, 124.6, 121.8, 120.4, 61.6, 24.6, 15.5; EI-MS (m/z, relative intensity): 236 (M^+ , 2), 191 (15), 167 (17), 143 (100), 121 (35), 91 (62), 77 (73), 71 (57); HRMS 40 (EI) calcd. for $C_{12}H_{16}O_3N_2$ [M]⁺ 236.1155, found: 236.1159.
- **2-Ethoxy-2-methoxy-5,5-dimethyl-2,5-dihydro-1,3,4 oxadiazole (1c)**: light yellow liquid (66%); ¹H NMR (400 MHz, CDCl³) δ 3.82 (m, 2H), 3.43 (s, 3H), 1.52 (s, 6H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 137.01, 118.83, 60.43,
- ⁴⁵51.75, 24.04, 23.98, 15.08; EI-MS (m/z, relative intensity): 143 ([M-OMe]⁺ , 20), 129 (37), 104 (23), 59 (100); HRMS (EI) calcd. for $C_6H_{11}O_2N_2$ [M-OMe]⁺ 143.0815, found: 143.0820.

2-Ethoxy-2-isopropoxy-5,5-dimethyl-2,5-dihydro-1,3,4-

oxadiazole (1d): light yellow liquid (76%) ; ¹H NMR (400 MHz, CDCl³ ⁵⁰) δ 4.06-4.26 (m, 1H), 3.61-3.75 (m, 2H), 1.52 (s, 6H), 1.22 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 137.24, 118.19, 68.41, 60.23, 24.08, 23.99, 23.66, 23.51, 15.07; EI-MS (m/z, relative intensity): 157 ([M-OEt]⁺, 4), 149 (100), 143([M-O^{*i*-Pr]⁺,} 19), 87 (42); HRMS (EI) calcd. for C₆H₁₁O₂N₂ [M- Oⁱ⁻Pr]⁺ ⁵⁵143.0815, found: 143.0816.

2-(2-Chloroethoxy)-2-ethoxy-5,5-dimethyl-2,5-dihydro-1,3,4 oxadiazole (1e): light yellow liquid (61%);¹H NMR (300 MHz,

CDCl³) δ 3.83-3.69 (m, 2H), 3.61-3.57 (m, 2H), 2.07-1.99 (m, 2H), 1.51-1.50 (m, 6H), 1.22 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (75

MHz, CDCl³ ⁶⁰) δ 136.9, 119.1, 61.4, 60.8, 41.7, 24.5, 24.4, 15.4; EI-MS (m/z, relative intensity): 223 (M⁺, ³⁷Cl, 2), 221 (M⁺, ³⁵Cl, 6), 191 (41), 193 (12), 167 (50), 143 (97), 115 (26), 91 (27), 71 (64), 59 (100); HRMS (EI) calcd. for $C_8H_{15}O_3N_2Cl$ $[M]^+$ 222.0766, found: 222.0774.

⁶⁵**2-(2-Ethoxy-5,5-dimethyl-2,5-dihydro-1,3,4-oxadiazol-2 yloxy) ethyl acrylate (1f):** light yellow liquid (54%) ; ¹H NMR (300 MHz, CDCl³) δ 6.32-6.26 (m, 1H), 6.05-5.96 (m, 1H), 5.75- 5.71 (m, 1H), 4.25-4.21 (m, 2H), 3.93-3.85 (m, 2H), 3.68-3.53 (m, 2H), 1.46-1.41 (m, 6H), 1.47 (t, *J*=7.2 Hz, 3H); ¹³C NMR (75

- ⁷⁰ MHz, CDCl₃) δ 165.8, 136.6, 131.1, 128.2, 119.3, 62.8, 60.7, 60.5, 24.3, 15.3; EI-MS (m/z, relative intensity): 143 (M^+ -OCH₂CH₂OCOCH=CH₂, 20), 99 (100), 59 (13), 55 (57); HRMS (EI) calcd. for $C_6H_{11}O_2N_2$ [M-OCH₂CH₂OCOCH=CH₂]⁺ 143.0815, found: 143.0820.
- ⁷⁵**2-(Allyloxy)-2-ethoxy-5,5-dimethyl-2,5-dihydro-1,3,4 oxadiazole (1g):** light yellow liquid (67%); ¹H NMR (300 MHz, CDCl³) δ 5.94-5.81 (m, 1H), 5.26 (d, *J*= 10.2 Hz, 1H), 5.12 (d, *J*= 10.2 Hz, 1H), 4.28-4.13 (m, 2H), 3.80-3.65 (m, 2H), 1.51(s, 6H), 1.22 (t, *J*=7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 133.6,
- ⁸⁰119.1, 117.2, 65.8, 60.8, 24.4, 15.5; EI-MS (m/z, relative intensity): 200 (M^+ , 10), 155 (5), 143 (68), 131 (44), 99 (17), 82 (18), 71 (27), 59 (100); HRMS (EI) calcd. for $C_9H_{16}O_3N_2$ [M]⁺ 200.1155, found: 200.1155.

