Organic & Biomolecular Chemistry Accepted Manuscript This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about *Accepted Manuscripts* in the **Information for Authors**. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains. # Journal Name ## **RSCPublishing** ### COMMUNICATION Cite this: DOI: 10.1039/x0xx00000x # First total syntheses of chrestifoline-B and (±)chrestifoline-C, and improved routes to bismurrayafoline-A, bismurrayafolinol and chrestifoline-D†‡ Received ooth January 2012, Accepted ooth January 2012 DOI: 10.1039/x0xx00000x www.rsc.org/ Carsten Börger, Arndt W. Schmidt and Hans-Joachim Knölker* We describe an efficient synthesis of the methylene-bridged biscarbazole alkaloids bismurrayafoline-A, bismurrayafolinol and chrestifoline B-D using an Ullmann-type coupling at the benzylic position. A wide range of carbazole alkaloids has been isolated and investigated towards their biological activity. 1-3 Much less is known about the pharmaceutical potential of biscarbazoles and only few synthetic approaches have been described.^{1,4} We have developed several methods for the synthesis of carbazoles. 1,2 Using our palladium-catalysed construction of the carbazole framework,5 we recently described efficient routes to biscarbazole alkaloids, 6-8 for example the oxygenbridged biscarbazole oxydimurrayafoline and the N-aryl linked murrastifoline-A. 7,8 The biscarbazole linkage was constructed by etherification, ⁷ Buchwald–Hartwig amination, ⁹ or Ullmann coupling. ¹⁰ Herein, we report the synthesis of methylene-bridged biscarbazole alkaloids by palladium(0)- and copper(I)-catalysed coupling reactions at the benzylic position at C-3 of the carbazole framework. The first methylene-bridged biscarbazole alkaloid obtained from natural sources was bismurrayafoline-A (1), isolated in 1983 by Furukawa et al. from the root bark of Murraya euchrestifolia Hayata (Fig. 1). 11 Bismurrayafoline-A (1) showed a weak activity against some cancer cell lines. 12 In 2001, Bringmann et al. reported the formation of bismurrayafoline-A (1) in up to 19% yield as by-product of the reduction of mukonine (6d) (7 steps, 9% overall yield of 1).¹³ We have described a total synthesis of bismurrayafoline-A (1) via an unprecedented rearrangement during an Ullmann coupling (6 steps, 28% overall yield of 1).8 In 1987, Furukawa et al. isolated bismurrayafolinol (2), from the root bark of Murraya euchrestifolia Hayata. 14 Bringmann et al. reported the formation of bismurrayafolinol (2) as by-product in up to 6% yield (7 steps, 3% overall yield of 2) during their synthesis of murrayafoline-A (6a). 13 Chrestifoline-D (3) was isolated in 1992 by Furukawa and Wu et al. from the root bark of M. euchrestifolia. 15 The first synthetic approach by partial synthesis starting from bismurrayafolinol (2) was reported along with the isolation. Chrestifoline-B (4) and chrestifoline-C (5) were isolated in 1990 by Furukawa et al. from the same natural source. 