

Organic & Biomolecular Chemistry

Synthesis and pharmacological evaluation of like- and unlike-configured tetrahydro-2-benzazepines with asubstituted benzyl moiety in 5-position

Journal:	Organic & Biomolecular Chemistry
Manuscript ID:	OB-ART-03-2014-000510.R2
Article Type:	Paper
Date Submitted by the Author:	12-May-2014
Complete List of Authors:	Hasebein, Peer; Institut für Pharmazeutische und Medizinische chemie, Chemie und Pharamzie Frehland, Bastian; Institut für Pharmazeutische und Medizinische Chemie, Chemie und Pharmazie Lehmkuhl, Kirstin; Institut für Pharmazeutische und Medizinische Chemie, Chemie und Pharmazie Fröhlich, Roland; Universitaet Muenster, Organisch-Chemisches Institut Schempmann, Dirk; Institut für Pharmazeutische und Medizinische Chemie, Wuensch, Bernhard; Institute of Pharmaceutical and Medicinal Chemistry, Faculty of Chemistry and Pharamcy

SCHOLARONE[™] Manuscripts

Synthesis and pharmacological evaluation of *like*- and *unlike*-configured tetrahydro-2-benzazepines with α-substituted benzyl moiety in 5-position

Peer Hasebein,^a Bastian Frehland,^a Kirstin Lehmkuhl,^a Roland Fröhlich,^b Dirk Schepmann,^a Bernhard Wünsch^{a,c}*

^a Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany

Tel.: +49-251-8333311; Fax: +49-251-8332144; E-mail: wuensch@uni-muenster.de

^b Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany

^c Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Germany

Abstract

A large set of tetrahydro-2-benzazepines with an α -hydroxy or α -(aryl)alkoxy substituted benzyl moiety in 5-position was prepared according to the recently reported C₆C₁ + C₃N synthetic strategy. *Heck* reaction of 2-iodobenzaldehyde acetal **4** and subsequent *Stetter* reaction led to the ketone **7**, which was reduced diastereoselectively to form the *like*-configured alcohol **8**. The diastereomeric *unlike*-configured alcohol **9** was obtained by a *Mitsunobu* inversion of **8**. Alkylation and reductive cyclization of the diastereomeric alcohols **8** and **9** provided *like*- and *unlike*-configured 2-benzazepines **13** and **23**, which allowed the introduction of various substituents at the *N*-atom. Analysis of the relationships between the structure and the σ_1 affinity revealed that large substituents such as butyl, benzyl or 4phenylbutyl moiety at the benzazepine *N*-atom resulted in high affinity ligands. A

p-methoxybenzyl ether is less tolerated by the σ_1 receptor than a methyl ether or an alcohol. The *unlike*-configured alcohols **25d** and **27d** show slightly higher σ_1 affinity than their *like*-configured diastereomers **15d** and **17d**. With respect to σ_1 affinity, σ_1/σ_2 selectivity and lipophilic ligand efficiency *like*- and *unlike*-configured alcohols **15d** and **25d** represent the most promising σ_1 ligands of this series. Interactions of the novel 2-benzazepines with various binding sites of the NMDA receptor were not observed.

Keywords: σ_1 receptor ligands; tetrahydro-2-benzazepines; *Heck* reaction; *Stetter* reaction; reductive cyclization; structure - σ_1 affinity relationships; lipophilic ligand efficiency

1. Introduction

In 1976 different pharmacological profiles of various opioids led Martin and coworkers to the hypothesis that at least three opioid receptors exist, which were termed μ (for morphine), κ (for ketocyclazocine) and σ receptor (for SKF-10,047).¹ After it was shown that the σ receptor does not belong to the class of opioid receptors, it was hypothesized that it is identical with the phencyclidine (PCP) binding site of the *N*-methyl-*D*-aspartate (NMDA) receptor.² Finally σ receptors were recognized as specific, non-opioid, non-PCP but haloperidol-sensitive binding sites, which are divided into two subtypes termed σ_1 and σ_2 receptors.³

Although the signal transduction pathway after activation of the σ_1 receptor is not yet elucidated, the modulation of various ion channels and neurotransmitter systems as well as a chaperone activity⁴ have been shown as consequence of σ_1 receptor activation. The σ_1 receptor is in particular able to modulate the activity of Kv 1.4 K⁺-channels in nerve terminals,^{5,6} Ca²⁺-channels in cultured cardiac myocytes,⁷ and voltage-gated Na⁺-channels in

cardiac myocytes.⁸ Moreover, NMDA receptors,⁹ inositol triphosphate (IP₃) receptors¹⁰ and ankyrin, a cytoskeletal adaptor protein, are modulated by the σ_1 receptor.¹¹

Due to the high expression in the central nervous system (CNS), in particular in brain regions involved in memory, emotion, sensoric and motor functions, the σ_1 receptor represents a promising target for the development of innovative therapeutic regimens for the treatment of depression, schizophrenia, anxiety, cocaine, alcohol and methamphetamine addiction, amnesia, neuropathic pain as well as some neurodegenerative disorders (e.g. Alzheimer's Disease, Parkinson's Disease).¹²⁻¹⁵

Neuropathic pain is characterized by a hypersensitive pain response persisting even when the original pain reason has been removed.^{16,17} Due to the diffuse origin of neuropathic pain, its treatment is very difficult. σ_1 Receptor knockout mice were used to show the role of σ_1 receptors in neuropathic pain situation.¹⁸ The indazole derivative S1RA represents a potent and selective σ_1 receptor antagonist. In the capsaicin model of neuropathic pain S1RA showed promising analgesic activity. After successfully finishing phase I clinical trials, S1RA is currently investigated in phase II clinical trials for the treatment of neuropathic pain.¹⁹⁻²³

Although an X-ray crystal structure of the σ_1 receptor (223 amino acids) has not been recorded, a recently published 3D homology model²⁴ gives valuable information about the interaction of amino acids in the binding site with the prototypical agonist (+)-pentazocine. In particular, ionic interactions between Asp 126 and Glu 172 with the protonated tertiary amine of (+)-pentazocine are observed. Moreover, Tyr 173 and Ile 128 form lipophilic interactions with the aliphatic part of the ligand. Finally, strong interactions of the lipophilic part of Arg119 with the phenol substructure of (+)-pentazocine were identified.²⁵

Following our strategy of evaluating compounds with novel scaffolds as σ_1 receptor antagonists, we have recently shown that tetrahydro-2-benzazepines 1 with a phenyl moiety in 5-position reveal high affinity towards the σ_1 receptor and high selectivity over the σ_2 subtype (e.g. $R^2 = n$ -Bu, Figure 1).²⁶ Replacement of the 5-phenyl moiety by a 5-benzyl moiety led to ligands 2 fitting better to the established pharmacophore models,²⁷⁻²⁹ since the distance between the basic amino moiety and the second hydrophobic region (6.03 - 6.45 Å) is within the postulated distance of 6 - 10 Å.³⁰ Herein we report on the synthesis and pharmacological evaluation of tetrahydro-2-benzazepines **3** with α -hydroxybenzyl and α -(aryl)alkoxybenzyl moieties in 5-position. (Figure 1) The general structures of compounds **2** and **3** are very similar. However the additional hydroxy moiety in α -position of the benzyl moiety (R¹ = H) leads to an increased polarity of the rather lipophilic 5-benzyl substituted 2-benzazepines. Increased polarity should improve the pharmacokinetic properties and the lipophilic ligand efficiency (LLE = pK_i – ClogP, ClogP = calculated logP value),³¹ which represent crucial features for the evaluation of the quality of a ligand.

Figure 1

2. Synthesis

The synthesis of tetrahydro-2-benzazepines **3** with α -hydroxy- and α -alkoxybenzyl moieties in 5-position followed the recently reported strategy of combining a C₆C₁- with a C₃N-

Organic & Biomolecular Chemistry

5

building block.²⁶ 2-Iodobenzaldehyde acetal **4** served as C_6C_1 -building block. It was reacted with the C₃N building block acrylonitrile (**5**) in a Pd-catalyzed *Heck* reaction.²⁶ Subsequent *Stetter* reaction^{32,33} of the α , β -unsaturated nitrile **6** with benzaldehyde and NaCN provided the ketone **7** in 49 % yield.³⁰ (Scheme 1)

Scheme 1

Synthesis of the *like*-configured cyanoacetal **8**. Reagents and reaction conditions: (a) $Pd(OAc)_2$, Bu_4NBr , $NaHCO_3$, DMF, 140 °C, 24 h, 99 %.²⁶ (b) PhCH=O, NaCN, DMF, 35 °C, 12 h, 49 %.³⁰ (c) NaBH₄, CH₃OH, 0 °C, 16 h, 82 %.

Only one enantiomer of the racemic mixtures 8 and 9 is shown.

Reduction of ketone 7 with NaBH₄ at room temperature led to the *like-* and *unlike-*configured alcohols 8 and 9. (Scheme 1) The ratio of diastereomers (10 : 1) was determined by integration of the signals at 3.43 and 3.39 ppm (OCH₃) in the ¹H NMR spectrum. After decrease of the reaction temperature to 0 °C, only the signal at 3.43 ppm was observed

indicating the selective formation of the *like*-configured alcohol **8**, which was obtained in 82 % yield by recrystallization with petroleum ether/ethyl acetate. The obtained crystals were suitable for an X-ray crystal structure analysis, which is shown in Figure 2. The structure of the racemic mixture displays that both centers of chirality have the same configuration (in Figure 2 (*S*)-configuration). In the following manuscript diastereomers with the same configuration of the centers of chirality are termed *like*-configured, whereas the diastereomers with opposite configuration are termed *unlike*-configured.

Figure 2

X-ray crystal structure analysis of the *like*-configured alcohol **8**. Thermals ellipsoids are shown with 30 % probability.