2-(But-3-ynyloxy)-2-ethoxy-5,5-dimethyl-2,5-dihydro-1,3,4-

- 85 **oxadiazole (1h):** light yellow liquid (61%); ¹H NMR (300 MHz, CDCl³) δ 3.85-3.66 (m, 4H), 2.52-2.47 (m, 2H), 1.95 (t, *J*=2.4 Hz, 1H), 1.58-1.52 (m, 6H), 1.24 (t, J=7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 136.8, 119.3, 69.9, 62.8, 24.5, 24.3, 20.3, 15.7, 15.4; EI-MS (m/z, relative intensity): 212 (M⁺, 1), 167 (19), 155
- ⁹⁰(9), 143 (100), 115 (16), 98 (23), 82 (26), 71 (53), 59 (52); HRMS (EI) calcd. for $C_{10}H_{16}O_3N_2$ [M]⁺ 212.1155, found: 212.1163.

2-Ethoxy-5,5-dimethyl-2-(2-(phenylethynyl)phenoxy)-2,5 dihydro-1,3,4-oxadiazole (1i): light yellow liquid (49%); ¹H

95 NMR (300 MHz, CDCl₃) δ 7.53-7.47 (m, 3H), 7.39-7.32 (m, 4H), 7.28-7.22 (m, 1H), 7.12-7.07 (t, *J*=7.5 Hz, 1H), 4.20-3.72 (m, 2H), 1.56-1.55(m, 3H), 1.32-1.24 (m, 6H); ¹³C NMR (75 MHz,) δ 152.73, 136.95, 133.20, 131.71, 129.23, 128.48, 124.39, 123.67, 121.78, 120.74, 117.62, 93.89, 85.89, 61.84, 60.70,

100 24.65, 23.78, 15.60; EI-MS (m/z, relative intensity): 336 (M^+ , 2), 291 (2), 235 (37), 221 (78), 207 (57), 194 (68), 176 (42), 165 (84), 143 (93), 105 (29), 71 (100), 59 (8); HRMS (EI) calcd. for $C_{20}H_{20}O_3N_2$ [M]⁺ 336.1468, found: 336.1463.

General procedure for the CuI-catalyzed cross-coupling of terminal alkynes with 2,2-Dialkoxy-5,5-dimethyl-∆³ ¹⁰⁵*-1,3,4 oxadiazolines:*

CuI (3.8 mg, 10 mol%) was suspended in toluene (2.5 mL) in a 10 mL Schlenk tube under nitrogen. Then pyridine (3.2 mg, 20 mol%), alkynes **2** (0.3 mmol, 1.5 equiv) and oxadiazoline **1** (0.2 $_{110}$ mmol) were added. The reaction mixture was stirred at 110 °C under nitrogen for 18 h. After cooling to room temperature, the resulting mixture was filtered through a short path of silica gel, eluting with ethyl acetate. The volatile compounds were removed in vacuo and the residue was purified by flash column 115 chromatography (SiO₂, 1: 100 ethyl acetate: hexane).

1-(3,3-Diethoxyprop-1-ynyl)-4-methylbenzene (3a):^{18 1}H NMR

(300 MHz, CDCl³) δ 7.36 (d, *J*= 9.1 Hz, 2H), 7.10 (d, *J*= 9.1 Hz, 2H), 5.48 (s, 1H), 3.88-3.77 (m, 2H), 3.71-3.61 (m, 2H), 2.35 (s, 3H), 1.31-1.26 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 131.9, 129.2, 119.0, 92.1, 85.7, 84.0, 61.2, 21.9, 15.6; EI-MS s (m/z, relative intensity): 218 (M⁺, 3), 173 (76), 145 (91), 115 (65), 91 (100), 65 (14).

1-(3-Ethoxy-3-phenoxyprop-1-ynyl)-4-methylbenzene (3b):¹H NMR (300 MHz, CDCl₃) δ 7.38-7.29 (m, 4H), 7.18-7.02 (m, 5H), 6.23-6.09 (m, 1H), 4.05-3.81 (m, 2H), 2.37(s, 3H), 1.32-1.27 (m,

10 3H); ¹³C NMR (75 MHz, CDCl₃) δ 151.9, 144.5, 135.6, 130.8, 130.5, 129.6, 127.1, 123.2, 122.4, 119.5, 111.9; EI-MS (m/z, relative intensity): 221 (M⁺- OEt, 13), 199 (9), 173 (100), 151 (31), 145 (74), 123 (19), 115 (26), 95 (22), 77 (12); HRMS (EI) calcd. for $C_{18}H_{18}O_2$ [M]⁺ 266.1301, found: 266.1306, calcd. for 15 $C_{16}H_{13}O$ [M-OEt]⁺ 221.0961, found: 221.0960.

