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Abstract: In the present study, we found that three enzymes, MVK, MDD, and FPPS, in 

mevalonate pathway (MVP) of cholesterol biosynthesis, can be simultaneously inhibited 

by two green tea polyphenols ((-)-epicatechin-3-gallate, ECG; 

(-)-epigallocatechin-3-gallate, EGCG). Molecular dynamics simulations and 

pharmacophore studies were carried out to elucidate the tri-targeted inhibition 

mechanisms. Our results indicate that similar triangular binding pockets exist in all these 

three enzymes, which is essential for their binding with polyphenols. Two distinct 

binding poses for ECG and EGCG were observed in our MD simulations. These results 

shed light on further selective and multi-targeted inhibitor design for treatment of 

hyperlipidemia. 

 
Keywords: anti-hyperlipidemia; MD simulations; pharmacophore modeling; tri-targeted 

inhibition; mevalonate pathway. 

Abbreviations: 3D, three-dimensional; FPPS, farnesylpyrophosphate synthase; MD, 

molecular dynamics; MDD, mevalonate 5-diphosphate decarboxylase (also known as 

mevalonate 5-pyrophosphate decarboxylase or MPD); MVK, mevalonate kinase;  
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1. Introduction 

Green tea has been consumed for centuries and has sparked growing interest in its 

potential health benefit.1 Green tea mainly contains polyphenols, such as (+)epicatechin 

(EC), (-)epigallocatechin (EGC), (-)epicatechin-3-gallate (ECG), and 

(-)epigallocatechin-3-gallate (EGCG)2 (Fig. 1). Studies report that green tea reduces the 

risks of cancer,3-6 cardiovascular diseases,7-9 neurodegenerative diseases,10 diabetes,11 and 

obesity.12-14 Further studies indicate that green tea polyphenols lower serum cholesterol in 

animals or human15-18, and suppress hepatic cholesterol synthesis through inhibiting 

HMG-CoA reductase19 and squalene epoxidase,20 which are the rate-limiting enzymes in 

in vivo cholesterol biosynthesis.21 Therefore, it is necessary to identify which green tea 

polyphenols could reduce cholesterol levels and elucidate the inhibitory mechanism. 

Mevalonate pathway contains a unique series of three sequential ATP-dependent 

enzymes that convert mevalonate to isopentenyl diphosphate (IPP): mevalonate kinase 

(MVK), phosphomevalonate kinase (PMK), and mevalonate 5-diphosphate 

decarboxylase (MDD). Several investigators have suggested the involvement of these 

three enzymes as important regulatory steps in the biosynthesis of cholesterol. 

Mevalonate kinase (MVK), the fourth enzyme of the mevalonate pathway, catalyzes 

a nucleophilic attack by a C5 anion of mevalonate on the γ-phosphate of ATP forming 

mevalonate-5-phosphate.22 This irreversible reaction requires a divalent cation and 

represents a key step in the production of polyisoprenoid and sterol metabolites from 

acetate. The significance of MVK has been further highlighted by the implication of the 

enzyme in human inherited diseases, such as mevalonic aciduria and 

hyperimmunoglobulinemia D/periodic fever syndrome.23, 24  

Mevalonate pyrophosphate decarboxylase (MDD) catalyzes the ATP dependent 

decarboxylation of mevalonate 5-diphosphate (MVAPP) to form isopentenyl 
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5-diphosphate (IPP), inorganic phosphate (Pi), ADP, and CO2.
25, 26 Inhibition of this 

enzyme effectively diminishes biosynthesis of cholesterol, and low MDD activity 

correlates with decreased cholesterol levels in a hypertensive rat strain.25, 27 

Farnesyl pyrophosphate synthase (FPPS) is a key regulatory enzyme in the 

mevalonate pathway.28 The enzyme that catalyzes the consecutive head-to-tail 

condensations of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) 

to form C10 geranyl diphosphate (GPP) and subsequently C15 farnesyl diphosphate 

(FPP). Pyrophosphate (PPi) is generated as the byproduct of the reaction (Figure 1.39).29 

A distinct enzyme further elongates FPP by condensation with an additional molecule of 

isopentenyl diphosphate to produce C20 geranylgeranyl diphosphate (GGPP). FPP and 

GGPP are precursors for the biosynthesis of most of the isoprenoid compound family. 