16 Chrestifoline-C (5) has been obtained in optically active form ($[\alpha]_D = -5.6$, CHCl₃), ¹⁶ but its absolute configuration is not known. - 1 Bismurrayafoline-A (R = Me) - 2 Bismurrayafolinol $(R = CH_2OH)$ 3 Chrestifoline-D (R = CHO) - 4 Chrestifoline-B (R = H) 5 Chrestifoline-C (R = prenyl) 6a Murrayafoline-A (R = Me) **6b** Koenoline $(R = CH_2OH)$ (R = CHO)6c Murravanine (R = COOMe) 6d Mukonine **7a** Girinimbine (R = H) **7b** Mahanimbine (R = prenyl) Fig. 1 Bismurrayafoline-A (1), bismurrayafolinol (2), chrestifoline-B (4), chrestifoline-C (5), chrestifoline-D (3), the 1-methoxycarbazole alkaloids 6a-6d. girinimbine (7a) and mahanimbine (7b). The biscarbazoles 1-5 have an identical benzylic subunit which corresponds to murrayafoline-A (6a), but they differ in the benzylic substituent (Fig. 1). For the biscarbazoles 1-3, the benzylic linkage leads to the nitrogen atom of a 1-oxygenated tricyclic carbazole corresponding to either murrayafoline-A (6a), koenoline (6b) or murrayanine (6c), respectively. For chrestifoline-B (4) and chrestifoline-C (5), the pyrano[3,2-a]carbazole alkaloids girinimbine (7a) and mahanimbine (7b) serve as benzylic substituents. The monocarbazole building blocks of the biscarbazoles 1–5 are found in nature as well. The 1-methoxycarbazole alkaloids, murrayafoline-A (6a), koenoline (6b), murrayanine (6c) and mukonine (6d), have been obtained from diverse plants of the Rutaceae family. The pyrano[3,2-a]carbazole alkaloids girinimbine (7a) and mahanimbine (7b) were isolated first by Chakraborty et al. from Murraya koenigii Spreng. The Our group previously described synthetic routes to all individual carbazole fragments present in the biscarbazoles 1–5. An efficient iron-mediated synthesis of the 1-methoxycarbazole alkaloids 6a–d was reported early on. More recently, an optimised palladium-catalysed synthesis of mukonine (6d) was described. Several synthetic routes to girinimbine (7a) and an efficient access to mahanimbine (7b) were also developed by our group. $$\begin{array}{c} R \\ H \\ OMe \\ 1-5 \end{array}$$ $$\begin{array}{c} R \\ H \\ A \\ Boc \\ OMe \\ \hline \\ H \\ OMe \\ \hline \\ 10 \end{array}$$ $$\begin{array}{c} COOMe \\ H \\ OMe \\ \hline \\ Gd \\ \end{array}$$ Scheme 1 Retrosynthetic analysis of the methylene-bridged biscarbazoles 1–5. For the synthesis of the biscarbazoles **1–5** we envisaged a retrosynthetic cleavage of the C–N linkage between both carbazole units which leads to the carbazoles **8** and **9** as precursors (Scheme 1). In our approach the nitrogen atom of carbazole **8** serves as nucleophile. Thus, carbazole **8** is represented by the unprotected naturally occurring carbazoles **6a–c**, **7a** and **7b**. Fragment **9** should have a leaving group at the benzylic position and would be represented by an appropriate koenoline derivative. Compound **9** can be prepared from mukonine (**6d**) which is readily available using the arylamine **10** as starting material.