Alkylation of the *like*-configured alcohol **8** with methyl iodide, benzyl bromide and *p*-methoxybenzyl chloride provided the ethers **10a-c** in excellent yields. (Scheme 2) Establishment of the tetrahydro-2-benzazepine framework was performed in a one-pot three-step procedure²⁶ comprising of reduction of the nitriles **10a-c** into primary amines **11a-c**, hydrolysis of dimethyl acetals into aldehydes with subsequent formation of cyclic imines **12a-c**, and finally reduction of the imines **12a-c** with NaBH₃CN to yield the tetrahydro-2-

benzazepines **13a-c**. According to the concept of late-stage diversification,^{34,35} various *N*-substituents were introduced at the end of the synthesis. Alkylation of the secondary amines **13a-c** with butyl bromide and 4-phenylbutyl chloride yielded the tertiary amines **15a-c** and **17a-c**, whereas reductive alkylation of **13a-c** with formaldehyde and benzaldehyde in the presence of NaBH(OAc)₃ provided the methyl and benzyl derivatives **14a-c** and **16a-c**, respectively.

Scheme 2

Synthesis of *like*-configured α -hydroxy- and α -alkoxybenzyl substituted 2-benzazepines. Reagents and reaction conditions: (a) R-X, NaH, THF or DMF, rt, 16 h. (b) LiAlH₄, THF, 4 °C \rightarrow rt. (c) *p*-TosOH, THF, rt, 2 h. (d) NaBH₃CN, rt, 1 h. (e) *n*-BuBr or Ph(CH₂)₄Cl, Bu₄NI, CH₃CN, K₂CO₃, 66 °C, 16 h, (f) H₂C=O or PhCH=O, NaBH(OAc)₃, CH₂Cl₂, rt, 16 h. (g) **14c-17c**: (NH₄)₂Ce(NO₃)₆, CH₃CN:H₂O 9:1, rt, 30 min.

PMB = p-methoxybenzyl; only one enantiomer of the racemic mixtures is shown, respectively.

All experiments to cyclize compounds with a benzylic OH moiety such as 8 led to 2-benzopyrans³⁰ instead of 2-benzazepines. Therefore the alcohols 14d-17d should be

obtained from the corresponding benzyl (**b**-series) and *p*-methoxybenzyl (PMB) ethers (**c** series). However, hydrogenolytic cleavage of the benzyl ethers **14b** and **15b** using Pd/C as a catalyst failed to give the alcohols **14d** and **15d**. Therefore the PMB ethers **13c-17c** were prepared. In general PMB ethers can be cleaved with acid (e.g. trifluoroacetic acid) or oxidatively $(DDQ, {}^{36}(NH_4)_2Ce(NO_3)_6).{}^{37}$ Treatment of the PMB ethers **13c-15c** with DDQ led to decomposition of the compounds. However, oxidation of the PMB ethers **14c-17c** with $(NH_4)_2Ce(NO_3)_6$ resulted in a clean transformation providing the alcohols **14d-17d** in 51-86 % yield.

In order to synthesize and evaluate biologically the *unlike*-configured diastereomers of the 2-benzazepines **14-17** the configuration at the benzylic position of the alcohol **8** should be inverted. For this purpose a *Mitsunobu* inversion³⁸ was envisaged. (Scheme 3) Reaction of the *like*-configured alcohol **8** with benzoic acid, diisopropyl diazodicarboxylate (DIAD) and PPh₃ afforded the benzoate **18a** with *unlike*-configuration of the centers of chirality in 69 % yield. Subsequent hydrolysis of the ester **18a** with NaOH and methanol at reflux temperature provided exclusively the lactone **19**, formation of the alcohol **9** was not observed. Decrease of the reaction temperature and the reaction time led to a considerably slower transformation of the benzoate **18a**, but the lactone **19** remained the main product and the alcohol **9** was only formed in traces.

The formation of the lactone **19** is explained by nucleophilic attack of the alcoholate generated under basic conditions from **18a** at the cyano group with subsequent hydrolysis of the resulting imidolactone. (Figure 3) An analogous lactone formation was not observed during the synthesis of the ethers **10** by deprotonation of the *like*-configured alcohol **8** in the first step.

Scheme 3

Synthesis of *unlike*-configured analogs by inversion of configuration of the benzylic center of chirality: Reagents and reaction conditions: (a) DIAD, PPh₃, THF, 4 °C \rightarrow rt, 16 h, **18a**: 69 %; **18b**: 90 %. (b) **18a**, CH₃OH, NaOH, reflux, 16 h, product **19**. (c) **18b**, CH₃OH, K₂CO₃, rt, 4 h, product **19**, 86 %. (d) **18b**, CH₃OH, K₂CO₃, 4 °C, 30 min, product **9** (*unlike*), 71 %. Only one enantiomer of the racemic mixture is shown, respectively.

Figure 3

Energetically most favored conformations of the cyanoalcohols **8** and **9** with the large phenyl moieties in an *anti-periplanar* orientation to each other. The OH and cyanomethyl moieties adopt an *anti-periplanar* and *syn-clinal* orientation to each other, respectively.

We assume that the large phenyl moieties of the diastereomeric cyanoalcohols **8** and **9** prefer an *anti-periplanar* orientation to each other. (Figure 3) Then the OH and cyanomethyl moieties of the resulting energetically favored conformation of the *like*-configured

cyanoalcohol **8** are in an *anti-periplanar* orientation allowing for deprotonation and alkylation of the OH moiety without formation of a lactone. The same orientation of the large phenyl rings of the *unlike*-configured cyanoalcohol **9** leads to *syn-clinal* orientation of the OH and cyanomethyl moieties supporting their fast reaction to yield the observed lactone **19**.

In order to inhibit the formation of the lactone **19** mild reaction conditions were required for the hydrolysis of the ester **18**. Therefore *p*-nitrobenzoic acid was used in the *Mitsunobu* inversion to obtain the *p*-nitrobenzoate **18b** in 90 % yield. (Scheme 3) Treatment of the *p*-nitrobenzoate **18b** with methanol and K_2CO_3 for 4 h at rt provided only the lactone **19**, which was isolated in 86 % yield. Decrease of the reaction time to 1 h afforded both the alcohol **9** and the lactone **19** in 17 % and 65 % yield, respectively. Performing the methanolysis for only 30 min at 4 °C gave the highest yield (71 %) of the *unlike*-configured alcohol **9**. Nevertheless the lactone **19** was also formed and isolated in 26 % yield.

It was planned to convert the *unlike*-configured alcohol **9** into the *unlike*-configured 2-benzazepines **23-27** using the same reaction sequence, which had been successful for the preparation of the *like*-configured 2-benzazepines **13-17**. (Scheme 4) In the first experiments the alcohol **9** was deprotonated with NaH at 4 °C and subsequently methyl iodide and *p*-methoxybenzyl chloride were added. These reaction conditions however led almost exclusively to formation of the lactone **19**, the desired ethers **20a** and **20c** were obtained in less than 25 % yields. Therefore instead of *p*-methoxybenzyl chloride the more reactive *p*-methoxybenzyl bromide was used and the deprotonation of the alcohol **9** was performed in the presence of an excess of the alkyl halide. This procedure led to fast trapping of the intermediate alcoholate inhibiting the attack at the cyano moiety in the neighborhood. Indeed, this procedure provided both ethers **20a** and **20c** in 59 % and 62 % yield, respectively.

Organic & Biomolecular Chemistry

11

Nevertheless the formation of the lactone **19** could not be suppressed completely and the side product was obtained in ca. 30 % yield.

Scheme 4

Synthesis of *unlike*-configured α -hydroxy- and α -alkoxybenzyl substituted 2-benzazepines. Reagents and reaction conditions: (a) R-X, NaH, DMF, 4 °C, 4 h, then rt, 12 h. (b) LiAlH₄, THF, 4 °C \rightarrow rt. (c) *p*-TosOH, THF, rt, 2 h. (d) NaBH₃CN, rt, 1 h. (e) *n*-BuBr or Ph(CH₂)₄Cl, Bu₄NI, CH₃CN, K₂CO₃, 66 °C, 16 h, (f) H₂C=O or PhCH=O, NaBH(OAc)₃, CH₂Cl₂, rt, 16 h. (g) **14c-17c**: (NH₄)₂Ce(NO₃)₆, CH₃CN:H₂O 9:1, rt, 30 min.

PMB = p-methoxybenzyl; only one enantiomer of the racemic mixtures is shown, respectively.

The ethers **20a** and **20c** were transformed into the 2-benzazepines **23a** and **23c** by LiAlH₄ reduction (\rightarrow **21a**, **21c**), treatment with acid (\rightarrow **22a**, **22c**), and reduction with NaBH₃CN. For purpose of comparison the same set of substituents as for the *like*-configured compounds was introduced at the 2-benzazepine ring by reductive alkylation (H₂C=O, PhCH=O and NaBH(OAc)₃) and direct alkylation (*n*-BuBr, Ph(CH₂)₄Cl) affording the tertiary amines

24c-27c. Finally, the *p*-methoxybenzyl moiety of the PMB ethers **24c-27c** was oxidatively cleaved off using $(NH_4)_2Ce(NO_3)_6$. In contrast to the *like*-configured alcohols **14d-17d**, the addition of 2 M HCl was required during the extraction and isolation procedure. This procedure led to partial decomposition of the alcohols **24d–27d**, which resulted in yields of 73 % (**24d**), 20 % (**25d**) and 64 % (**27d**). Unfortunately the benzyl derivative **26d** was decomposed completely during the work-up procedure.