1-(3-Ethoxy-3-methoxyprop-1-yn-1-yl)-4-methylbenzene (3c): ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* $= 7.7$ Hz, 2H), 5.47 (s, 1H), 3.90 - 3.79 (m, 1H), 3.72 - 3.62 (m, 1H), 3.48 (s, 3H), 2.38 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR

- (101 MHz, CDCl³ ²⁰) δ 139.05, 131.84, 129.04, 118.69, 92.70, 85.74, 83.22, 61.26, 52.27, 21.52, 15.13; EI-MS (m/z, relative intensity): 204 (M⁺, 12), 173 (56), 159 (100), 145 (97), 115 (64); HRMS (EI) calcd. for $C_{13}H_{16}O_2$ [M]⁺ 204.1145, found: 204.1133. **1-(3-Ethoxy-3-isopropoxyprop-1-yn-1-yl)-4-methylbenzene**
- **(3d):**¹H NMR (400 MHz, CDCl³ ²⁵) δ 7.39 (d, *J* = 7.4 Hz, 2H), 7.14 (d, *J* = 7.5 Hz, 2H), 5.57 (s, 1H), 4.16 (m, 1H), 3.87 (m, 1H), 3.70 (m, 1H), 2.37 (s, 3H), 1.30 - 1.26 (m, 6H); ¹³C NMR (101) MHz, CDCl₃) δ 138.87, 131.80, 129.00, 118.94, 118.82, 90.69, 85.12, 84.25, 68.64, 60.14, 23.31, 22.39, 21.50, 15.15, 15.13; EI-
- $_{30}$ MS (m/z, relative intensity): 232 (M⁺, 1), 173(49), 145 (100), 131 (8), 115 (26); HRMS (EI) calcd. for $C_{15}H_{20}O_2$ [M]⁺ 232.1458, found: 232.1455.

1-(3-(2-Chloroethoxy)-3-ethoxyprop-1-ynyl)-4-methylbenzene (3e):¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J*= 8.1 Hz, 2H), 7.11

³⁵(d, *J*= 8.1 Hz, 2H), 5.48 (s, 1H), 3.94-3.80 (m, 2H), 3.76-3.62 (m, 2H), 2.35 (s, 3H), 2.09 (t, *J*= 6.6 Hz, 2H), 2.09 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (75 MHz,) δ 139.23, 132.00, 129.49, 129.21, 118.87, 92.29, 86.00, 83.66, 77.74, 77.33, 76.90, 61.76, 61.21, 42.17, 32.98, 21.86, 15.47; EI-MS (m/z, relative intensity): 207 (M⁺ -

⁴⁰OEt, 3), 173 (84), 145 (100), 114 (43), 105 (7), 91 (11); HRMS (EI) calcd. for $C_{12}H_{12}OCl$ [M-OEt]⁺ 207.0571, found: 207.0566. **2-(1-Ethoxy-3-p-tolylprop-2-ynyloxy)ethyl acrylate (3f):**¹H NMR (300 MHz, CDCl³) δ 7.34 (d, *J*= 8.1 Hz, 2H), 7.10 (d, *J*= 7.8 Hz, 2H), 6.44-6.39 (m, 1H), 6.18-6.09 (m, 1H), 5.84-5.80 (m,

⁴⁵1H), 5.53 (s, 1H), 4.37 (t, *J*= 7.8 Hz, 2H), 4.03-3.98 (m, 1H), 3.90-3.80 (m, 2H), 3.67-3.61 (m, 1H), 2.34 (s, 3H), 1.27 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 139.3, 131.9, 131.2, 129.2, 128.4, 118.7, 92.2, 86.2, 83.3, 63.9, 62.8, 62.0, 21.9, 15.4; EI-MS (m/z, relative intensity): 288 (M^{+} , 2), 197 (6),

⁵⁰173 (40), 145 (69), 115 (27), 99 (100), 55 (24); HRMS (EI) calcd. for $C_{17}H_{20}O_4$ [M]⁺ 288.1356, found: 288.1355. **1-(3-(Allyloxy)-3-ethoxyprop-1-ynyl)-4-methylbenzene (3g):** ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J*=8.1 Hz, 2H), 6.82 (d, *J*= 8.1 Hz, 2H), 6.02-5.91 (m, 1H), 5.52 (m, 1H), 5.38-5.31 (m, 1H),

⁵⁵5.23-5.19 (m, 1H), 4.28-4.12 (m, 2H), 3.84-3.70 (m, 1H), 3.70- 3.64 (m, 1H), 2.35 (s, 3H), 1.29 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.2, 134.6, 133.2, 131.9, 129.2, 118.9, 117.6, 91.7, 85.6, 83.7, 66.4, 61.5, 61.2, 21.9, 15.5; EI-MS (m/z, relative

intensity): 230 (M⁺, 4), 200 (6), 173 (93), 156 (89), 145 (100), ⁶⁰141 (59), 128 (16), 115 (83), 105 (8), 91(23); HRMS (EI) calcd.

for $C_{15}H_{18}O_2$ [M]⁺ 230.1301, found: 230.1243, calcd. for $C_{15}H_{18}O_2$ [M-OEt]⁺ 185.0961, found: 185.0964. **1-(3-(But-3-ynyloxy)-3-ethoxyprop-1-ynyl)-4-methylbenzene**

(3h):¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J*= 8.1 Hz, 2H), 7.11 ⁶⁵(d, *J*= 8.1 Hz, 2H), 5.52 (s, 1H), 3.91-3.64 (m, 4H), 2.58-2.52 (m, 2H), 2.35 (s, 3H), 2.00 (s, 1H), 1.29 (t, *J*=7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl³) δ 139.2, 131.9, 129.2, 118.8, 92.2, 86.1, 83.4, 81.5, 69.7, 63.3, 61.9, 21.8, 20.3, 15.5; EI-MS (m/z, relative intensity): 242 (M⁺, 2), 197 (16), 173 (77), 145 (100), 115 (39), 70 91 (14); HRMS (EI) calcd. for $C_{16}H_{18}O_2$ [M]⁺ 242.1301, found: 242.1297.