⁷ Buchwald–Hartwig coupling of bromobenzene and arylamine 10 in the presence of SPhos followed by palladium(II)-catalysed oxidative cyclisation afforded mukonine (6d) in 91% yield over both steps (Scheme 2). Boc-protection of 6d and subsequent reduction of the ester group led to the protected koenoline 11. Next, the hydroxy group had to be transformed into a leaving group. However, in light of the high reactivity of the benzylic position of the koenoline derivative 11, the resulting compound should have sufficient stability in order to serve as the central intermediate *en route* to the methylene-bridged biscarbazole alkaloids. Treatment of 11 with *p*-nitrobenzoyl chloride in the presence of stoichiometric amounts of DMAP afforded quantitatively the *p*-nitrobenzoate 12. In contrast to the corresponding mesylate, the *p*-nitrobenzoate 12 is much more stable towards benzyl cation formation. Thus, the koenoline derivative 12 with an activated benzylic position is available in five steps and 88% overall yield and was subsequently used as relay compound for the synthesis of the methylene-bridged biscarbazole alkaloids 1–5. Scheme 2 Synthesis of bismurrayafolinol (2) and chrestifoline-D (3). Reagents and conditions: a) 1.2 equiv. PhBr, 6 mol% Pd(OAc)₂, 12 mol% SPhos, 1.4 equiv. Cs₂CO₃, toluene, reflux, 40 h, 100%; b) 10 mol% Pd(OAc)₂, 10 mol% K_2 CO₃, PivOH, 115 °C, air, 14 h, 91%; c) 2 equiv. Boc₂O, 1 equiv. DMAP, MeCN, rt, 17 h, 97%; d) 3.2 equiv. DIBAL-H, Et₂O, -78 °C, 3.5 h, 100%; e) 1.5 equiv. p-(NO₂)C₆H₄COCl, 1.5 equiv. DMAP, CH₂Cl₂, rt, 1.5 h, 100%; f) 1.3 equiv. mukonine (6d), 0.2 equiv. CuBr, 0.4 equiv. pyrrole-2-carboxylic acid, 4 equiv. K_3 PO₄, DMSO, 110 °C, 40 h, 63%; g) 3.2 equiv. DIBAL-H, Et₂O, -78 °C, 4 h, 96%; h) 5 equiv. MnO₂, CH₂Cl₂, rt, 24 h, 78%. **Table 1** Coupling of the *p*-nitrobenzoate **12** with mukonine (**6d**) | Reaction Conditions | Products, yield (%) | |----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------| | 1.3 equiv. 6d , 10 mol% Pd(OAc) ₂ , 10 mol% <i>rac</i> -BINAP, 1.4 equiv. Cs ₂ CO ₃ , toluene, reflux, 4 d | 13a, 27%; 13b, 35% | | 1.3 equiv. 6d , 0.2 equiv. CuBr, 0.4 equiv. pyrrole-2-carboxylic acid, 4 equiv K_3PO_4 , DMSO, 110 °C, 40 h | 13b , 63% | First, we envisaged a Buchwald–Hartwig coupling reaction of the *p*-nitrobenzoate **12** with mukonine (**6d**). Only a few methods have been described so far using transition metal-catalysed coupling reactions at the benzylic position.²¹ Reaction of **12** and **6d** in the presence of catalytic amounts of palladium(II) acetate, *rac*-BINAP and stoichiometric amounts of caesium carbonate in toluene at reflux provided the desired biscarbazole **13a** in 27% yield along with the deprotected biscarbazole **13b** in 35% yield (Scheme 2, Table 1). The concomitant partial removal of the Boc group could result either from a pericyclic reaction under thermal conditions²² or from a base-promoted saponification. Coupling of **12** and **6d** under Ullmann conditions, using **Journal Name** substoichiometric amounts of copper(I) bromide in the presence of pyrrole-2-carboxylic acid,²³ led only to the deprotected biscarbazole 13b in 63% yield (see experimental procedure).