3. Pharmacological evaluation

3.1. Affinity towards σ_1 and σ_2 receptors

The σ_1 and σ_2 receptor affinities of the 2-benzazepines **3** with an α -substituted benzyl moiety in 5-position together with some reference compounds were recorded in radioligand receptor binding studies employing the radioligands [³H]-(+)-pentazocine in the σ_1 assay,^{39,40} and [³H]-1,3-di(*o*-tolyl)guanidine in the σ_2 assay.^{39,40} Guinea pig brain and rat liver homogenates served as receptor material in the σ_1 and σ_2 assay, respectively. In the σ_2 assay an excess of non-tritiated (+)-pentazocine was added to mask the σ_1 receptors, since the radioligand [³H]-1,3-di(*o*-tolyl)guanidine interacts also with σ_1 receptors, which are present in the rat liver preparation to a considerable amount. In order to prove the assay systems, the σ_1 and σ_2 receptor affinities of the reference compounds (+)-pentazocine, haloperidol and di-*o*tolylguanidine are recorded periodically. The σ_1 and σ_2 affinity data of the synthesized tetrahydro-2-benzazepines and the reference compounds are summarized in Table 1. In addition to the affinity data, the σ_1/σ_2 selectivity, the calculated ClogP value, and the lipophilic ligand efficiency (LLE) of the compounds are included into Table 1. LLE is the difference between the p K_i value and the calculated ClogP value, representing the activity of a ligand without the contribution of its lipophilicity.

Table 1. σ_1 and σ_2 receptor affinities of *like*- and *unlike*-configured tetrahydro-2-benzazepines with an α -substituted benzyl moiety in 5-position and various residues R^1 and R^2

unlike racemate

compd.	R^1	R^2	config.	$K_i \pm \text{SEM} (\text{nM})^{a,b}$		σ_1/σ_2 - selectivity	ClogP ^{c)}	LLE ^{d)}
				σ_1	σ_2	~~~~~		
1 3 a	CH ₃	Н	like	>10 µM	10 %	-	1.3	-
13b	$\mathrm{CH}_{2}\mathrm{Ph}$	Н	like	>10 µM	5050	< 0.5	2.7	-
13c	PMB	Н	like	>10 µM	8760	<0.9	2.7	-
14a	CH_3	CH ₃	like	4180	169	0.04	2.0	-
14b	$\mathrm{CH}_{2}\mathrm{Ph}$	CH ₃	like	631	5930	9	3.4	2.8
14c	PMB	CH ₃	like	3250	>10 µM	7	3.3	2.2
14d	Н	CH ₃	like	5440	0 %	-	1.4	3.9
15a	CH_3	<i>n</i> -Bu	like	16 ± 0.7	128	8	3.6	4.2
15b	$\mathrm{CH}_{2}\mathrm{Ph}$	<i>n</i> -Bu	like	36 ± 9.2	442	12	5.0	2.4
15c	PMB	<i>n</i> -Bu	like	121 ± 12	713	6	4.9	2.0
15d	Н	<i>n</i> -Bu	like	52 ± 6.4	6630	127	3.0	4.3
16a	CH_3	CH_2Ph	like	48 ± 8.7	3620	75	3.8	3.5
16b	$\mathrm{CH}_{2}\mathrm{Ph}$	CH_2Ph	like	9.0 ± 1.6	668	74	5.2	2.8
16c	PMB	CH_2Ph	like	704	3180	5	5.1	1.1
16d	Н	CH_2Ph	like	58 ± 12	0 %	-	3.2	4.0
17a	CH_3	(CH ₂) ₄ Ph	like	48 ± 8.7	4070	84	5.0	2.3
17b	$\mathrm{CH}_{2}\mathrm{Ph}$	(CH ₂) ₄ Ph	like	232 ± 42	20 %	-	6.4	0.2
17c	PMB	(CH ₂) ₄ Ph	like	334 ± 51	850	3	6.3	0.1
17d	Н	(CH ₂) ₄ Ph	like	41 ± 3.1	465	11	4.4	3.0
23a	CH ₃	Н	unlike	>10 µM	>10 µM	-	1.3	-
23c	PMB	Н	unlike	8490	4720	0.6	2.7	2.4
24c	PMB	CH ₃	unlike	2820	80 %	-	3.3	2.2

24d	Н	CH ₃	unlike	3680	717	0.2	1.4	4.0
25c	PMB	<i>n</i> -Bu	unlike	177 ± 15	848	5	4.9	1.9
25d	Н	<i>n</i> -Bu	unlike	40 ± 4.3	2000	50	3.0	4.4
26c	PMB	$\mathrm{CH}_{2}\mathrm{Ph}$	unlike	579	1640	3	5.1	1.1
27c	PMB	(CH ₂) ₄ Ph	unlike	658	1320	2	6.3	-0.1
27d	Н	(CH ₂) ₄ Ph	unlike	13 ± 1.7	142	11	4.4	3.5
(+)-pentazocine			5.7 ± 2.2	-	-			
Haloperidol			6.3 ± 1.6	78 ± 2.3	13			
di-o-tolylguanidine			89 ± 29	58 ± 18	0.6			

- a) Generally the K_i values were determined in triplicates (n 3). For compounds showing very low affinity in the first experiment repetitions were not performed (n=1).
- b) Low affinity is either given with a single K_i value or with the residual binding of the radioligand (in %) at a test compound concentration of 1 μ M.
- c) ClogP = calculated logP value (ChemDraw).
- d) LLE (lipophilic ligand efficiency) = pK_i ClogP

In general a lipophilic substituent like a *n*-butyl, benzyl or *p*-methoxybenzyl residue should be attached to the basic amino group within the heterocyclic system to achieve high σ_1 affinity; a proton (e.g. compounds **13**, **23**) and a methyl moiety (e.g. compounds **14**, **24**) are too small to produce high σ_1 affinity. With exception of the benzyl ethers **15b** and **16b**, a second large lipophilic ether substituent is less tolerated than a proton or a small methyl moiety at the O-atom (e.g. **15a**, **27d**). The *like*-configured alcohols **15d**, **16d** and **17d** show K_i values in the range of 41-58 nM, indicating moderate to high σ_1 affinity. However, the highest σ_1 affinity within the group of *like*-configured 2-benzazepines was found for the methyl ether **15a** ($K_i = 16$ nM) and the benzyl ether **16b** ($K_i = 9.0$ nM).

The same trends, which were observed for the *like*-configured 2-benzazepines, were also observed for the *unlike*-configured diastereomers. The most potent *unlike*-configured alcohols

25d and **27d** show a slightly increased σ_1 affinity compared to their *like*-configured counterparts **15d** and **17d**.

Most of the 5-substituted 2-benzazepins reveal a preference for the σ_1 receptor subtype. Particularly high σ_1/σ_2 selectivity is observed for the *like*- and *unlike*-configured alcohols **15d** and **25d** with a *N*-butyl substituent. The methyl ethers **16a** and **17a** as well as the benzyl ether **16b** also represent σ_1 ligands with high selectivity over the σ_2 subtype ($\sigma_1/\sigma_2 > 74$). However the high σ_2 affinity of **15a** ($K_i = 128$ nM) and **27d** ($K_i = 142$ nM) should be emphasized, which reduces the σ_1/σ_2 selectivity of these potent σ_1 ligands to 8- and 11-fold, respectively.

On the contrary the *unlike*-configured alcohol **24d** and the *like*-configured methyl ether **14a** can be regarded as σ_2 ligands with moderate ($\sigma_2/\sigma_1 = 5$) and high selectivity ($\sigma_2/\sigma_1 = 25$) over the σ_1 subtype. Due to its high σ_2 affinity ($K_i = 169$ nM) and σ_2/σ_1 selectivity (25-fold) the methyl ether **14a** with a small methyl substituent at the *N*-atom represents a promising starting point for the development of potent σ_2 ligands.

Introduction of two lipophilic substituents at the α -position of the 5-benzyl moiety and at the 2-benzazepine *N*-atom leads to very potent (e.g. **15b**: $K_i(\sigma_1) = 36$ nM, **16b**: $K_i(\sigma_1) = 9.0$ nM), but rather lipophilic σ_1 ligands; the calculated ClogP values of **15b** and **16b** are 5.0 and 5.2, respectively. The lipophilic ligand efficiency (LLE) modulates the biological activity of a ligand with its lipophilicity by subtracting the ClogP value from the p K_i value. The LLE value of a potential drug should be as high as possible, at least higher than 4.0 in order to become a lead compound. With respect to the LLE value the *like-* and *unlike*-configured alcohols **14d**, **15d**, **16d**, **24d** and **25d** display the best compromise between high σ_1 affinity and low lipophilicity. The highest LLE value was found for the *unlike*-configured alcohol **25d** (LLE = 4.4, $K_i(\sigma_1) = 40$ nM, ClogP = 3.0) with a butyl substituent at the benzazepine *N*-atom, which

also possesses a high σ_1/σ_2 selectivity. This observation supports our initial idea of introducing a polar OH group at the benzylic α -position.

3.2. Affinity towards various binding sites of the NMDA receptor

It has been shown that the substituent at the basic *N*-atom of a ligand determines the selectivity towards σ_1 receptors or the phencyclidine (PCP) binding site of the NMDA receptor. Ligands with a small substituent like a proton (secondary amine) or a methyl group interact preferably with the PCP binding site of the NMDA receptor, whereas analogs with larger N-substituents (e.g. benzyl, dimethylallyl) show remarkable selectivity for σ_1 receptors.⁴¹⁻⁴⁴ Moreover, compounds with the tetrahydro-3-benzazepine scaffold reveal high affinity to the PCP binding site of the NMDA receptor when the polar *N*-phenylacetamido substituent has been attached to the 1-position.⁴⁵ Therefore the NMDA receptor affinity of the α -substituted benzyl derivatives **13-17** and **23-27** was recorded in receptor binding studies using pig brain cortex membrane preparations as receptor material and tritium labeled [³H]-(+)-MK-801 as radioligand.^{44,46} At a test compound concentration of 10 μ M the tetrahydro-2-benzazepines did not compete significantly with the radioligand indicating very low affinity towards the PCP binding site of the NMDA receptor.