2-Ethoxy-3-(1-phenyl-3-p-tolylprop-2-ynyl)benzofuran (4):¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J*= 5.7 Hz, 2H), 7.52-7.48 (m, 1H), 7.35 (d, *J*= 6.0 Hz, 2H), 7.32-7.27 (m, 3H), 7.21 (t, *J*= 5.4

⁷⁵Hz, 1H), 7.11-7.08 (m, 4H), 5.40 (s, 1H), 4.44-4.38 (m, 2H), 2.33 (s, 3H), 1.44 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 148.7, 140.4, 137.9, 131.6, 128.9, 128.4, 127.4, 126.8, 122.7, 121.9, 120.5, 119.5, 110.2, 110.0, 94.8, 88.0, 68.4, 32.2, 21.4, 15.2; EI-MS (m/z, relative intensity): 366 (M^+ , 83), 337 ⁸⁰(100), 322 (32), 309 (34), 292 (31), 278 (56), 261 (45), 251 (33), 222 (82), 205 (72), 194 (36), 178 (19), 165 (51), 119 (31), 105 (16), 91 (24), 77 (10); HRMS (EI) calcd. for $C_{26}H_{22}O_{2}$ [M]⁺ 366.1615, found: 366.1615.

1-(3-(But-3-yn-1-yloxy)-3-ethoxyprop-1-yn-1-yl)-3-methyl

8s **benzene (5a):** ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 2H), 7.23 (m, 1H), 7.18 (m, 1H), 5.56 (s, 1H), 3.95-3.84 (m, 2H), 3.83-3.65 (m, 2H), 2.57 (dd, *J* = 9.4, 4.3 Hz, 2H), 2.35 (s, 3H), 2.03 (s, 1H), 1.31 (t, $J = 7.1$ Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 137.98, 132.51, 129.79, 129.01, 128.18, 121.51, 91.95, 85.84, 83.50,

⁹⁰81.18, 69.40, 62.99, 61.63, 21.17, 19.92, 15.07; EI-MS (m/z, relative intensity): 213 (11), 197 ([M-OEt]⁺, 22), 173 (74), 145 (100), 115 (43); HRMS (EI) calcd. for $C_{14}H_{13}O$ $[M-OEt]^+$ 197.0561, found: 197.0563.

1-(3-(But-3-yn-1-yloxy)-3-ethoxyprop-1-yn-1-yl)-4-methoxy

benzene (5b):¹H NMR (400 MHz, CDCl³ ⁹⁵) δ 7.44 (d, *J* = 7.6 Hz, 2H), 6.86 (d, *J* = 7.6 Hz, 2H), 5.55 (s, 1H), 3.95-3.75 (m, 6H), 3.73-3.62 (m, 1H), 2.57 (t, *J* = 6.9 Hz, 2H), 2.03 (s, 1H), 1.30 (t, *J* $= 7.2$ Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.03, 133.45, 113.91, 113.74, 92.02, 85.72, 82.54, 81.21, 69.39, 62.91, 61.62, 100 55.29, 19.92, 15.08. EI-MS (m/z, relative intensity): 258 (M^+ , 4), 213 (46), 189 (100), 161 (52), 149 (32); HRMS (EI) calcd. for $C_{16}H_{18}O_3$ [M]⁺ 258.1250, found: 258.1254.

1-(4-(3-(But-3-yn-1-yloxy)-3-ethoxyprop-1-yn-1-yl)phenyl)

ethanone (5c):¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, ¹⁰⁵2H), 7.59 (d, *J* = 8.1 Hz, 2H), 5.57 (s, 1H), 3.89 (dd, *J* = 15.4, 7.8 Hz, 2H), 3.83-3.78 (m, 1H), 3.74-3.67 (m, 1H), 2.62 (s, 3H), 2.57 (dd, *J* = 9.2, 4.5 Hz, 2H), 2.04 (s, 1H), 1.31 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.27, 136.83, 132.12, 128.17, 126.50, 91.81, 86.95, 84.64, 81.06, 69.49, 63.11, 61.83, 26.65, 110 19.90, 15.05; EI-MS (m/z, relative intensity): 270 (M⁺, 2), 225

(19), 201 (60), 173 (100), 149 (18); HRMS (EI) calcd. for $C_{17}H_{18}O_3$ [M]⁺ 270.1250, found: 270.1253.