§ Therefore, the Ullmann coupling reaction is superior for the present synthesis as it provides directly the biscarbazole 13b and thus avoids an additional deprotection step. Reduction of biscarbazole diisobutylaluminium hydride provided bismurrayafolinol (2) in 96% yield. The spectroscopic data of 2 are in full agreement with those reported for the natural product. Reduction of 13b using lithium aluminium hydride afforded bismurrayafolinol (2) in 90% yield but did not lead to bismurrayafoline-A (1). Apparently, N-substituted carbazoles do not form the quinone imine methide intermediate required for the complete reduction to a 3-methylcarbazole, 5i,13,24 and thus, further reduction of the 3-(hydroxymethyl)carbazole does not occur. Oxidation of bismurrayafolinol (2) with manganese(IV) oxide^{25,26} led to chrestifoline-D (3).¶ A Chrestifoline-B CH2OPNB a OMe N A Chrestifoline-B 5 Chrestifoline-C Scheme 3 Synthesis of bismurrayafoline-A (1), chrestifoline-B (4), and chrestifoline-C (5). Reagents and conditions: a) 1.5 equiv. 6a, 0.4 equiv. CuBr, 0.8 equiv. pyrrole-2-carboxylic acid, 4 equiv. K_3PO_4 , DMSO, 110 °C, 2 d, 46%; b) 1.5 equiv. 7a, 0.2 equiv. CuBr, 0.4 equiv. pyrrole-2-carboxylic acid, 4 equiv. K_3PO_4 , DMSO, 125 °C, 40 h, 41%; c) 1.5 equiv. 7b, 0.2 equiv. CuBr, 0.4 equiv. pyrrole-2-carboxylic acid, 4 equiv. K_3PO_4 , DMSO, 120 °C, 40 h, 32%. Using the Ullmann-type coupling of the p-nitrobenzoate 12 with the appropriate carbazole building blocks 6a, 7a and 7b, the methylene-bridged biscarbazoles 1, 4 and 5 became directly available (Scheme 3). Thus, reaction of murrayafoline-A (6a)⁸ with the p-nitrobenzoate 12 provided bismurrayafoline-A (1) in 46% yield.¶ Ullman-type coupling of the nitrobenzoate 12 with girinimbine (7a)^{20e} afforded chrestifoline-B (4) and reaction of 12 with mahanimbine (7b)^{20e} provided (\pm)-chrestifoline-C (5).¶ Comparison of the four Ullmann-type couplings described herein reveals that mukonine (6d), which obviously is more stable under the reaction conditions, provided the best yield (63%) for the copper-induced C–N bond formation with compound 12. In conclusion, five naturally occurring methylene-bridged biscarbazole alkaloids were synthesised using the Ullmann-type coupling at the benzylic carbon atom of the relay compound 12 as key reaction. Using the present route, the biscabazole alkaloids **1**–**5** become available *via* short and efficient routes, bismurrayafoline-A (**1**): 6 steps, 41% overall yield; bismurrayafolinol (**2**): 7 steps, 53% overall yield; chrestifoline-D (**3**): 8 steps, 42% overall yield; chrestifoline-B (**4**): 6 steps, 36% overall yield; (±)-chrestifoline-C (**5**): 6 steps, 28% overall