Additionally the affinity of some selected compounds (13b, 13c, 15c, 15d, 16c, 16d, 17c, 17d, 23a, 23c, 25d) towards further binding sites of the NMDA receptor were investigated. At a concentration of 10 μ M these tetrahydro-2-benzazepines did not compete considerably with the radioligands [³H]-CGP-39653 (glutamate binding site), [³H]-MDL-105519 (glycine binding site), [³H]-ifenprodil (ifenprodil binding site), and [³H]-TCP (phencyclidine binding site). It can be concluded that the prepared tetrahydro-2-benzazepines represent potent and selective σ_1 ligands. In particular the most promising σ_1 ligands 15d, 16d and 25d with

medium to high σ_1 affinity and high lipophilic ligand efficiency LLE are very selective with respect to different binding sites at the NMDA receptor.

4. Conclusion

A series of tetrahydro-2-benzazepines with various substituents in α -position of the benzyl moiety in 5-position and at the 2-benzazepine *N*-atom was synthesized and pharmacologically evaluated. Compounds with large substituents at the 2-benzazepine *N*-atom (*n*-Bu, CH₂Ph, (CH₂)₄Ph) display high σ_1 affinity. The relative configuration has only a minor impact on σ_1 affinity with the *unlike*-configured alcohols **25d** and **27d** having slightly higher σ_1 affinity than their *like*-configured diastereomers **15d** and **17d**. With respect to σ_1 affinity, σ_1/σ_2 selectivity, lipophilicity and lipophilic ligand efficiency LLE the diastereomeric alcohols **15d** and **25d** with a *N*-butyl moiety represent the most promising ligands of this series of compounds.

5. Experimental

5.1. Experimental, Chemistry

5.1.1. General

Unless otherwise noted, moisture sensitive reactions were conducted under dry nitrogen. THF was dried with sodium/benzophenone and was distilled freshly before use. Thin layer chromatography (tlc): Silica gel 60 F_{254} plates (Merck). Flash chromatography (fc): Silica gel 60, 40–64 µm (Merck); parentheses include: diameter of the column, length of the column, eluent, fraction size, Rf value. Melting point: Melting point apparatus SMP 3 (Stuart Scientific), uncorrected. Elemental analysis: CHN-Rapid Analysator (Fons-Heraeus). MS: MAT GCQ (Thermo-Finnigan); EI = electron impact; Thermo Finnigan LCQ[®] ion trap mass spectrometer with an ESI = electrospray ionization interface. IR: IR spectrophotometer 480Plus FT-ATR-IR (Jasco). ¹H NMR (400 MHz), ¹³C NMR (100 MHz): Mercury-400BB

spectrometer (Varian); δ in ppm related to tetramethylsilane; coupling constants are given with 0.5 Hz resolution. HPLC: Merck Hitachi Equipment; UV detector: L-7400; autosampler: L-7200; pump: L-7100; degasser: L-7614; Method I: column: LiChrospher[®] 60 RP-select B (5 µm), 250-4 mm; flow rate: 1.00 mL/min; injection volume: 5.0 µL; detection at λ = 210 nm; solvents: A: water with 0.05% (v/v) trifluoroacetic acid; B: acetonitrile with 0.05% (v/v) trifluoroacetic acid: gradient elution: (A%): 0-4 min: 90 %, 4-29 min: gradient from 90 % to 0 %, 29-31 min: 0 %, 31-31.5 min: gradient from 0 % to 90 %, 31.5-40 min: 90 %; Method II: column: phenomenex[®] Gemini C6-Phenyl 110A (5 µm), 250-4.6 mm; flow rate: 1.00 mL/min; injection volume: 5.0 µL; detection at λ = 220 nm; solvents: A: water with 0.05% (v/v) trifluoroacetic acid; B: acetonitrile with 0.05% (v/v) trifluoroacetic acid: gradient elution: (A%): 0-3 min: 90 %, 3-28 min: gradient from 90 % to 0 %, 28-31 min: 0 %, 31-31.5 min: gradient from 0 % to 90 %, 31.5-40 min: 90 % to 0 %, 28-31 min: 0 %, 31-31.5 min: gradient from 0 % to 90 %, 31.5-40 min: 90 %. According to two different HPLC methods the purity of all test compounds was greater than 95 %.

(±)-3-[2-(Dimethoxymethyl)phenyl]-4-oxo-4-phenylbutyronitrile (7)³⁰

Under N₂, a solution of benzaldehyde (1.33 mL, 13.2 mmol) in DMF (6.6 mL) was added slowly (1 h) to a suspension of NaCN (323 mg, 6.58 mmol) in DMF (6.6 mL) at 35 °C. The mixture was stirred at 35 °C for 2 h. Then a solution of **5** (2.00 g, 9.86 mmol) in DMF (13.2 mL) was added within 4 h and the suspension was stirred for 12 h at 35 °C. H₂O (600 mL) was added and the mixture was extracted with Et₂O (4 x 100 mL). The combined organic layers were washed with H₂O (3 x 100 mL), dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (6 cm, 18 cm, petroleum ether/EtOAc = 9:1, 65 mL, Rf = 0.17). The product was recrystallized with petroleum ether/EtOAc = 8:2. Colorless crystals, mp 100 ° C, yield 1.48 g (49%). ¹H NMR (CDCl₃): δ (ppm) = 2.86 (dd, J = 16.4/4.5 Hz, 1H, CH₂CN), 3.07 (dd, J = 16.4/8.5 Hz, 1H, CH₂CN), 3.48 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 5.41 (s, 1H, CH(OCH₃)₂), 5.54 (dd, J = 8.5/4.4 Hz, 1H, CHCH₂CN), 7.02 - 7.06 (m, 1H,

*H*_{arom}), 7.19 - 7.28 (m, 2H, *H*_{arom}), 7.31 - 7.37 (m, 2H, *H*_{arom}), 7.41 - 7.49 (m, 2H, *H*_{arom}), 8.02 - 8.05 (m, 2H, *H*_{arom}).

(±)-(3RS,4RS)-3-[2-(Dimethoxymethyl)phenyl]-4-hydroxy-4-phenyl butyronitrile (8)³⁰

Under N₂, a solution of ketone 7 (1.41 g, 4.56 mmol) in CH₃OH (40 mL) was cooled to 0 °C. Then NaBH₄ (1.73 g, 45.6 mmol) was added and the solution was stirred for 16 h at 0 °C. A saturated solution of NaCl (30 mL) was added, the mixture was extracted with Et₂O (3 x 30 mL), the combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (6 cm, 17 cm, petroleum ether/EtOAc = 8:2, 65 mL, Rf = 0.32). The product was recrystallized with petroleum ether/EtOAc = 8:2. Colorless crystals, mp 110 °C, yield 1.16 g (82 %). C₁₉H₂₁NO₃ (311.2). Anal. calcd. C 73.3 H 6.80 N 4.50 found C 73.3 H 6.75 N 4.31. MS (ESI): *m/z* (%) = 645 [2·M + Na⁺, 100]. IR (ATR): v (cm⁻¹) = 3448, (OH), 3035 (C-H_{arom}), 2960, 2867 (CH₂), 2823 (OCH₃), 2243 (C=N), 1213, 1049 (C-O), 774, 704 (monosubst. arom.), 766 (1,2-disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.46 (d, J = 7.1 Hz, 2H, CHCH₂CN), 3.13 (d, J = 5.0 Hz, 1H, HOCHPh), 3.32 (s, 3H, OCH₃), 3.43 (s, 3H, OCH₃), 4.09 (dt, J = 8.6/7.2 Hz, 1H, CHCH₂CN), 4.80 (dd, J = 8.8/5.0 Hz, 1H, HOCHPh), 5.21 (s, 1H, CH(OCH₃)₂), 7.29 - 7.40 (m, 6H, H_{arom}), 7.42 - 7.48 (m, 2H, H_{arom}), 7.58 - 7.61 (m, 1H, H_{arom}).

For the X-ray crystal structure analysis, **8** was recrystallized from CH_2Cl_2/n -hexane. Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN;⁴⁷⁷ absorption correction, Denzo;⁴⁸ structure solution SHELXS-97;⁴⁹ structure refinement SHELXL-97⁵⁰ and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and wR^2 values are given for all reflections.

X-ray Crystal Structure Analysis of 8: Formula C₁₉H₂₁NO₃; M = 311.37; colorless crystal, 0.30 x 0.30 x 0.20 mm; a = 12.552(1), b = 8.490(1), c = 15.725(1) Å; $\beta = 104.140(1)^{\circ}$, V = 1625.0(3) Å³; $\rho_{calc} = 1.273$ Mg m⁻³; $\mu = 0.086$ mm⁻¹; empirical absorption correction (0.974 < T < 0.983); Z = 4; monoclinic, $P2_1/c$ (No.14); $\lambda = 0.71073$ Å; T = 198(2) K, ω and φ scans, 10313 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.66 Å⁻¹, 3858 unique ($R_{int} = 0.029$) and 2852 observed reflections [$I > 2\sigma(I)$], 211 refined parameters, R = 0.045, $wR^2 = 0.110$, max. (min.) residual electron density 0.23 (-0.20) e Å⁻³, hydrogen atoms calculated and refined as riding atoms. CCDC: 987538 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre.