Importantly, FPP and GGPP are the branching point in the mevalonate pathway leading to 

prenylated proteins and to the biosynthesis of dolichols and sterols, such as cholesterol 

and ergosterol.30 

Herein, we found that green tea polyphenols, ECG and EGCG, could inhibit three 

enzymes (FPPS, MVK, and MDD) of the mevalonate pathway essential for in vivo 

cholesterol biosynthesis. In contrast, other green tea components, EC and EGC, had no 

such effects. Molecular modeling on receptor-ligand complexes was performed to reveal 

the ligand binding modes of FPPS, MVK, and MDD. Pharmacophore models were built 

for analyzing the protein-ligand interactions. The present study will help to discover new 

cholesterol lowering agents, and inspire designing of multiple-target inhibitors against 

other drug targets.  

Page 3 of 28 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t



4 

 

OH

OH

HO O

OH

OH

OH

HO O

OH

OH

OH

OH

OH

O

O

OH

HO O

OH

OH

OH

OH

OH

O

O

OH

(-)-epigallocatechin-3-gallate (EGCG)(-)-epicatechin-3-gallate (ECG)

(+)-epicatechin (EC) (-)-epigallocatechin (EGC)

OH

OH

HO O

OH

OH

OH

 

Figure 1. The structures of four major components of green tea polyphenols 

 

2. Results and discussion 

2.1.  The ECG and EGCG of green tea polyphenols showed micromolar in vitro 

inhibition against FPPS, MVK, and MDD 

Three cholesterol-related enzymes (FPPS, MVK, and MDD) were purified to apparent 

homogeneity as potential drug targets for green tea polyphenol inhibition studies. Four 

compounds (ECG, EGCG, EC and EGC) were tested against these enzymes with enzyme 

activity inhibitory assays and fluorescence titration assays. The IC50 and Kd values for 

each compound were determined (Table 1). Both ECG and EGCG showed micro molar 

inhibition to all three enzymes (FPPS, MVK and MDD), while EC and EGC were unable 

to inhibit these three enzymes. It is possibly because ECG and EGCG all have the galloyl 
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group, which is important for their activity, but not included in EC and EGC.  

 

Table 1. IC50 and Kd values for enzyme inhibition by green tea polyphenols 

Compound 
IC50 (µM)a Kd (µM)a 

FPPS MVK MDD FPPS MVK MDD 

ECG 0.95±0.22 5.82±0.29 4.48±0.20 2.14±0.44 7.40±1.12 6.62±0.34 

EGCG 1.96±0.13 5.51±0.07 13.36±0.15 6.10±0.38 5.29±0.48 11.44±0.96 

EC >100 >100 >100 >100 >100 >100 

EGC >100 >100 >100 >100 >100 >100 

a. The IC50 (µM) values and the Kd values shown are the mean ± SD of three experiments. 

 

2.2. Rat FPPS, MVK, and MDD have high homology with corresponding human 

enzymes 

The major purpose of developing cholesterol lowering agents should be lowering 

cholesterol levels for human patients. Therefore, we compared the similarity of human 

and rat FPPS, MDD, and MVK enzymes, from the aspects of both sequence and structure. 

Due to the lack of crystal structures for rat FPPS and MDD, we built homology models 

for both of them. Then, the sequence identity and structural RMSDs between human and 

rat enzymes were calculated, respectively. Table 2 lists the percent identities between 

human and rat protein sequences of FPPS, MDD, and MVK. All the identities are >80%, 

indicating that they have high homology. Figure 2 depicts the structures of human and rat 

enzymes and the corresponding RMSDs. All the backbone RMSDs are <1 Å, which 

means the whole proteins are quite similar. Also, the pocket RMSDs are even smaller, 

implying that the ligand binding pockets are more conserved. The high similarity in both 

protein sequence and 3D structure revealed that rat FPPS, MVK, and MDD have high 

homology with human. Our experimental results on rat enzymes implies the green tea 

polyphenols should inhibit human FPPS, MVK, and MDD as well. 
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Table 2. The 3D structures and homology between human and rat FPPS, MDD, and MVK 

Enzyme FPPS MDD MVK 

Human PDB: 3N6K PDB: 3D4J PDB: 2R3V 

Rat 
Homology 

Model 

Homology 

Model 
PDB: 2R42 

Identity (%) 84.6 84.8 81.8 

 

Figure 2. The structural similarity between human and rat source enzymes. The structures 

from human are in cyan, and those from rats are in magenta. 