yield based on the arylamine **10**. Chrestifoline-B (**4**) and (±)-chrestifoline-C (**5**) have been obtained by total synthesis for the first time. Studies concerning the bioactivity of the biscarbazole alkaloids **1**–**5** are in progress. ### Notes and references - ^a Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany. E-mail: hans-joachim.knoelker@tu-dresden.de † Part 117 of Transition Metals in Organic Synthesis; for Part 116, see: ref. 6b. - ‡ Electronic supplementary information (ESI) available: ¹H and ¹³C NMR spectra of the biscarbazole alkaloids **1–5**. For ESI see DOI: 10.1039/c000000x/ - § Experimental procedure for the Ullmann-type coupling to biscarbazole 13b: A solution of the p-nitrobenzoate 12 (66.6 mg, 0.140 mmol), freshly dried potassium phosphate (120 mg, 0.566 mmol), mukonine (6d) (46.4 mg, 0.182 mmol), copper(I) bromide (4.0 mg, 28 µmol), and pyrrole-2carboxylic acid (6.2 mg, 56 μmol) in DMSO (1 mL) was heated at 110 °C for 40 h. Water (1.5 mL) and a saturated aqueous solution of ammonium chloride (3 mL) were added, the layers were separated and the aqueous layer was extracted three times with ethyl acetate. The combined organic layers were dried over magnesium sulfate and the solvents were removed under reduced pressure. Purification of the residue by flash chromatography on silica gel (gradient elution with petroleum ether/ethyl acetate, 19:1 to 7:3) afforded the biscarbazole 13b (40.9 mg, 63%) as a colourless solid; mp 152.5–153 °C. UV (MeOH): $\lambda = 240$ (sh), 252 (sh), 270, 292 (sh), 325 nm; IR (ATR): v = 3360, 3055, 2992, 2949, 2933, 2836, 1771, 1734, 1716, 1692, 1653, 1625, 1582, 1542, 1503, 1489, 1448, 1401, 1358, 1338, 1306, 1266, 1251, 1200, 1167, 1134, 1103, 1037, 1011, 991, 947, 906, 861, 837, 764, 729, 694, 665, 613 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 3.81$ (s, 3 H), 3.99 (s, 3 H), 4.02 (s, 3 H), 6.05 (s, 2 H), 6.76 (d, J = 0.8 Hz, 1 H), 7.17 (ddd, J = 7.9 Hz, 6.9 Hz, 1.1Hz, 1 H), 7.27 (ddd J = 7.8 Hz, 7.0 Hz, 0.8 Hz, 1 H), 7.37 (ddd, J = 8.1Hz, 7.0 Hz, 1.1 Hz, 1 H), 7.40–7.44 (m, 2 H), 7.497 (d, J = 8.1 Hz, 1 H), 7.500 (s, 1 H), 7.66 (d, J = 1.3 Hz, 1 H), 7.93 (d, J = 7.8 Hz, 1 H), 8.14 $(d, J = 7.8 \text{ Hz}, 1 \text{ H}), 8.20 \text{ (br s, 1 H)}, 8.54 \text{ (d, } J = 1.3 \text{ Hz}, 1 \text{ H)}; {}^{13}\text{C NMR}$ and DEPT (125 MHz, CDCl₃): $\delta = 49.76$ (CH₂), 52.18 (CH₃), 55.51 (CH₃), 56.08 (CH₃), 104.89 (CH), 108.20 (CH), 110.38 (CH), 110.99 (CH), 111.09 (CH), 116.38 (CH), 119.46 (CH), 120.23 (CH), 120.56 (CH), 120.66 (CH), 121.50 (C) 123.51 (C), 123.65 (C), 124.17 (C), 124.55 (C), 125.88 (CH), 126.48 (CH), 129.13 (C), 130.65 (C), 133.19 (C), 139.49 (C), 141.76 (C), 145.87 (C), 146.57 (C), 168.03 (C); ESI-MS (+50 V): $m/z = 487 \text{ [M+Na]}^+$, (-100 V): $m/z = 463 \text{ [M-H]}^-$; MS (EI): m/z $(\%) = 464 (26, M^{+}), 255 (32), 240 (8), 224 (8), 210 (100), 167 (11);$ HRMS: m/z calcd. for $C_{29}H_{24}N_2O_4$ (M⁺): 464.1736; found: 