(±)-(3RS,4RS)-3-[2-(Dimethoxymethyl)phenyl]-4-methoxy-4-phenylbutyronitrile (10a)

Under N₂, the alcohol **8** (540 mg, 1.74 mmol) and CH₃I (540 μL, 8.68 mmol) were dissolved in THF (25 mL). NaH (60 %, 87 mg, 2.17 mmol) was added and the mixture was stirred at rt for 16 h. A saturated NaCl solution (15 mL) was added to the suspension. The mixture was extracted with CH₂Cl₂ (3 x 30 mL), the organic layer was dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (3 cm, 18 cm, petroleum ether/EtOAc = 9:1, 20 mL, Rf = 0.24). Colorless solid, mp 59 °C, yield 561 mg (99 %). C₂₀H₂₃NO₃ (325.2). Anal. calcd. C 73.8 H 7.12 N 4.30 found C 73.8 H 6.94 N 4.27. MS (ESI): m/z (%) = 673 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3063 (C-H_{arom}), 2934, 2901 (CH₂), 2827 (OCH₃), 2245 (C=N), 1190, 1101 (C-O), 769, 702 (monosubst. arom.), 761 (1,2-disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.52 (dd, J = 16.8/7.3 Hz, 1H, CH₂CN), 2.80 (dd, J = 16.8/6.9 Hz, 1H, CH₂CN), 3.11 (s, 3H, OCH₃), 3.18 (s, 3H, OCH₃), 3.19 (s, 3H, OCH₃), 3.89 - 3.95 (m, 1 H, CHCH₂CN), 4.58 (d, J = 6.0 Hz, 1H, H₃CO-CHPh), 4.99 (s, 1H, CH(OCH₃)₂), 7.09 - 7.13 (m, 2H, H_{arom}), 7.23 - 7.29 (m, 4H, H_{arom}), 7.34 (td, J = 7.6/1.6 Hz, 1H, H_{arom}), 7.44 (dd, J = 7.7/1.6 Hz, 1H, H_{arom}), 7.48 (dd, J = 7.8/1.1 Hz, 1H, H_{arom}).

(±)-(3RS,4RS)-4-Benzyloxy-3-[2-(dimethoxymethyl)phenyl]-4-phenylbutyronitrile (10b)

Under N₂, the alcohol **8** (364 mg, 1.17 mmol), benzyl bromide (556 μL, 4.68 mmol) and Bu₄NI (85 mg, 0.23 mmol) were solved in THF (25 mL). NaH (60 %, 54 mg, 1.29 mmol) was added and the mixture was stirred at rt for 16 h. Then a saturated NaCl solution (10 mL) was added to and the mixture was extracted with CH₂Cl₂ (3 x 30 mL). The organic layer was dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (4 cm, 20 cm, *n*-hexane/EtOAc = 8:2, 10 mL, Rf = 0.37). Colorless solid, mp 59 °C, yield 465 mg (99 %). C₂₆H₂₇NO₃ (401.2). Anal. calcd. C 77.8 H 6.78 N 3.49 found C 77.7 H 6.44 N 3.36. MS (ESI): *m/z* (%) = 825 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3031 (C-H_{arom}), 2934, 2902 (CH₂), 2249 (C≡N), 1092, 1069 (C-O), 756, 699 (monosubst. arom.), 738 (1,2-disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.52 (dd, J = 16.8/7.9 Hz, 1H, CH₂CN), 2.75 (dd, J = 16.8/6.5 Hz, 1H, CH₂CN), 3.10 (s, 3H, OCH₃), 3.18 (s, 3H, OCH₃), 3.96 - 4.02 (m, 1H, CHCH₂CN), 4.19 (d, J = 11.8 Hz, 1H, PhCH₂O), 4.45 (d, J = 11.8 Hz, 1H, PhCH₂O), 4.68 (d, J = 6.4 Hz, 1H, BnO-CHPh), 5.09 (s, 1H, CH(OCH₃)₂), 7.09 - 7.13 (m, 2H, H_{arom}), 7.16 - 7.19 (m, 2H, H_{arom}), 7.24 - 7.34 (m, 8H, H_{arom}), 7.39 - 7.43 (m, 1H, H_{arom}), 7.46 - 7.49 (m, 1H, H_{arom}).

(±)-(3RS,4RS)-3-[2-(Dimethoxymethyl)phenyl]-4-(4-methoxybenzyloxy)-4-

phenylbutyronitrile (10c)

Under N₂, the alcohol **8** (1.20 g, 3.87 mmol), *p*-methoxybenzyl chloride (788 μ L, 5.81 mmol) and Bu₄NI (284 mg, 0.77 mmol) were dissolved in DMF (80 mL). NaH (60 %, 180 mg, 4.50 mmol) was added and the mixture was stirred at rt for 16 h. H₂O (500 mL) was added and the mixture was extracted with Et₂O (3 x 100 mL). The organic layer was dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (8 cm, 15 cm, *n*-hexane/EtOAc = 8:2, 100 mL, Rf = 0.37). Colorless oil, yield 1.68 g (99 %). C₂₇H₂₉NO₄ (431.2). Anal. calcd.

C 75.2 H 6.77 N 3.25 found C 74.8 H 6.86 N 3.10. MS (ESI): m/z (%) = 885 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3031 (C-H_{arom}), 2934 (CH₂), 2833 (OCH₃), 2246 (C≡N), 1091, 1071 (C-O), 820 (1,4-disubst. arom.), 756 (1,2-disubst. arom), 702 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.50 (dd, J = 16.8/7.9 Hz, 1H, CHCH₂CN), 2.72 (dd, J = 16.8/6.4 Hz, 1H, CHCH₂CN), 3.09 (s, 3H, OCH₃), 3.17 (s, 3H, OCH₃), 3.80 (s, 3H, PhOCH₃), 3.97 - 3.99 (m, 1H, CHCH₂CN), 4.12 (d, J = 11.5 Hz, 1H, PhCH₂O), 4.38 (d, J = 11.5 Hz, 1H, PhCH₂O), 4.68 (d, J = 6.4 Hz, 1H, ArCH₂O-CHPh), 5.09 (s, 1H, CH(OCH₃)₂), 6.79 - 6.84 (m, 2H, H_{arom}), 7.00 - 7.05 (m, 2H, H_{arom}), 7.15 - 7.19 (m, 2H, H_{arom}), 7.25 - 7.33 (m, 5H, H_{arom}), 7.36 - 7.40 (m, 1H, H_{arom}), 7.45 - 7.49 (m, 1H, H_{arom}).

(±)-(5RS)-5-[(RS)-α-Methoxybenzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (13a)

Under N₂, the nitrile **10a** (200 mg, 0.62 mmol) was dissolved in THF (15 mL) and the solution was cooled to 4 °C in an ice-bath. LiAlH₄ (24 mg, 0.62 mmol) was added and the mixture was stirred for 4 h at 4 °C and at rt for 12 h. The suspension was diluted with THF (25 mL) before it was hydrolyzed by dropwise addition of water. The resulting precipitate was removed by filtration and the solvent was evaporated in vacuo. The crude product (**11a**) was dissolved in THF (300 mL), *p*-toluenesulfonic acid hydrate (175 mg, 0.92 mmol) was added and the mixture was stirred at rt for 2 h (**12a**). Then NaBH₃CN (47 mg, 1.23 mmol) was added and the mixture was stirred at rt for 1 h. A saturated NaHCO₃ solution (100 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 100 mL). The organic layer was dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (3.5 cm, 25 cm, EtOAc/CH₃OH/dimethylethanamine = 9:1:0.01, 20 mL, Rf = 0.25). Colorless oil, yield 105 mg (65 %). C₁₈H₂₁NO (267.2). Anal. calcd. C 80.9 H 7.92 N 5.24 found C 80.4 H 7.77 N 5.12. MS (EI): *m/z* (%) = 267 [M⁺, 2], 252 [M⁺ - CH₃, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3317 (NH), 3025 (C-H_{arom}), 2978, 2926 (CH₂), 2817 (OCH₃), 1094 (C-O), 767, 700 (monosubst. arom.), 755 (1,2-disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 1.32 - 1.42 (m, 1H, 4-CH₂),

1.47 - 1.57 (m, 1H, 4-C H_2), 1.65 (s broad, 1H, 2-NH), 2.84 - 2.93 (m, 1H, 3-C H_2), 3.07 (s, 3H, OC H_3), 3.05 - 3.15 (m, 1H, 3-C H_2), 3.34 - 3.42 (m, 1H, 5-CH), 4.01 (d, J = 14.7 Hz, 1H, 1-C H_2), 4.11 (d, J = 14.6 Hz, 1H, 1-C H_2), 4.58 (d, J = 9.9 Hz, 1H, H₃CO-CHPh), 7.11 - 7.18 (m, 2H, H_{arom}), 7.19 - 7.26 (m, 2H, H_{arom}), 7.31 - 7.39 (m, 2H, H_{arom}), 7.39 - 7.41 (m, 3H, H_{arom}).

(±)-(5RS)-5-[(RS)-α-Benzyloxybenzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (13b)

Under N₂, the nitrile **10b** (356 mg, 0.88 mmol) was dissolved in THF (50 mL) and cooled to 4 °C in an ice-bath. LiAlH₄ (34 mg, 0.90 mmol) was added and the mixture was stirred for 4 h at 4 °C and at rt for 12 h. The suspension was diluted with THF (50 mL) before water was added dropwise. The resulting precipitate was removed by filtration and the solvent was evaporated in vacuo. The crude product (11b) was dissolved in THF (500 mL) and p-toluenesulfonic acid hydrate (253 mg, 1.33 mmol) was added. The mixture was stirred at rt for 2 h (12b). Then NaBH₃CN (113 mg, 1.80 mmol) was added and the mixture was stirred at rt for 1 h. A saturated NaHCO3 solution (100 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 100 mL). The organic layer was dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (4 cm, 20 cm, $EtOAc/CH_3OH/dimethylethanamine = 9:1:0.01$, 10 mL, Rf = 0.23). Colorless oil, yield 147 mg (49 %). $C_{24}H_{25}NO$ (343.2). MS (EI): m/z (%) = 343 [M⁺, 2], 252 [M⁺ - benzyl, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3299 (NH), 3027 (C-H_{arom}), 2924, 2860 (CH₂), 1086, 1067 (C-O), 754, 698 (monosubst. arom.), 735 (1,2-disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 1.33 - 1.42 (m, 1H, 4-CH₂), 1.47 - 1.64 (m, 1H, 4-CH₂), 2.85 - 2.94 (m, 1H, 3-CH₂), 2.98 - 3.07 (m, 1H, 3-CH₂), 3.36 - 3.45 (m, 1H, 5-CH), 3.84 (s, 2H, PhCH₂O), 4.07 (d, J = 12.1 Hz, 1H, 1-CH₂), 4.33 (d, J = 12.3 Hz, 1H, 1-CH₂), 4.76 (d, J = 10.4 Hz, 1H, BnO-CHPh), 6.84 (s broad, 2H, H_{arom}), 7.07 - 7.24 (m, 6H, H_{arom}), 7.27 - 7.46 (m, 6H, H_{arom}). A signal for the proton of the NH group is not visible in the ¹H NMR spectrum.