 

2.3. Theoretical interaction models by molecular docking and MD simulation 

To study the structure-activity relationships between the green tea polyphenols and the 

three targets, computational studies like molecular docking, molecular dynamics (MD) 

simulations were performed. Prior to the docking of green tea polyphenols, method 

assessments were carried out. Generally, there are four ways to analyze the outcome of a 

docking campaign: (1) The accuracy of the binding pose prediction, (2) the accuracy of 
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the affinity prediction, (3) the enrichment rates obtained by virtual screening, (4) the 

diversity of the hit list.31 In this study, the purpose of molecular docking is to predict the 

binding poses of the polyphenols, implying that the accuracy of the binding pose 

prediction is our major concern. This is usually determined by re-docking of the 

co-crystal ligand back into the binding site.32 In this study, each native ligand from the 

three co-crystal structures was docked back into its original binding site using GLIDE, 

MOE, and CDOCKER, respectively. The results of the re-docking experiments are 

depicted in Fig. 3, suggesting that GLIDE is the best program for green tea polyphenol 

docking studies. Therefore, the green tea polyphenols were docked into the binding sites 

of rat FPPS, MVK, and MDD via GLIDE. For each receptor-ligand complex, 50 ns MD 

simulation was carried out following solvation. 

 

Figure 3. The RMSDs of the top five docked poses and the experimental poses of the 

co-crystal structures from (A) FPPS, (B) MDD, and (C) MVK. Three docking programs, 

MOE, GLIDE, and CDOCKER were tested and their RMSD results are colored 

differently. 

2.4.  Energetic profiles upon polyphenols binding 

The time-dependent RMSDs for the 50 ns production-phase MD of six energetically 

favorable ligand-complex systems (ECG and EGCG with FPPS, MVK and MDD) are 

Page 7 of 28 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t



8 

 

depicted in Fig. S6 of the Supporting Information, including the RMSDs of the receptor 

backbone atoms, the binding pocket residues, and the ligands. The majority of RMSDs 

reached equilibrium within 10 ns, and remained stable during the rest of simulations. 

Thus, it was reasonable to perform binding energy calculations based on the last halves of 

trajectories at the equilibrium state. 

All the green tea polyphenols’ (ECG, EGCG, EC, and EGC) binding affinities to the 

targets (FPPS, MVK and MDD) were calculated to interpret the assay results of Table 1. 

The binding energies of ECG and EGCG with FPPS, MVK and MDD are listed in Table 

3. The binding energies of EC with FPPS, MVK and MDD are -16.3, -17.6, and -18.7 

kcal/mol, respectively; the binding energies of EGC with FPPS, MVK and MDD are 

-17.0, -7.2, and -18.1 kcal/mol, respectively. However, the binding energies of ECG and 

EGCG with all three targets are around -30 kcal/mol. These calculations are consistent 

with the assay results that ECG and EGCG are active while EC and EGC not.  

The binding affinities of the active green tea polyphenols (ECG and EGCG) with the 

targets (FPPS and MDD) mainly come from electrostatic and van der Waals interactions, 

and the electrostatic interactions contribute more. For MVK, the magnesium ion (Mg2+) 

was treated with different ways in docking. At first, it was treated as a dummy atom, but 

the calculated binding affinity between the receptor and the ligands were too weak. When 

ligand-metal interaction restraints were added (Mg2+ treated as an anchor), the binding 

energy significantly improved and high consistency was observed between the 

calculation and the bioassay. In this case, the binding affinities with the polyphenols are 

mainly derived from electrostatic interactions (ligand-Mg2+ interactions), and the vdW 

contribution is relatively minor.  
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Table 3. The binding energy of ECG and EGCG bound to FPPS, MVK and MDD 

Receptor  FPPS  MVK  MDD 

Ligand  ECG EGCG  ECG EGCG  ECG EGCG 

∆EVDWAALS  -45.3 -45.0  -24.9 -25.2  -47.9 -50.8 

∆EELE  -101.7 -99.6  -298.6 -273.4  -84.9 -98.7 

∆EPB  90.9 89.5  266.6 243.6  73.4 88.0 

∆ENPOLAR  -32.9 -31.0  -26.8 -26.5  -35.7 -37.8 

∆EDISPER  57.4 55.5  47.5 48.2  66.2 68.1 

∆EGAS  -147.0 -144.6  -323.5 -298.6  -132.9 -149.6 

∆ESOLV  115.3 114.0  287.3 265.3  103.9 118.2 

∆ETOTAL  -31.7 -30.6  -36.1 -33.3  -29.0 -31.3 

a All energy units are in kcal/mol. 