1-(3-(But-3-yn-1-yloxy)-3-ethoxyprop-1-yn-1-yl)-4-chloro

benzene (5d):¹H NMR (300 MHz,) δ 7.39 (d, $J = 8.2$ Hz, 2H), ¹¹⁵7.28 (d, *J* = 8.2 Hz, 2H), 5.51 (s, 1H), 3.87 (m, 2H), 3.80-3.70 (m, 1H), 3.65 (m, 1H), 2.55 (t, *J* = 6.8 Hz, 2H), 2.01 (s, 1H), 1.29 (t, *J*

- $= 7.0$ Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 135.06, 133.17, 128.69, 120.18, 91.83, 84.82, 84.47, 81.10, 69.48, 63.02, 61.74, 19.90, 15.05; EI-MS (m/z, relative intensity): 262 (M⁺, 1), 217 (27), 193 (100), 187 (46), 152 (48), 101(46); HRMS (EI) calcd. s for C₁₅H₁₅O₂Cl [M]⁺ 262.0755, found: 262.0757.
- **1-Bromo-4-(3-(but-3-yn-1-yloxy)-3-ethoxyprop-1-yn-1-yl) benzene (5e):**¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.1 Hz, 2H), 7.36 (d, *J* = 6.6 Hz, 2H), 5.54 (s, 1H), 3.92-3.83 (m, 2H), 3.83-3.75 (m, 1H), 3.72 – 3.64 (m, 1H), 2.63-2.49 (m, 2H), 2.03
- 10 (d, J = 1.9 Hz, 1H), 1.32-1.28 (m, 3H); ¹³C NMR (101 MHz, CDCl³) δ 133.36, 131.61, 123.32, 120.64, 91.84, 84.99, 84.52, 81.09, 69.47, 63.03, 61.75, 19.90, 15.05; EI-MS (m/z, relative intensity): 306 (M^+ , 2), 263 (14), 239 (40), 209 (100), 152 (49), 101 (47); HRMS (EI) calcd. for $C_{15}H_{15}O_2Br$ [M]⁺ 306.0250, 15 found: 306.0244.
- **1-(3-(But-3-yn-1-yloxy)-3-ethoxyprop-1-yn-1-yl)naphthalene (5f):**¹H NMR (400 MHz, CDCl³) δ 8.34 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 7.1 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.58-7.52 (m, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 5.73 (s, 1H),
- ²⁰3.99 (m, 2H), 3.89 (m, 1H), 3.78 (m, 1H), 2.63 (t, *J* = 6.8 Hz, 2H), 2.06 (s, 1H), 1.36 (t, $J = 6.9$ Hz, 3H); ¹³C NMR (101 MHz, CDCl³) δ 133.27, 133.07, 131.15, 129.44, 128.31, 126.98, 126.52, 126.05, 125.11, 119.36, 92.17, 88.72, 83.79, 81.21, 69.48, 63.15, 61.79, 19.99, 15.15; EI-MS (m/z, relative intensity):
- 25 278 (M⁺, 3), 233 (30), 209 (64), 181 (100), 152 (87); HRMS (EI) calcd. for $C_{19}H_{18}O_2$ [M]⁺ 278.1301, found: 278.1295. **1-(3-(But-3-yn-1-yloxy)-3-ethoxyprop-1-yn-1-yl)-4-fluoro benzene (5g):**¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, *J* = 7.5, 5.8 Hz, 2H), 7.03 (t, *J* = 8.4 Hz, 2H), 5.50 (s, 1H), 3.99 – 3.89 (m,
- ³⁰1H), 3.85 (m, 1H), 3.71 (m, 2H), 2.15-2.07 (m, 2H), 1.30 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.83 (d, *J* = 250.2 Hz), 133.92 (d, *J* = 8.5 Hz), 117.81 (d, *J* = 3.4 Hz), 115.64 (d, *J* = 22.2 Hz), 91.94, 84.47, 83.79, 61.48, 61.43, 41.82, 15.09; EI-MS (m/z, relative intensity): 225 (30), 177 ($[M-OCH_2CH_2Cl]^+$, 83),
- $35\,149\,$ (100), 101 (21); HRMS (EI) calcd. for $C_{11}H_{10}OF$ [M- OCH_2CH_2Cl ⁺ 177.0710, found: 177.0713.
- **Methyl 4-(3-(2-chloroethoxy)-3-ethoxyprop-1-yn-1-yl) benzoate (5h):**¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 7.9 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 2H), 5.53 (s, 1H), 4.00-3.90 (m, 4H),
- ⁴⁰3.84 (m, 1H), 3.72 (m, 2H), 2.12 (m, 2H), 1.32 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.44, 131.90, 130.18, 129.44, 126.40, 91.88, 86.83, 84.59, 61.57, 52.30, 41.77, 15.08; EI-MS (m/z, relative intensity): 281 (8), 217 ([M-OCH₂CH₂Cl]⁺, 68), 189 (100), 149 (34); HRMS (EI) calcd. for C₁₃H₁₃O₃ [M-45 OCH₂CH₂Cl]⁺ 217.0859, found: 217.0856.
- **1-(3-(2-Chloroethoxy)-3-ethoxyprop-1-yn-1-yl)-4-nitro benzene (5i):**¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 7.8 Hz, 2H), 7.66 (d, *J* = 7.7 Hz, 2H), 5.54 (s, 1H), 4.01-3.91 (m, 1H), 3.86 (m, 1H), 3.72 (m, 2H), 2.18- 2.06 (m, 2H), 1.32 (t, *J* = 6.9
- 50 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.55, 132.78, 128.55, 123.57, 91.78, 89.07, 83.31, 61.78, 61.57, 41.71, 15.06; EI-MS $(m/z,$ relative intensity): 252 (27), 204 ([M-OCH₂CH₂CI]⁺, 100), 176 (86); HRMS (EI) calcd. for $C_{11}H_{10}O_3N$ [M-OCH₂CH₂Cl]⁺ 204.0655, found: 204.0653.
- ⁵⁵**4-(3-(2-Chloroethoxy)-3-ethoxyprop-1-yn-1-yl)-4'-propyl-1,1' biphenyl (5j):**¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 4H), 7.53 (d, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 7.4 Hz, 2H), 5.54 (s, 1H), 4.01- 3.83 (m, 2H), 3.73 (m, 2H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.16 (m,