(±)-(5RS)-5-[(RS)-α-(Benzyloxy)benzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepinium chloride (13b·HCl)

A solution of HCl in Et₂O was added to a solution of the secondary amine **13b** (202 mg, 0.58 mmol) in Et₂O (10 mL). The resulting precipitate was collected by filtration and the solvent was evaporated in vacuo. The residue was purified by recrystallization from petroleum ether/EtOAc = 1:1. Colorless solid, mp 124 °C, yield 178 mg (81 %). C₂₄H₂₆ClNO (379.7). Anal. calcd. C 75.9 H 6.90 N 3.69 found C 75.5 H 6.80 N 3.55. MS (ESI): m/z (%) = 344 [M - Cl⁻, 100]. IR (ATR): \tilde{v} (cm⁻¹) = 3029 (C-H_{arom}), 2925, 2844 (CH₂), 2629 (NH₂⁺), 1082, 1066 (C-O), 757, 700 (monosubst. arom.), 738 (1,2-disubst. arom.). ¹H NMR (DMSO): δ (ppm) = 1.42 - 1.53 (m, 1H, 4-CH₂), 1.66 - 1.76 (m, 1H, 4-CH₂), 2.94 - 3.07 (m, 1H, 3-CH₂), 3.07 - 3.19 (m, 1H, 3-CH₂), 3.46 - 3.58 (m, 1H, 5-CH), 4.16 (s, 2H, PhCH₂O), 4.26 (d, J = 14.1 Hz, 1H, 1-CH₂), 4.34 (d, J = 14.4 Hz, 1H, 1-CH₂), 4.88 (d, J = 9.3 Hz, 1H, BnO-CHPh), 6.81 - 6.99 (m, 2H, H_{arom}), 7.14 - 7.53 (m, 12H, H_{arom}). A signal for the protons of the NH₂⁺ group is not visible in the ¹H NMR spectrum.

(±)-(5RS)-5-[(RS)-α-(4-Methoxybenzyloxy)benzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (13c)

Under N₂, the nitrile **10c** (861 mg, 1.99 mmol) was dissolved in THF (100 mL) and cooled to 4 °C in an ice-bath. LiAlH₄ (113 mg, 2.99 mmol) was added and the mixture was stirred for 4 h at 4 °C and at rt for 12 h. The suspension was diluted with THF (50 mL) and water was added dropwise. The resulting precipitate was removed by filtration and the solvent was evaporated in vacuo. The crude product (**11c**) was dissolved in THF (450 mL), *p*-toluenesulfonic acid hydrate (568 mg, 2.99 mmol) was added and the mixture was stirred for at rt 2 h. Then NaBH₃CN (250 mg, 3.98 mmol) was added and the mixture was stirred at rt for 1 h (**12c**). A saturated NaHCO₃ solution (100 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 100 mL). The organic layer was dried (K₂CO₃), concentrated in

vacuo and the residue was purified by fc (4 cm, 25 cm, EtOAc/CH₃OH/dimethylethanamine = 8:2:0.01, 30 mL, Rf = 0.29). Colorless oil, yield 371 mg (50 %). $C_{25}H_{27}NO_2$ (373.2). MS (ESI): m/z (%) = 374 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3331 (NH), 3026 (C-H_{arom}), 2923 (CH₂), 2837 (OCH₃), 1115, 1080 (C-O), 819 (1,4-disubst. arom.), 755 (1,2-disubst. arom), 701 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 1.33 - 1.53 (m, 1H, 4-CH₂), 1.49 - 1.64 (m, 1H, 4-CH₂), 2.13 (s broad, 1H, NH), 2.83 - 2.94 (m, 1H, 3-CH₂), 2.98 - 3.08 (m, 1H, 3-CH₂), 3.34 - 3.42 (m, 1H, 5-CH), 3.77 (s, 3H, OCH₃), 3.86 (s, 2H, PhCH₂O), 4.01 (d, J = 11.9 Hz, 1H, 1-CH₂), 4.29 (d, J = 11.9 Hz, 1H, 1-CH₂), 4.73 (d, J = 10.2 Hz, 1H, ArCH₂O-CHPh), 6.70 (d, J = 8.6 Hz, 2H, H_{arom}), 6.78 (d, J = 8.6 Hz, 2H, H_{arom}), 7.06 - 7.28 (m, 4H, H_{arom}), 7.31 - 7.44 (m, 5H, H_{arom}).

(±)-(5RS)-5-[(RS)-α-(4-Methoxybenzyloxy)benzyl]-2,3,4,5-tetrahydro-1*H*-2-

benzazepinium chloride (13c·HCl)

A solution of HCl in Et₂O was added to a solution of the secondary amine **13c** (200 mg, 0.53 mmol) in Et₂O (10 mL). The resulting precipitate was collected by filtration and the solvent was evaporated in vacuo. The residue was purified by recrystallization from petroleum ether/EtOAc = 1:1. Colorless solid, mp 122 °C, yield 165 mg (76 %). C₂₅H₂₈ClNO₂ (409.9). Anal. calcd. C 73.3 H 6.88 N 3.42 found C 72.5 H 6.77 N 3.26. MS (ESI): m/z (%) = 374 [M - Cl⁻, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3029 (C-H_{arom}), 2925, 2844 (CH₂), 2629 (NH₂⁺), 1082, 1066 (C-O), 757, 700 (monosubst. arom.), 738 (1,2-disubst. arom.). ¹H NMR (DMSO): δ (ppm) = 1.42 - 1.55 (m, 1H, 4-CH₂), 1.62 - 1.77 (m, 1H, 4-CH₂), 2.94 - 3.05 (m, 1H, 3-CH₂), 3.05 - 3.18 (m, 1H, 3-CH₂), 3.45 - 3.53 (m, 1H, 5-CH), 3.67 (s, 3H, OCH₃), 4.09 (s, 2H, PhCH₂O), 4.23 - 4.35 (m, 2H, 1-CH₂), 4.83 (d, J = 9.2 Hz, 1H, ArCH₂O-CHPh), 6.73 (d, J = 8.5 Hz, 2H, H_{arom}), 6.85 (d, J = 8.4 Hz, 2H, H_{arom}), 7.20 - 7.49 (m, 9H, H_{arom}). A signal for the protons of the NH₂⁺ group is not visible in the ¹H NMR spectrum.

$(\pm)-(5RS)-5-[(RS)-\alpha-Methoxybenzyl]-2-methyl-2,3,4,5-tetrahydro-1 H-2-benzazepine$

(14a)

Under N₂, the secondary amine **13a** (105 mg, 0.39 mmol) and formalin (37 %, 38 µL, 0.51 mmol) were dissolved in CH₂Cl₂ (5 mL). NaBH(OAc)₃ (1.23 g, 5.85 mmol) was added and the solution was stirred at rt for 16 h. A saturated NaCl solution (10 mL) was added, the mixture was extracted with CH₂Cl₂ (4 x 10 mL), the organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 22 cm, $EtOAc/CH_3OH/dimethylethanamine = 8:2:0.01, 10 mL, Rf = 0.19$). Pale yellow oil, yield 68 mg (62 %). C₁₉H₂₃NO (281.2). HPLC (method I) Purity 96.7 %. HPLC (method II) Purity 94.0 %. MS (ESI): m/z (%) = 282 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3059 (C-H_{arom}), 2925 (CH₂), 2817 (OCH₃), 2790 (N-C-H), 1093, 1050 C-O), 757, 701 (monosubst. arom.), 754 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.19 - 1.36 (m, 1H, 4-CH₂), 1.41 - 1.62 (m, 1H, 4-CH₂), 2.07 (s, 3H, NCH₃), 2.22 - 2.39 (m, 1H, 3-CH₂), 2.68 - 2.79 (m, 1H, 3-CH₂), 2.81 (s, 3H, OCH₃), 3.14 - 3.27 (m, 1H, 5-CH), 3.55 (d, J = 14.3 Hz, 1H, 1-CH₂), 3.79 - 4.03 (m, 1H, 1-CH₂), 4.37 (d, J = 10.0 Hz, 1H, H₃CO-CHPh), 6.83 - 7.25 (m, 9H, H_{arom}). ¹³C NMR $(D_8$ -toluene): δ (ppm) = 27.7 (1C, 4-CH₂), 43.9 (1C, 3-CH₂), 52.7 (1C, OCH₃), 56.9 (1C, NCH₃), 62.5 (1C, 1-CH₂), 86.0 (1C, H₃CO-CHPh), 125.5, 125.8, 126.1, 126.8, 127.5, 128.3, 128.6, 129.8, 131.1, 138.1, 142.0, 143.3 (12C, Carom). A signal for the carbon atom C-3 is not seen in the ¹³C NMR spectrum.