2.5.  Key residues for activities and triangular binding modes 

To obtain more sights on the interaction between the ligands and receptors, binding 

energy decompositions were conducted to reveal where the most important interaction 

energies come from the FPPS, MVK, and MDD. Energy contribution of all residues 

around 8 Å of the binding sites of FPPS, MVK and MDD were calculated and ten 

essential residues were identified for each enzyme (Fig. 4). The contribution of each 

residue was calculated for both EGCG and ECG, and the maximal value was kept. 
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Figure 4. The top ten energetically essential residues of enzymes FPPS, MVK, and MDD 

and their contributions to the binding energy. 

The optimal binding modes of the green tea polyphenols bound to FPPS, MVK and 

MDD are shown in Fig. 5. ECG and EGCG exhibit quite similar patterns when binding 

with FPPS and MVK. Here as representatives, only EGCG’s optimal binding modes are 

depicted in Fig. 5A (FPPS with EGCG) and Fig. 5B (MVK with EGCG). However, we 
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sampled two types of different optimal binding patterns upon binding of EGCG and ECG 

to MDD, as shown in Fig. 5C and 5D, respectively.  

 

Figure 5. Optimal binding modes of the green tea polyphenols with three targets: (A) 

FPPS complexed with EGCG (B) MVK complexed with EGCG (C) MDD complexed 

with EGCG (D) MDD complexed with ECG. 

Multiple hydrogen bonds were established in all complexes, benefited from the 

phenol-rich ligands. Other interactions like π-π stacking interactions at PHE-231 of FPPS 

(Fig. 5A), PHE-298 of MDD (Fig. 5C) are also observed. Besides, MVK has an Mg2+ ion, 

which forms strong coordination bond with the polyphenol ligands (Fig. 5B). The binding 
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mode of ECG is quite different from that of ECG when bound to MDD. As depicted in 

Fig. 5C and 5D, they have two distinct orientations in the same binding pocket. 

Considering that both orientations are energetically favorable, one inference is that the 

pocket of MDD is relatively flexible and can accommodate different ligand binding 

modes. Higher RMSD and RMSF values of MDD partly support this point (Supporting 

Information). 

In summary, the electrostatic and vdW interactions of polyphenols with FPPS, MVK, 

and MDD are reflected by polar contacts like hydrogen bonding, coordination bonding, 

and hydrophobic contacts like π-π stacking. Besides, the molecular surfaces of three 

enzymes were generated to articulate the shapes of the binding pockets when ligands 

were docked (Fig. 6). The binding pockets of FPPS, MVK, and MDD share following 

common features: (1) They are all enriched with helices; (2) They all have three sub-sites, 

which all interact with EGCG or ECG. These three sub-sites are connected to each other 

and form a triangle. 

 

Figure 6. The common features of the FPPS, MVK, and MDD binding pockets, upon EGCG 

binding. Yellow dash lines connect the three sub-sites. 

2.6.  Two classes of pharmacophores and target selectivity 

Pharmacophore modeling generates hypotheses regarding the binding interactions of a 

ligand-receptor complex. We have several successful applications of pharmacophore 
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modeling in previous work.33-35 One pharmacophore may be biased. A consensus 

pharmacophore, which is more objective, can be considered "the largest common 

denominator shared by a set of active molecules"(IUPAC 1998).36 To find out the 

underlying pattern of the triple-target inhibition activity of green tea polyphenols, a 

pharmacophore consensus method was used to generate the active molecules’ common 

features. 

Superimposing active binding poses of ECG and EGCG in the three binding modes 

(for FPPS, MVK, and MDD) indicates that the poses are divided into two pharmacophore 

groups: FPPS-class and MVK-class (Fig. 7A). The scaffold of ECG and EGCG consists 

of the core group, group A, and group B. The group A and B separately connect the core 

group with two rotatable single bonds (Fig. 7B). The scaffold’s conformation can change 

based upon the receptor’s binding pocket. When the group A is perpendicular to the core 

group, the FPPS-class pharmacophore is formed (Fig. 7C). When the group B is 

perpendicular to the core group, the MVK-class pharmacophore is generated (Fig. 7D). 