464.1741. ¶ Bismurrayafoline-A (1): Light brownish solid, mp 209–210 °C; UV (MeOH): $\lambda = 224$, 243, 251, 262 (sh), 282, 292, 323 (sh), 338, 352 (sh) nm; MS (EI): m/z (%) = 420 (M⁺, 40), 210 (100). **Journal Name** Bismurrayafolinol (2): Colourless solid, mp 120–121.5 °C; UV (MeOH): $\lambda = 225$, 243, 252, 261 (sh), 281, 292, 331, 343 (sh) nm; MS (EI): m/z (%) = 436 (M⁺, 12), 210 (100). Chrestifoline-D (3): Colourless solid, mp 163.5–164 °C; UV (MeOH): $\lambda = 222, 242, 251, 275, 291, 338, 346$ (sh) nm; MS (EI): m/z (%) = 434 (M⁺, 22), 210 (100). Chrestifoline-B (4): Light brownish solid, mp 106–107 °C; UV (MeOH): $\lambda = 227$ (sh), 239, 251 (sh), 258 (sh), 290, 325, 338, 358 (sh) nm; ESI-MS (-10 V): m/z = 471 [M-H]⁻. (±)-Chrestifoline-C (**5**): Light brownish solid, mp 90 °C; UV (MeOH): $\lambda = 228$ (sh), 242, 251 (sh), 282 (sh), 290, 327, 340, 360 nm; ESI-MS (+10 V): m/z = 541 [M+H]⁺. For the ¹H and ¹³C NMR spectra of the biscarbazoles **1–5**, see: ESI. - (a) H.-J. Knölker and K. R. Reddy, *Chem. Rev.*, 2002, **102**, 4303; (b) H.-J. Knölker and K. R. Reddy, in *The Alkaloids*, ed. G. A. Cordell, Academic Press, Amsterdam, 2008, vol. **65**, p. 1; (c) A. W. Schmidt, K. R. Reddy and H.-J. Knölker, *Chem. Rev.*, 2012, **112**, 3193. - 2. (a) H.-J. Knölker, *Top. Curr. Chem.*, 2005, **244**, 115; (b) I. Bauer and H.-J. Knölker, *Top. Curr. Chem.*, 2012, **309**, 203. - (a) D. P. Chakraborty and S. Roy, in *Progress in the Chemistry of Organic Natural Products*, eds. W. Herz, H. Grisebach, G. W. Kirby, W. Steglich and C. Tamm, Springer-Verlag, Wien, 1991, vol. 57, p. 71; (b) D. P. Chakraborty, in *The Alkaloids*, ed. G. A. Cordell, Academic Press, New York, 1993, vol. 44, p. 257; (c) C. J. Moody, *Synlett*, 1994, 681; (d) D. P. Chakraborty and S. Roy, in *Progress in the Chemistry of Organic Natural Products*, eds. W. Herz, H. Grisebach, G. W. Kirby, W. Steglich and C. Tamm, Springer-Verlag, Wien, 2003, vol. 85, p. 125. - (a) H. Furukawa, Trends Heterocycl. Chem., 1993, 3, 185; (b) S. Tasler and G. Bringmann, Chem. Rec., 2002, 2, 113. - Reviews: (a) H.-J. Knölker, Curr. Org. Synth., 2004, 1, 309; (b) H.-J. Knölker, Chem. Lett., 2009, 38, 8; applications: (c) H.-J. Knölker and N. O'Sullivan, Tetrahedron, 1994, 50, 10893; (d) H.-J. Knölker and K. R. Reddy, Heterocycles, 2003, 60, 1049; (e) R. Forke, A. Jäger and H.-J. Knölker, Org. Biomol. Chem., 2008, 6, 2481; (f) R. Forke, M. P. Krahl, F. Däbritz, A. Jäger and H.-J. Knölker, Synlett, 2008, 1870; (g) T. Gensch, M. Rönnefahrt, R. Czerwonka, A. Jäger, O. Kataeva, I. Bauer and H.-J. Knölker, Chem. Eur. J., 2012, 18, 770; (h) L. Huet, R. Forke, A. Jäger and H.-J. Knölker, Synlett, 2012, 23, 1230; (i) C. Börger and H.-J. Knölker, Tetrahedron, 2012, 68, 6727. - (a) V. P. Kumar, K. K. Gruner, O. Kataeva and H.-J. Knölker, *Angew. Chem.*, 2013, 125, 11279; *Angew. Chem. Int. Ed.*, 2013, 52, 11073; (b) C. Börger, A. W. Schmidt and H.