(±)-(RS)-5-[(RS)-α-Benzyloxybenzyl]-2-methyl-2,3,4,5-tetrahydro-1*H*-benzazepine (14b)

Under N₂, the secondary amine **13b** (90 mg, 0.26 mmol) and formalin (37 %, 25 μ L, 0.34 mmol) were dissolved in CH₂Cl₂ (4 mL). NaBH(OAc)₃ (823 mg, 3.90 mmol) was added and the solution was stirred at rt for 16 h. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 30 cm, EtOAc/dimethylethanamine =

1:0.01, 10 mL, Rf = 0.21). Pale yellow oil, yield 63 mg (68 %). $C_{25}H_{27}NO$ (357.2). HPLC (method I) Purity 99.1 %. HPLC (method II) Purity 97.7 %. MS (ESI): m/z (%) = 358 [M + H⁺, 100]. IR (ATR): \tilde{v} (cm⁻¹) = 3059 (C-H_{arom}), 2922, 2861 (CH₂), 2790 (NCH₃), 1067, 1028 (C-O), 753, 698 (monosubst. arom.), 739 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.08 - 1.31 (m, 1H, 4-CH₂), 1.48 - 1.75 (m, 1H, 4-CH₂), 2.04 (s, 3H, NCH₃), 2.22 - 2.39 (m, 1H, 3-CH₂), 2.66 - 2.85 (m, 1H, 3-CH₂), 3.17 - 3.29 (m, 1H, 5-CH), 3.42 (d, J = 14.9 Hz, 1H, 1-CH₂), 3.79 (d, J = 12.4 Hz, 1H, PhCH₂O), 3.87 (d, J = 14.8 Hz, 1H, 1-CH₂), 4.14 (d, J = 12.4 Hz, 1H, PhCH₂O), 4.61 (d, J = 9.4 Hz, 1H, BnO-CHPh), 6.62 - 6.78 (m, 2H, H_{arom}), 6.83 - 7.16 (m, 8H, H_{arom}), 7.17 - 7.31 (m, 4H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 25.6 (1C, 4-CH₂), 42.1 (1C, 3-CH₂), 51.4 (1C, 5-CH), 54.9 (1C, NCH₃), 60.8 (1C, 1-CH₂), 69.3 (1C, PhCH₂O), 80.8 (1C, BnO-CHPh), 124.2, 124.6, 125.4, 125.8, 126.4, 126.8, 126.9, 127.1, 127.3, 127.9, 128.3, 136.6, 138.2, 140.5 (18C, C_{arom}).

(±)-(5RS)-5-[(RS)-α-(4-Methoxybenzyloxy)benzyl]-2-methyl-2,3,4,5-tetrahydro-1*H*-2-

benzazepine (14c)

Under N₂, the secondary amine **13c** (440 mg, 1.18 mmol) and formalin (37 %, 114 µL, 1.53 mmol) were dissolved in CH₂Cl₂ (10 mL). NaBH(OAc)₃ (3.25 g, 15.3 mmol) was added and the solution was stirred at rt for 16 h. A saturated NaCl solution (20 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 20 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (3.5 cm, 24 cm, EtOAc/dimethylethanamine = 1:0.01, 20 mL, Rf = 0.21). Pale yellow oil, yield 288 mg (63 %). C₂₆H₂₉NO₂ (387.2). HPLC (method I) Purity 99.9 %. HPLC (method II) Purity 99.8 %. MS (ESI): m/z (%) = 388 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3059 (C-H_{Aromat}), 2922 (CH₂), 2790 (NCH₃), 1074, 1034 (C-O), 819 (1,4-disubst. arom.), 755 (1,2-disubst. arom.), 727, 701 (monosubst. arom.). ¹H NMR (D₈-toluene, 100 °C): δ (ppm) = 1.22 - 1.32 (m, 1H, 4-CH₂), 1.56 - 1.67 (m, 1H, 4-CH₂), 2.04 (s, 3H, NCH₃), 2.24 - 2.33 (m, 1H, 3-CH₂),

2.68 - 1.78 (m, 1H, 3-CH₂), 3.16 - 3.24 (m, 1H, 5-CH), 3.28 (s, 3H, OCH₃), 3.39 (d, J = 14.7 Hz, 1H, 1-CH₂), 3.81 (d, J = 14.6 Hz, 1H, 1-CH₂), 3.88 (d, J = 11.5 Hz, 1H, PhCH₂O), 4.11 (d, J = 11.6 Hz, 1H, PhCH₂O), 4.63 (d, J = 9.3 Hz, 1H, ArCH₂O-CHPh), 6.48 - 6.54 (m, 2H, H_{arom}), 6.64 - 6.71 (m, 2H, H_{arom}), 6.78 - 7.25 (m, 9H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 26.6 (1C, 4-CH₂), 42.9 (1C, NCH₃), 54.5 (1C, OCH₃), 55.9 (1C, 1-CH₂), 61.8 (1C, PhCH₂O), 69.8 (1C, ArCH₂O-CHPh), 124.8, 125.1, 125.3, 126.2, 126.6, 127.7, 127.9, 128.1, 128.2, 128.6, 129.1, 129.2, 130.4, 130.9 (18C, C_{arom}). Signals for the carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(RS)-1-[(5RS)-2-Methyl-2,3,4,5-tetrahydro-1*H*-2-benzazepin-5-yl]-1-phenylmethanol (14d)

(NH₄)₂Ce(NO₃)₆ (717 mg, 1.31 mmol) was added to a solution of the *p*-methoxybenzyl ether **14c** (253 mg, 0.65 mmol) in CH₃CN-H₂O (11 mL, 9:1), and the mixture was stirred at rt for 30 min. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2.5 cm, 30 cm, EtOAc/dimethylethanamine = 1:0.01, 10 mL, Rf = 0.11). Pale yellow oil, yield 111 mg (64 %). C₁₈H₂₁NO (267.2). HPLC (method I) Purity 98.1 %. HPLC (method II) Purity 97.8 %. MS (ESI): *m/z* (%) = 268 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3346 (OH), 3059 (C-H_{arom}), 2929 (CH₂), 2799 (NCH₃), 1276 (C-O), 755, 700 (monosubst. arom.), 736 (1,2-disubst. arom.). ¹H NMR (D₈-toluene, 100 °C): δ (ppm) = 1.60 -1.68 (m, 1H, 4-CH₂), 1.69 - 1.77 (m, 1H, 4-CH₂), 2.03 (s, 3H, NCH₃), 2.09 - 2.17 (m, 1H, 3-CH₂), 2.74 - 2.86 (m, 1H, 3-CH₂), 3.09 - 3.17 (m, 1H, 5-CH), 3.40 (d, J = 15.4 Hz, 1H, 1-CH₂), 3.51 (d, J = 15.6 Hz, 1H, 1-CH₂), 4.89 (d, J = 3.7 Hz, 1H, HOCHPh), 9.39 (d, J = 7.0 Hz, 1H, H_{arom}), 6.68 - 6.76 (m, 2H, H_{arom}), 6.79 - 6.86 (m, 1H, H_{arom}). A signal for the proton of the OH group is not visible in the ¹H NMR spectrum.

(±)-(5RS)-2-Butyl-(RS)-5-[(RS)-α-methoxybenzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (15a)

Under N₂, a mixture of the secondary amine **13a** (100 mg, 0.37 mmol), K₂CO₃ (414 mg, 2.99 mmol) and 1-bromobutane (48 µL, 0.45 mmol) and CH₃CN (10 mL) was heated to reflux for 16 h. Then a saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 22 cm, EtOAc/dimethylethanamine = 1:0.01, 10 mL, Rf = 0.42). Pale yellow oil, yield 64 mg (53 %). C₂₂H₂₉NO (323.2). HPLC (method I) Purity 99.3 %. HPLC (method II) Purity 98.6 %. MS (ESI): m/z (%) = 324 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3059 (C-H_{Aromat}), 2928 (CH₂), 2815 (OCH₃), 1094, 1053 (C-O), 768, 701 (monosubst. arom.), 754 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 0.83 - 0.95 (t, J = 7.2 Hz, 3H, $CH_2CH_2CH_2CH_3$), 1.18 - 1.33 (m, 2H, $CH_2CH_2CH_3$), 1.31 - 1.42 (m, 2H, CH₂CH₂CH₂CH₃), 1.39 - 1.49 (m, 1H, 4-CH₂), 1.49 - 1.74 (m, 1H, 4-CH₂), 2.15 - 2.36 (m, 2H, CH₂CH₂CH₂CH₃), 2.40 - 2.57 (m, 1H, 3-CH₂), 2.87 (s, 3H, OCH₃), 2.89 - 3.06 (m, 1H, 3- CH_2), 3.23 - 3.38 (m, 1H, 5-CH), 3.71 (d, J = 14.7 Hz, 1H, 1-CH₂), 3.98 - 4.18 (m, 1H, 1-CH₂), 4.46 (d, J = 10.6 Hz, 1H, H₃CO-CHPh), 6.95 - 7.33 (m, 9H, H_{arom}). ¹³C NMR (D₈toluene): δ (ppm) = 14.8 (1C, CH₂CH₂CH₂CH₃), 20.7 (1C, CH₂CH₂CH₂CH₃), 26.8 (1C, 4-CH₂), 30.3 (1C, CH₂CH₂CH₂CH₂CH₃), 54.2 (1C, OCH₃), 56.3 (1C, CH₂CH₂CH₂CH₂CH₃), 59.1 (1C, 1-CH₂), 85.5 (1C, H₃CO-CHPh), 124.8, 125.1, 125.5, 126.1, 126.7, 127.7, 128.0, 128.3, 137.5, 138.5, 141.5, 142.6 (12C, Carom). Signals for carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(5RS)-5-[(RS)-α-Benzyloxybenzyl]-2-butyl-2,3,4,5-tetrahydro-1*H*-2-benzazepine (15b)