When ECG binds to MDD, it forms an FPPS-class pharmacophore; when EGCG binds to 

MDD, it forms an MVK-class pharmacophore. The binding pockets of FPPS and MVK 

are different, which induces ECG and EGCG to form different pharmacophores. The 

binding pocket of MDD is flexible enough to accommodate both FPPS-class and 

MVK-class pharmacophores. The three groups of ECG and EGCG scaffold can freely 

switch between FPPS-class and MVK-class pharmacophores, so that ECG and EGCG 

can inhibit all three targets. If a rigid molecule fits either one of the two types of the 

pharmacophores, the molecule will selectively bind to a specific target. Therefore, the 

two classes of pharmacophores should be useful for designing, if necessary, selective 

inhibitors for MVK, FPPS, and MDD. 
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Figure 7. Pharmacophore models generated from superposing the polyphenols’ 

representative binding poses. (A) Superposing ECG and EGCG representative binding 

poses in the three targets (FPPS, MVK, and MDD). (B) EGCG’s three functional groups. 

(C) Pharmacophore derived from FPPS binding. (D) Pharmacophore derived from MVK 

binding. Orange: hydrophobic centroids or aromatic centers (Aro|Hyd); Green: 

hydrophobic centroids (Hyd); Pink: H-bond acceptors and donors (Don&Acc); Cyan: 

H-bond acceptors (Acc). 

 To further validate the models for their effectiveness in predicting inhibitory activity 
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of other molecules and selectiveness in discriminating between the two model classes, an 

enrichment test was conducted. 20 FPPS inhibitors and 20 MVK inhibitors were 

collected from literature and databases like Pubchem and BindingDB. Then the two 

pharmacophore models were used to screen the inhibitors, as well as 5,000 random 

compounds from Guangdong Small Molecule Tangible Library (GSMTL).37 The 

enrichment factors for these two models were calculated (Table 4). Both models exhibit 

high effectiveness in predicting inhibitory activities and high selectivity in discriminating 

between the two classes. The chemical structures of the known 20 FPPS inhibitors and 20 

MVK inhibitors have been supplied in the supplemental information (Figure S8 and S9). 

Table 4. Enrichment test results of the two pharmacophore models 

 
Number of 

molecules 

Hit rate by 

FPPS-class 

model (%) 

Hit rate by 

MVK-class 

Model (%) 

FPPS inhibitors 20 45 15 

MVK inhibitors 20 10 55 

ECG & EGCG 2 100 100 

Random compounds 5,000 3.7 4.1 

Enrichment factor  12.2 13.4 

 

The main difference of the two classes of pharmacophores can be reflected by the 

dihedral angle between the planes of groups A and B. The relation of the dihedral angle 

and time during 50 ns MD simulations is shown in Fig. 8. For FPPS-ligand complexes, 

the dihedrals range from 20° to 60°. For MVK-ligand complexes, the dihedrals are 

around -60°. For MDD-ligand complexes, the dihedrals range from ~60° to 80° for ECG, 

and -60° to -80° for EGCG. All the dihedral values are stable and have fluctuations of 

about 20°. This further supports the pharmacophore models.  
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Figure 8. Time dependent dihedral angles between the groups A and B in ECG/EGCG 

scaffold during 50 ns MD simulations. 

 

3. Experimental 

3.1.  Enzymes activity inhibitory assay 

The green tea polyphenols were obtained from Guangdong Small Molecule Tangible 

Library (GSMTL), with purity of > 98%. Rat liver MVK, MDD, and FPPS were obtained 

and assayed as described previously.38-40 Tris buffer was used instead of phosphate buffer 

in enzyme storage and assay. 

The activity of the ATP-dependent enzymes, MVK and MDD, were assayed 

spectrophotometrically following a continuous enzyme-coupled assay method. 
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Determination of IC50 for inhibitors of rat mevalonate kinase. At room temperature, rat 

MVK (1.2 µg/mL) was incubated with or without inhibitor in 100 mM Tris-HCl buffer 

(pH 7.5) containing 5 mM MgCl2, 0.25 mM ATP, 0.5 mM phosphoenol pyruvate, 0.16 

mM NADH, 29 unit pyruvate kinase, 37 unit lactic dehydrogenase for 2 minutes, and 

mevalonate (35 µM) was added to initiate the reaction. IC50 was determined by a 

reciprocal plot of relative activity versus inhibitor concentration (Dixon plot). The 

intersect of the fitting line with x-axis is equal to IC50 in value. 