2H), 1.71 (dd, *J* = 14.7, 7.3 Hz, 2H), 1.35 (d, *J* = 7.3 Hz, 3H),

- 60 1.00 (t, $J = 7.2$ Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.47, 141.62, 137.52, 132.33, 129.00, 126.84, 126.75, 120.23, 92.08, 85.56, 84.51, 64.37, 64.12, 40.92, 37.70, 24.52, 14.25, 13.85; EI-MS (m/z, relative intensity): 325 (25), 277 ($[M-OCH₂CH₂Cl$ ⁺, 100), 249 (96), 219 (50); HRMS (EI) calcd. for C₂₀H₂₁O [M-65 OCH₂CH₂Cl]⁺ 277.1587, found: 277.1580.
- **(3-(2-Chloroethoxy)-3-ethoxyprop-1-yn-1-yl)benzene** (5k): ¹H NMR (400 MHz, CDCl₃) δ 7.51 (m, 2H), 7.35 (m, 3H), 5.52 (s, 1H), 3.90-3.75 (m, 2H), 3.72 (m, 2H), 2.17-2.04 (m, 2H), 1.31 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 131.94, 128.89,
- ⁷⁰128.28, 121.75, 92.02, 85.54, 84.05, 61.49, 61.44, 41.83, 15.10; EI-MS $(m/z,$ relative intensity): 207 (22), 159 ($[M OCH_2CH_2Cl$ ⁺, 36), 131 (100), 103 (24); HRMS (EI) calcd. for $C_{11}H_{11}O$ [M-OCH₂CH₂Cl]⁺ 159.0804, found: 159.0808.
- **3-(3-(2-Chloroethoxy)-3-ethoxyprop-1-yn-1-yl)thiophene (5l):** 75¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.29 (m, 1H), 7.17 (d, *J* = 4.6 Hz, 1H), 5.50 (s, 1H), 3.98-3.81 (m, 2H), 3.71 (m, 2H), 2.15-2.09 (m, 2H), 1.30 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 129.93, 129.91, 125.39, 120.77, 92.02, 83.71, 80.80, 61.49, 61.45, 41.83, 15.08; EI-MS (m/z, relative intensity):
- 80 213 (24), 165 ($[M-OCH_2CH_2Cl]^+$, 60), 137 (100), 109 (20); HRMS (EI) calcd. for C_9H_9OS $[M-OCH_2CH_2Cl]^+$ 165.0369, found: 165.0367.
- **(5-(2-Chloroethoxy)-5-ethoxypent-3-yn-1-yl)benzene (5m):**¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 13.5, 6.4 Hz, 2H), 7.24 ⁸⁵(t, *J* = 5.8 Hz, 3H), 5.26 (s, 1H), 3.83-3.76 (m, 1H), 3.75- 3.69 (m, 1H), 3.65 (m, 2H), 2.88 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 2.08-2.01 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl³) δ 140.34, 128.42, 126.37, 91.60, 85.97, 76.10, 61.16, 61.13, 41.89, 34.61, 20.77, 15.07; EI-MS (m/z, relative 90 intensity): 235 (34), 187 ([M-OCH₂CH₂CI]⁺, 100), 154 (34), 129 (44), 91 (95); HRMS (EI) calcd. for $C_{13}H_{15}O$ [M-OCH₂CH₂CI]⁺ 187.1117, found: 187.1114.
- **3-(3-Ethoxy-3-isopropoxyprop-1-yn-1-yl)thiophene** (5n): ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.28 (d, *J* = 3.1 Hz, 1H), ⁹⁵7.16 (d, *J* = 4.1 Hz, 1H), 5.55 (s, 1H), 4.15 (m, 1H), 3.86 (m, 1H), $3.75 - 3.64$ (m, 1H), $1.31 - 1.25$ (m, 9H); ¹³C NMR (101 MHz, CDCl³) δ 129.92, 129.71, 129.58, 125.29, 121.02, 90.61, 84.54, 80.19, 68.75, 60.14, 23.29, 22.34, 15.10; EI-MS (m/z, relative intensity): 224 (M⁺, 1), 179 (14), 137 (100), 109 (15); HRMS (EI) 100 calcd. for $C_{12}H_{16}O_2S$ [M]⁺ 224.0866, found: 224.0863.
- **1-Ethoxy-1-isopropoxyhept-2-yne (5o):**¹H NMR (400 MHz, CDCl³) δ 5.32 (s, 1H), 4.08 (m, 1H), 3.78 (m, 1H), 3.61 (m, 1H), 2.26 (t, *J* = 7.0 Hz, 2H), 1.53 (dt, *J* = 14.4, 7.1 Hz, 2H), 1.43 (dq, *J* = 14.4, 7.1 Hz, 2H), 1.22 (m, 9H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C
- 105 NMR (101 MHz, CDCl₃) δ 90.26, 86.16, 76.10, 68.24, 59.75, 30.38, 23.27, 22.30, 21.97, 18.34, 15.11, 15.08, 13.56; EI-MS (m/z, relative intensity): 153 ([M-OEt]⁺, 24), 139 (69), 111 (100); HRMS (EI) calcd. for $C_{10}H_{17}O$ [M-OEt]⁺ 153.1274, found: 153.1271.
- 110 (3-Ethoxy-3-isopropoxyprop-1-yn-1-yl)cyclopropane (5p): ¹H NMR (400 MHz, CDCl₃) δ 5.29 (s, 1H), 4.07 (m, 1H), 3.81 – 3.70 (m, 1H), 3.64-3.52 (m, 1H), 1.35-1.29 (m, 1H), 1.26-1.17 (m, 9H), 0.84-0.69 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 90.25, 89.02, 88.89, 68.27, 59.74, 23.26, 22.28, 15.07, 8.17, 8.15,
- ¹¹⁵-0.65; EI-MS (m/z, relative intensity): 167 (52), 149 (100), 123 (37), 137 ($[M-OEt]^{+}$, 19), 95 (79); HRMS (EI) calcd. for $C_9H_{13}O$