-J. Knölker, *Synlett*, 2014, 25, doi: 10.1055/s-0033-1338621. - 7. C. Börger, M. P. Krahl, M. Gruner, O. Kataeva and H.-J. Knölker, *Org. Biomol. Chem.*, 2012, **10**, 5189. - C. Börger, O. Kataeva and H.-J. Knölker, *Org. Biomol. Chem.*, 2012, 10, 7269. - (a) A. S. Guram, R. A. Rennels and S. L. Buchwald, *Angew. Chem.*, 1995, 107, 1456; *Angew. Chem. Int. Ed. Engl.*, 1995, 34, 1348; (b) J. Louie and J. F. Hartwig, *Tetrahedron Lett.*, 1995, 36, 3609; (c) S. Shekhar, P. Ryberg, J. F. Hartwig, J. S. Mathew, D. G. Blackmond, E. R. Strieter and S. L. Buchwald, *J. Am. Chem. Soc.*, 2006, 128, 3584; (d) B. Schlummer and U. Scholz, *Adv. Synth. Catal.*, 2004, 346, 1599. - (a) F. Ullmann, Ber. Dtsch. Chem. Ges., 1903, 36, 2382; (b) F. Ullmann, Ber. Dtsch. Chem. Ges., 1904, 37, 853; (c) I. Goldberg, Ber. Dtsch. Chem. Ges., 1906, 39, 1691; (d) S. V. Ley and A. W. Thomas, Angew. Chem., 2003, 115, 5558; Angew. Chem. Int. Ed., 2003, 42, 5400. - H. Furukawa, T.-S. Wu and T. Ohta, Chem. Pharm. Bull., 1983, 31, 4202. - 12. M. Itoigawa, Y. Kashiwada, C. Ito, H. Furukawa, Y. Tachibana, K. F. Bastow and K.-H. Lee, *J. Nat. Prod.*, 2000, **63**, 893. - 13. G. Bringmann and S. Tasler, Tetrahedron, 2001, 57, 2337. - C. Ito, T.-S. Wu and H. Furukawa, Chem. Pharm. Bull., 1987, 35, 450. - C. Ito, N. Okahana, T.-S. Wu, M.-L. Wang, J.-S. Lai, C.-S. Kuoh and H. Furukawa, *Chem. Pharm. Bull.*, 1992, **40**, 230. - C. Ito, T.-S. Wu and H. Furukawa, Chem. Pharm. Bull., 1990, 38, 1143. - D. P. Chakraborty, B. K. Barman and P. K. Bose, Sci. Cult., 1964, 30, 445 - 18. D. P. Chakraborty, K. C. Das and P. K. Bose, Sci. Cult., 1966, 32, 83. - (a) H.-J. Knölker and M. Bauermeister, J. Chem. Soc. Chem. Commun., 1990, 664; (b) H.-J. Knölker and M. Bauermeister, Tetrahedron, 1993, 49, 11221; (c) H.-J. Knölker and M. Wolpert, Tetrahedron Lett., 1997, 38, 533; (d) H.-J. Knölker and M. Wolpert, Tetrahedron, 2003, 59, 5317. - (a) K. K. Gruner and H.-J. Knölker, *Org. Biomol. Chem.*, 2008, 6, 3902; (b) K. K. Gruner, T. Hopfmann, K. Matsumoto, A. Jäger, T. Katsuki and H.-J. Knölker, *Org. Biomol. Chem.*, 2011, 9, 2057; (c) R. Hesse, K. K. Gruner, O. Kataeva, A. W. Schmidt and H.-J. Knölker, *Chem. Eur. J.*, 2013, 19, 14098. - See for example: (a) R. A. Earley and M. J. Gallagher, J. Chem. Soc. C, 1970, 158; (b) U. Nettekoven and J. F. Hartwig, J. Am. Chem. Soc., 2002, 124, 1166; (c) S. L. Marquard, D. C. Rosenfeld and J. F. Hartwig, Angew. Chem., 2010, 122, 805; Angew. Chem. Int. Ed., 2010, 49, 793. - (a) V. H. Rawal and M. P. Cava, *Tetrahedron Lett.*, 1985, 26, 6141; (b) K. E. Knott, S. Auschill, A. Jäger and H.-J. Knölker, *Chem. Commun.*, 2009, 1467. - R. A. Altman, K. W. Anderson and S. L. Buchwald, *J. Org. Chem.*, 2008, 73, 5167. - D. P. Chakraborty, S. Roy and A. K. Dutta, J. Indian Chem. Soc., 1987, 64, 215. - (a) A. J. Fatiadi, Synthesis, 1976, 65; (b) H.-J. Knölker, J. Prakt. Chem., 1995, 337, 75. - 26. Manganese dioxide (precipitated, active) from Merck (art. 805958).