Determination of IC50 for inhibitors of rat mevalonate 5-pyrophosphate decarboxylase. At 

room temperature, rat MDD (1.2 µg/mL) was incubated with or without inhibitor in 100 

mM Tris-Cl buffer (pH 7.5) containing 0.25 mM MgCl2, 0.5 mM ATP, 0.5 mM 

phosphoenol pyruvate, 0.16 mM NADH, 29 units pyruvate kinase, 37 units lactic 

dehydrogenase for 2 minutes, and mevalonate 5-diphosphate (35 µM) was added to 

initiate the reaction. IC50 was determined by a reciprocal plot of relative activity versus 

inhibitor concentration (Dixon plot). The intersect of the fitting line with x-axis is equal 

to IC50 in value. 

FPPS was assayed following our previously established method. ssays were performed in 

flat bottom, 96-well plates. 100 ng of pure FPPS was incubated with or without inhibitor 

for 10 min at 37 °C in a final volume of 100 µL buffer, containing 50 mM Tris pH 7.5, 2 

mM MgCl2, 1 mM DTT, 5 µg/mL BSA, and 100 µU/µL of inorganic pyrophosphatase 

were added to each well and then the substrates were added to start the reaction. Assays 

were terminated by the addition of 10 µL of 2.5% ammonium molybdate reagent (in 5 N 

H2SO4), 10 µL of 0.5 M 2-mercaptoethanol and 5 µL of Eikonogen reagent (0.25 g of 

sodium sulfite and 14.7 g of meta-bisulfite were dissolved in 100 mL water). The 

mixtures in plates were incubated with gentle mixing on a plate shaker for 20 min. The 

absorbance was measured at 830 nm using a Microplate Reader. IC50 was determined by 

a reciprocal plot of relative activity versus inhibitor concentration (Dixon plot). The 
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intersect of the fitting line with x-axis is equal to IC50 in value. 

 

3.2.  Fluorescence titration assay 

Rat liver MVK, MDD, and FPPS contain tyrosines and tryptophans, which contribute to 

the fluorescence absorbance of enzymes. The binding of small molecules to these 

enzymes may result in changes to the hydrophilic and hydrophobic environment around 

said amino acids; such changes can be detected through fluorescence absorbance changes. 

Our fluorescence titration assay was carried out following a reported protocol (with 

minor modifications).41 The assay was carried out in 50 mM Tris buffer, pH 7.4, 5% 

glycerol, and 5 mM β-mercaptoethanol. The excitation wavelength used in these 

experiments was 279 nm. Emission spectra were scanned from 300 to 600 nm, with a 5 

nm slit width. For data analysis, the values measured for bound probe at the fluorescent 

emission peak of 538～540 nm were corrected for free compounds/buffer and for any 

scattering occurred. These corrected fluorescence enhancement or reduction data were 

used to plot against concentrations of compounds, and analyzed by nonlinear regression 

to yield dissociation constants (Kd) and extrapolated maximum fluorescence intensity 

(Fmax). Kd values were estimated by fitting the titration data to the equation Y = 

[Fmax(X)]/[Kd + (X)].  

 

3.3.  Homology modeling 

Template crystal structures were downloaded from RCSB Protein Data Bank (PDB ID: 

3N6K and 3D4J). Target sequences were searched using NCBI BLAST and selected by 

identity score. The whole modeling process was done in MOE 2012.10. First, ten 

independent intermediate models were built. These different homology models were the 
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result of the permutational selection of different loop candidates and side chain rotamers. 

Then, the intermediate model which scored best according to the GB/VI scoring function 

was chosen as the final model, subject to further energy minimization using the 

AMBER12/EHT force field. The Ramachandran plot (Fig. S5) of the final homology 

models was plotted to help determine whether the homology model is in good shape: 

most residues should be in favorable or allowable areas, and none of the outliers should 

be around the ligands’ binding site. The Ramachandran plots of the homology models of 

FPPS and MDD are shown in supplementary Fig. S5. 

3.4.  Molecular docking 

The chemical structures of EC, EGC, ECG, and EGCG were generated using 

ChemBioDraw13.0. These initial structures were optimized with the MMFF9442 force 

field to obtain the lowest energy conformations, which were used for the following 

docking. All the green tea polyphenols were docked into the binding pockets of FPPS, 

MVK, and MDD by using GLIDE, respectively. The ligands in the proteins’ binding 

pockets were removed. The ligands’ positions were selected as the binding sites for 

docking. Default parameters were used with minor modifications. For GLIDE, the XP 

(extra precision) mode was used. For MOE, the AMBER12/EHT force field and 

GBVI/WSA dG refinement were used. For CDOCKER, the random conformations were 

increased to 30. Pose cluster radius was turned on and set to 0.5 Å to avoid generating 

highly similar poses. The docked poses were ranked with built-in scoring functions, and 

the root-mean-square deviations (RMSDs) with the original ligands of the co-crystal 

structures were respectively calculated. Lower RMSDs represent more consistency 

between predicted and experimental binding modes. 
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3.5.  Molecular dynamics simulations 