[M-OEt]⁺ 137.0961, found: 137.0958.

Acknowledgements

We thank the National Natural Science Foundation of China (Grant Nos. 21202207 and J1103305), the Research Fund for

⁵Guangzhou Peal River New Star of Science and Technology (Grant No. 2013J2200017), the Fundamental Research Funds for the Central Universities and RFDP (New teachers, Grant No. 20120171120002) for the financial support.

Notes and references

10^a School of Chemistry and Chemical Engineering, Sun Yat-Sen University, *135 Xingang West Road, Guangzhou 510275, China. E-mail: zhoul39@mail.sysu.edu.cn. Tel: +86 20 84110217* † Electronic Supplementary Information (ESI) available: [details of any

supplementary information available should be included here]. See ¹⁵DOI: 10.1039/b000000x/

- 1 A. de Meijere and F. Diederich, *Metal-catalyzed Cross-Coupling Reactions*, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004.
- 2 For reviews see: (a) Z. Liu and J. Wang, *J. Org. Chem.*, 2013, **78**, ²⁰10024−10030; (b) Y. Xia, Y. Zhang and J. Wang, *ACS Catal.*, 2013, **3**, 2586−2598; (c) Q. Xiao, Y. Zhang and J. Wang, *Acc. Chem. Res.*, 2013, **46**, 236–247; (d) Y. Zhang and J. Wang, *Top. Curr. Chem.*, 2012, **327**, 239–270; (e) Z. Shao and H. Zhang, *Chem. Soc. Rev.*, 2012, **41**, 560−572; (f) J. Barluenga and C. Valdés, *Angew. Chem.,* ²⁵*Int. Ed.*, 2011, **50**, 7486−7500.
- 3 For the formation of allenes see: (a) Q. Xiao, Y. Xia, H. Li, Y. Zhang and J. Wang, *Angew. Chem., Int. Ed.*, 2011, **50**, 1114−1117; (b) L. Zhou, Y. Shi, Q. Xiao, Y. Liu, F. Ye, Y. Zhang and J. Wang, *Org. Lett.*, 2011, **13**, 968−971; (c) F. Ye, Y. Shi, L. Zhou, Q. Xiao,
- ³⁰Y. Zhang and J. Wang, *Org. Lett.*, 2011, **13**, 5020−5023; (d) M. Hassink, X. Liu and J. M. Fox, *Org. Lett.*, 2011, **13**, 2388−2391; (e) F. Ye, M. L. Hossain, Y. Xu, X. Ma, Q. Xiao, Y. Zhang and J. Wang, *Chem. −Asian J.*, 2013, **8**, 1404−1407; (f) M. H. Hossain, F. Ye, Y. Zhang and J. Wang, *J. Org. Chem.*, 2013, **78**, 1236−1241; (g) ³⁵T. Xiao, X. Dong and L. Zhou, *Org. Biomol. Chem.*, 2013, **11**,
- 1490−1497.
- 4 For the formation of $C(sp) C(sp^3)$ bonds see: (a) A. Suárez and G. C. Fu, *Angew. Chem., Int. Ed.*, 2004, **43**, 3580−3582; (b) F. Ye, X. Ma, Q. Xiao, H. Li, Y. Zhang and J. Wang, *J. Am. Chem. Soc.*, 2012, ⁴⁰**134**, 5742−5745.
- 5 X. Zhao, G. Wu, Y. Zhang and J. Wang, *J. Am. Chem. Soc.*, 2011, **133**, 3296−3299.
- 6 Q. Xiao, L. Ling, F. Ye, R. Tan, L. Tian, Y. Zhang, Y. Li and J. Wang, *J. Org. Chem.*, 2013, **78**, 3879−3885.
- ⁴⁵7 M. Hu, C. Ni and J. Hu, *J. Am. Chem. Soc.*, 2012, **134**, 15257− 15260.
- 8 For reviews, see: (a) J. Warkentin, *J. Chem. Soc., Perkin Trans. 1*, 2000, 2161–2169; (b) J. Warkentin, *Acc. Chem. Res.*, 2009, **42**, 205–212.
- ⁵⁰9 (a) M. El-Saidi, K. Kassam, D. L. Pole and J. Warkentin, *J. Am. Chem. Soc.*, 1992, **114**, 8751–8752; (b) K. Kassam, D. L. Pole, M. El-Saidi and J. Warkentin, *J. Am. Chem. Soc.*, 1994, **116**, 1161– 1162; (c) K. Kassam and J. Warkentin, *J. Org. Chem.*, 1994, **59**, 5071–5075 (d) K. Kassam and J. Warkentin, *Can. J. Chem.*, 1997,