The ligand-receptor complexes were prepared with the molecular modeling package 

MOE 2012.10.43 And then the AMBER ff03 force field was applied for each protein. For 

each protein target, the top three docked poses of a compound were selected as initial 

conformations for following MD simulations, respectively. Meanwhile, the ligands were 

optimized at the HF/6-31G(d) level by Gaussian 09 package,44 and the partial atomic 

charges of the ligands were obtained from the restrained electrostatic potential (RESP) 

charge at the same theoretical level. While the force field parameters of these ligands 

were generated from AMBER GAFF force field.45 Finally, the ligand-receptor complexes 

were neutralized by adding sodium/chlorine counter ions, and solvated in an octahedral 

box of TIP3P46 water molecules with solvent layers 10 Å between the box edges and solute 

surface.  

 All MD simulations were performed using AMBER 12,47, 48 via protocols described 

in our previous study49 with minor modifications. The SHAKE50 algorithm was used to 

restrict all covalent bonds involving hydrogen atoms with a time step of 2 fs. The Particle 

mesh Ewald (PME) method51 was employed to treat long-range electrostatic interactions. 

For each ligand-receptor system, three steps of minimization were performed before the 

heating step. First, all atoms in the receptor-ligand complex were restrained with 50 kcal/ 

(mol·Å2), whereas solvent molecules were not restrained. Then, all heavy atoms were 

restrained with 10 kcal/ (mol·Å2) during the minimization steps. The final non-restrainted 

minimization step included 5,000 cycles of steepest descent and 5,000 cycles of 

conjugated gradient minimization. After the energy minimizations, the whole system was 

first heated from 0 to 300 K in 50 ps using Langevin dynamics at a constant volume and, 

then, equilibrated for 400 ps at a constant pressure of 1 atm. A weak constraint of 10 

kcal/ (mol·Å2) was used to restrain all the heavy atoms in the receptor-ligand complexes 
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during the heating steps. Periodic boundary dynamics simulations were carried out for the 

whole system with an NPT (constant composition, pressure, and temperature) ensemble 

at a constant pressure of 1 atm and 300 K in the production step. Each receptor-ligand 

solution complex was simulated for 50 ns; 100 snapshots were derived from the 

equilibrium state of each trajectory (25 to 50 ns) and used for calculating binding 

energies via MMPBSA.py.52  

3.6.  Binding energy calculations 

The MM/PBSA method53 in the AmberTools suite was used to calculate the binding 

energies between the ligands and the receptors. For each system, three trajectories were 

generated through MD simulations from the initial three docked compound poses. Every 

trajectory was analyzed and the one with the lowest binding energy was selected as the 

representative binding energy. The conformations from the low energy trajectories of 

each compound were clustered by using the Ptraj module of AmberTools 12. A 

representative conformation of a major cluster was extracted from each trajectory and 

presented for later binding mode visualization. The binding modes were depicted with 

PyMOL v1.5.0.3. An in-house PyMOL plugin PiViewer was used to detect and annotate 

the π-π stacking interactions between the ligands and receptor residues. 

The free energy of binding, ΔGbinding, was calculated using Eq. (1) from the free 

energy of the receptor-ligand complex (Gcpx) with respect to the unbound receptor (Grec) 

and ligand (Glig): 

∆Gbinding = Gcpx – (Grec + Glig)  (1) 

The MM-PBSA (Molecular Mechanics-Possion-Boltzmann/Surface Area) 

methodology allows the calculation of the complete binding reaction energy, including 

the desolvation of the ligand and the unbound protein, on the basis of a thermodynamic 
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cycle. Therefore, Eq. (1) can be approximated as 

∆Gbinding = ∆EMM – T∆S + ∆Gsol (2) 

∆EMM = ∆Eele + ∆Evdw    (3) 

All energies expressed in the above equations were averaged over the course of the 

molecular dynamics trajectories. In Eq. (3), ∆EMM is the molecular mechanical energy 

obtained from the electrostatic (∆Eele) and the van der Waals (vdW, ∆Evdw) interactions 

within the system. Here, T∆S is the solute entropic contribution at temperature T (kelvin) 

and the solvation free energy (∆Gsol) represents the electrostatic and nonpolar free energy 

of solvation, and therefore can be expressed as 

G = G Gele nonpolar

sol sol sol∆ ∆ + ∆   (4) 

where Gele

sol∆  is the polar contribution to solvation and nonpolar

solG∆  is the nonpolar 

solvation term. The former component was calculated using the PB calculation, whereas 

the latter term is determined using Eq. (5):  

nonpolar

solG SASA bγ∆ = +   (5) 

where SASA is the solvent-accessible surface area (Å2) and γ and b represent 

experimental solvation parameters. 