- ⁵⁵**75**, 120 –128; (e) K. Kassam, P. C. Venneri and J. Warkentin, *Can. J. Chem.*, 1997, **75**, 1256–1263; (f) X. Lu, D. L. Reid and J. Warkentin, *Can. J. Chem.*, 2001, **79**, 319–327; (g) N. Merkley, P. C. Venneri and J. Warkentin, *Can. J. Chem.*, 2001, **79**, 312–318; (h) M. Dawid and J. Warkentin, *Can. J. Chem.*, 2003, **81**, 598–606; (i)
- ⁶⁰A. Sliwinska and J. Warkentin, *Org. Lett.*, 2007, **9**, 2605−2607. 10 (a) X. Lu and J. Warkentin, *Tetrahedron Lett.*, 1999, **40**, 1483– 1486; (b) C. Spino, H. Rezaei, K. Dupont-Gaudet and F. Bélanger, *J. Am. Chem. Soc.*, 2004, **126**, 9926–9927; (c) L. Boisvert, F. Beaumier and C. Spino, *Org. Lett.*, 2007, **9**, 5361–5363; (d) F.
- ⁶⁵Beaumier, M. Dupuis, C. Spino. and C. Y. Legault, *J. Am. Chem. Soc.*, 2012, **134**, 5938–5953.
- 11 (a) L. Zhou, F. Ye, Y. Zhang and J. Wang, *J. Am. Chem. Soc.*, 2010, **132**, 13590−13591; (b) L. Zhou, J. Ma, Y. Zhang and J. Wang, *Tetrahedron Lett.*, 2011, **52**, 5484−5487; (c) L. Zhou, Y. Liu, Y.
- ⁷⁰Zhang and J. Wang, *Chem. Commun.*, 2011, **47**, 3622−3624; (d) L. Zhou, F. Ye, J. Ma, Y. Zhang and J. Wang, *Angew. Chem., Int. Ed.*, 2011, **50**, 3510−3514; (e) L. Zhou, F. Ye, Y. Zhang and J. Wang, *Org. Lett.*, 2012, **14**, 922−925.
- 12 (a) X. M. Du, H. Fan, J. L. Goodman, M. A. Kesselmayer, K. ⁷⁵Krogh-Jespersen, J. A. LaVilla, R. A. Moss, S. Shen and R. S. Sheridan, *J. Am. Chem. Soc.*, 1990, **112**, 1920−1926; (b) R. A. Moss, S. Shen and M. Wlostowski, *Tetrahedron Lett.*, 1988, **29**, 6417−6420; (c) J. P. Pezacki, *Can. J. Chem.*, 1999, **77**, 1230−1240.
- 13 A. J. III. Arduengo, J. C. Calabrese, F. Davidson, H. V. Rasika Dias, ⁸⁰J. R. Goerlich, R. Krafczyk, W. J. Marshall, M. Tamm and R. Schmutzler, *Helv. Chim. Acta*, 1999, **82**, 2348−2364.
	- 14 (a) B. W. Howk and J. C. Sauer, *J. Am. Chem. Soc.*, 1958, **80**, 4607−4609; (b) B. W. Howk and J. C. Sauer, "Organic Syntheses"; Wiley: New York, 1963; Collect. Vol. 4, p 801.
- ⁸⁵15 (a) P. Bharathi and M. Periasamy, *Organometallics*, 2000, **19**, 5511−5513; (b) Y. Masahiko, H. Akio and H. Masahiro, *Chem. Lett.*, 1992, **12***,* 2479−2480.
- 16 (a) F. Barbot and Ph. Miginiac, *J. Organomet. Chem.*, 1981, **222**, 1−15; (b) T. Kudoh, A. Shishido, K. Ikeda, S. Saito and T. ⁹⁰Ishikawa, *Synlett.*, 2013, **24**, 1509−1512.
- 17 For selected reviews on transition-metal catalyzed cycloisomerizations see: (a) D. J. Gorin, B. D. Sherry, F. D. Toste, *Chem. Rev.*, 2008, **108**, 3351−3378; (b) E. Jiménez-Núňez, A. M. Echavarren, *Chem. Rev.*, 2008, **108**, 3326−3350; (c) A. S. K. ⁹⁵Hashmi, *Chem. Rev.*, 2007, **107**, 3180–3211; (d) D. J. Gorin, F. D. Toste, *Nature*, 2007, **446**, 395–403.
- 18 M. Lemhadri, H. Doucet and M. Santelli, *Tetrahedron*, 2005, **61**, 9839–9847.