The normal mode calculation is required to obtain the entropy, but it is 

time-consuming for large systems, considering the entropic differences among the 

systems is normally small when the receptors of all system models are quite similar, the 

entropy contribution of complexes was not considered in our ∆G calculations in order to 

save the computational cost; after all, our goal is to compare the binding energy of 

various ligands with the same receptor (as opposed to comparing the binding energies 

across receptors). The above binding energy calculations were carried out on the last 25 

ns of each trajectory and the lowest binding energy for each complex was kept as a 

measure of the binding affinity. 
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3.7.  Pharmacophore consensus model 

The MD-retrieved representative binding conformations of ECG and EGCG were 

superposed using the Flexible Alignment algorithm of MOE v2012.10. The “rigid mode” 

was turned on to retain the molecules’ active configurations. After the superposition, 

unified types of pharmacophore features were generated using the consensus approach. A 

tolerance radius of 1.5Å and consensus score threshold of 75% were set to generate a 

consensus pharmacophore model. 

The tolerance radius is the neighborhood distance threshold. Annotation points closer 

than this distance are considered to be neighbors. Neighborhoods determine in which 

regions of space the consensus score will be calculated. The consensus score is a measure 

of the proportion of molecular conformations represented in a set of annotation points; it 

represents the level of consensus among all input molecular conformations in a region of 

space. The regions are defined by neighborhoods of annotation points, as determined by 

the "tolerance" distance threshold. A group of annotation points will become a suggested 

feature only if: 1) it is composed of overlapping neighborhoods of annotation points, 2) 

the consensus score of each neighborhood exceeds the consensus score threshold, and 3) 

the consensus score of the entire group exceeds the consensus score threshold.43 The 

features that achieve consensus score of 100% were marked as essential features. When 

employing the generated pharmacophore for virtual screening, the hits must match all the 

essential features at least. 

4. Conclusion 

In this study, our in vitro experiments have demonstrated that two major components of 

green tea polyphenols, ECG and EGCG, inhibit the three important enzymes (FPPS，

MVK and MDD) of the mevalonate pathway, which are involved in the biosynthesis of 
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cholesterol in vivo. In contrast, the other two green tea components, EC and EGC, have 

no such effects. Molecular simulation studies demonstrate that ECG and EGCG interact 

with FPPS, MVK, and MDD at their triangular binding pockets with two types of 

pharmacophores. 

From the perspective of receptors, their triangular binding pockets are quite similar 

in shape, and can accommodate ligands with three groups. Compounds fitting FPPS-class 

pharmacophore will selectively bind to FPPS; compounds fitting MVK-class 

pharmacophore will selectively bind to MVK; the pockets of MDD is relatively flexible 

compared to FPPS and MVK, and compounds fitting either pharmacophores will bind to 

MDD.  

From the perspective of ligands, ECG and EGCG all have three groups: the core 

group, the two side groups A and B. These three groups can form strong and stable 

interactions with triangular binding pockets after some conformational changes. On the 

other hand, the polyphenols are relatively flexible, which is reflected by the dihedral 

between the A and B groups. This makes them suitable for all three triangular binding 

pockets of FPPS, MVK and MDD, although these three pockets are different. EC and 

EGC did not exhibit significant inhibitions to the three targets. The probable reason is 

that the scaffolds of EC and EGC lack galloyl groups (B groups) to form hydrogen bonds 

and π-π bonding interactions with the receptors. Consequently, neither EC nor EGC can 

fully occupy the triangular binding site to form stable pharmacophores with the receptors. 

Insights from binding energy calculations, decompositions and binding mode 

analyses indicate the essential residues and their interactions with ligands. These essential 

interactions and residues should be important for designing new inhibitors against these 

three targets. The proposed pharmacophores may be utilized for further virtual screening 

and ligand design, although they may need simplifications. New agents that 

simultaneously inhibit FPPS, MVK, and MDD may provide more effective new 
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chemotherapy for hyperlipidemia. 
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