Under N₂, a mixture of the secondary amine **13b** (78 mg, 0.23 mmol), K₂CO₃ (252 mg, 1.82 mmol), 1-bromobutane (29 µL, 0.27 mmol) and CH₃CN (10 mL) was heated to reflux for 16 h. Then a saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 25 cm, cyclohexane/EtOAc/dimethylethanamine = 3:7:0.01, 10 mL, Rf = 0.41). Pale yellow oil, yield 54 mg (59 %). $C_{28}H_{33}NO$ (399.3). HPLC (method I) Purity 98.9 %. HPLC (method II) Purity 99.3 %. MS (ESI): m/z (%) = 400 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3027 (C-Ha_{rom}), 2927, 2859 (CH₂), 1085, 1027 (C-O), 763, 698 (monosubst. arom.), 753 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 0.89 (t, J = 7.2 Hz, 3H, CH₂CH₂CH₂CH₂CH₃), 1.10 - 1.25 (m, 2H, CH₂CH₂CH₂CH₃), 1.25 - 1.34 (m, 2H, CH₂CH₂CH₂CH₃), 1.31 - 1.38 (m, 1H, 4-CH₂), 1.58 - 1.77 (m, 1H, 4-CH₂), 2.09 - 2.31 (m, 2H, CH₂CH₂CH₂CH₃), 2.36 - 2.52 (m, 1H, 3-CH₂), 2.79 - 2.96 (m, 1H, 3-CH₂), 3.23 - 3.35 (m, 1H, 5-CH), 3.58 (d, J = 14.8 Hz, 1H, 1-CH₂), 3.88 (d, J = 14.7 Hz, 1H, 1-CH₂), 3.91 (d, J = 12.2 Hz, 1H, PhCH₂O), 4.21 (d, J = 12.4 Hz, 1H, PhCH₂O), 4.67 (d, J = 10.0 Hz, 1H, BnO-CHPh), 6.67 - 6.82 (m, 2H, H_{arom}), 6.92 - 7.21 (m, 9H, H_{arom}), 7.22 - 7.30 (m, 2H, H_{arom}), 7.31 - 7.37 (m, 1H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 15.2 (1C, CH₂CH₂CH₂CH₃), 21.1 (1C, CH₂CH₂CH₂CH₃), 27.0 (1C, 4-CH₂), 31.1 (1C, CH₂CH₂CH₂CH₂CH₃), 54.5 (1C, CH₂CH₂CH₂CH₃), 60.1 (1C, 1-CH₂), 71.0 (1C, PhCH₂O), 82.2 (1C, BnO-CHPh), 125.7, 126.0, 126.3, 127.5, 128.2, 128.5, 128.6, 128.8, 129.0, 129.1, 129.3, 129.4, 129.6, 129.7, 130.1, 131.3, 138.3, 142.3 (18C, Carom). Signals for the carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(5RS)-2-Butyl-5-[(RS)-α-(4-methoxybenzyloxy)benzyl]-2,3,4,5-tetrahydro-1*H*-2benzazepine (15c)

Under N₂, a mixture of the secondary amine **13c** (189 mg, 0.51 mmol), K₂CO₃ (586 mg, 4.24 mmol), 1-bromobutane (69 µL, 0.64 mmol) and CH₃CN (12 mL) was heated to reflux for 16 h. Then a saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2.5 cm, 28 cm, cyclohexane/EtOAc = 1:1, 10 mL, Rf = 0.14). Pale yellow oil, yield 156 mg (72 %). C₂₉H₃₅NO₂ (429.3). HPLC (method I) Purity 99.6 %. HPLC (method II) Purity 99.1 %. MS (ESI): m/z (%) = 430 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3026 (C-H_{arom}), 2928, 2860 (CH₂), 2837 (OCH₃), 1069, 1036 (C-O), 819 (1,4-disubst. arom.), 754 (1,2-disubst. arom.), 704 (monosubst. arom.). ¹H NMR (D₈-toluene, 100 °C): δ (ppm) = 0.83 (m,3H, CH₂CH₂CH₂CH₃), 1.15 - 1.25 (m, 2H, CH₂CH₂CH₂CH₃), 1.27 - 1.35 (m, 2H, CH₂CH₂CH₂CH₃), 1.28 - 1.34 (m, 1H, 4-CH₂), 1.61 - 1.73 (m, 1H, 4-CH₂), 2.13 - 2.30 (m, 2H, CH₂CH₂CH₂CH₃), 2.37 - 2.48 (m, 1H, 3-CH₂), 2.80 - 2.92 (m, 1H, 3-CH₂), 3.25 - 3.31 (m, 1H, 5-CH), 3.33 (s, 3H, OCH₃), 3.56 (d, J = 14.2 Hz, 1H, 1-CH₂), 3.89 (d, J = 11.9 Hz, 1H, PhC H_2 O), 3.89 (d, J = 14.2 Hz, 1H, 1-C H_2), 4.21 (d, J = 11.8 Hz, 1H, PhC H_2 O), 4.69 (d, J = 9.4 Hz, 1H, ArCH₂O-CHPh), 6.52 - 6.58 (m, 2H, H_{arom}), 6.68 - 7.25 (m, 2H, H_{arom}), 6.86 -7.18 (m, 7H, H_{arom}), 7.20 - 7.31 (m, 2H, H_{arom}).

(±)-(RS)-1-[(5RS)-2-Butyl-2,3,4,5-tetrahydro-1*H*-2-benzazepin-5-yl]-1-phenylmethanol (15d)

 $(NH_4)_2Ce(NO_3)_6$ (208 mg, 0.38 mmol) was added to a solution of the PMB-ether **15c** (84 mg, 0.19 mmol) in CH₃CN/H₂O (5 mL, 9:1), and the mixture was stirred at rt for 30 min. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 25 cm, cyclohexane/EtOAc = 3:7, 10 mL, Rf = 0.11). Pale yellow oil,

yield 51 mg (86 %). $C_{21}H_{27}NO$ (309.2). HPLC (method I) Purity 95.7 %. HPLC (method II) Purity 96.1 %. MS (ESI): *m/z* (%) = 310 [M + H⁺, 100]. IR (ATR): \tilde{v} (cm⁻¹) = 3342 (OH), 3060 (C-H_{arom}), 2929 (CH₂), 1276 (C-O), 750, 700 (monosubst. arom.), 735 (1,2-disubst. arom.). ¹H NMR (D₈-toluene, 100 °C): δ (ppm) = 0.78 (t, J = 7.3 Hz, 3H, CH₂CH₂CH₂CH₂CH₃), 1.14 - 1.24 (m, 2H, CH₂CH₂CH₂CH₃), 1.32 - 1.42 (m, 2H, CH₂CH₂CH₂CH₃), 1.66 - 1.77 (m, 1H, 4-CH₂), 1.77 - 1.88 (m, 1H, 4-CH₂), 2.20 - 2.27 (m, 1H, 3-CH₂), 2.20 - 2.34 (m, 2H, CH₂CH₂CH₂CH₃), 2.90 - 3.00 (m, 1H, 3-CH₂), 3.15 - 3.23 (m, 1H, 5-CH), 3.48 (d, J = 15.7 Hz, 1H, 1-CH₂), 3.63 (d, J = 15.5 Hz, 1H, 1-CH₂), 4.92 (d, J = 3.5 Hz, 1H, HOCHPh), 6.40 (d, J = 7.3, 1H, H_{arom}), 6.70 - 7.14 (m, 6H, H_{arom}), 7.19 - 7.27 (m, 2H, H_{arom}). A signal for the proton of the OH group is not visible in the ¹H NMR spectrum. ¹³C NMR (D₈-toluene): δ (ppm) = 14.2 (1C, CH₂CH₂CH₂CH₃), 19.8 (1C, CH₂CH₂CH₂CH₃), 20.9 (1C, CH₂CH₂CH₂CH₃), 29.7 (1C, 4-CH₂), 53.1 (1C, 3-CH₂), 58.1 (1C, 1-CH₂), 61.9 (1C, CH₂CH₂CH₂CH₃), 74.8 (1C, HOCHPh), 124.8, 125.1, 125.3, 127.7, 127.9, 128.2, 128.6, 128.8, 129.1, 137.5 (12C, C_{arom}). A signal for the carbon atom C-5 is not seen in the ¹³C NMR spectrum.

(±)-(5RS)-2-Benzyl-5-[(RS)-α-methoxybenzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (16a)

Under N₂, the secondary amine **13a** (100 mg, 0.37 mmol) and benzaldehyde (49 µL, 0.49 mmol) were dissolved in CH₂Cl₂ (1.5 mL). After addition of NaBH(OAc)₃ (237 mg, 1.13 mmol), the solution was stirred at rt for 16 h. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 30 cm, cyclohexane/EtOAc = 8:2, 10 mL, Rf = 0.23). Pale yellow oil, yield 93 mg (70 %). C₂₅H₂₇NO (357.2). HPLC (method I) Purity 98.3 %. HPLC (method II) Purity 97.0 %. MS (ESI): *m/z* (%) = 358 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3059 (C-H_{arom}), 2925 (CH₂), 2817 (OCH₃),

1094, 1045 (C-O), 768, 698 (monosubst. arom.), 753 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.14 - 1.39 (m, 1H, 4-CH₂), 1.47 - 1.71 (m, 1H, 4-CH₂), 2.35 - 2.52 (m, 1H, 3-CH₂), 2.83 (s, 3H, OCH₃) 2.85 - 2.98 (m, 1H, 3-CH₂), 3.19 - 3.32 (m, 1H, 5-CH), 3.34 (s, 2H, NCH₂Ph), 3.66 (d, J = 14.5 Hz, 1H, 1-CH₂), 3.91 - 4.17 (m, 1H, 1-CH₂), 4.40 (d, J = 7.3 Hz, 1H, H₃CO-CHPh), 6.78 - 6.89 (m, 1H, H_{arom}), 6.91 - 7.20 (m, 8H, H_{arom}), 7.19 - 7.33 (m, 5H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 28.0 (1C, 4-CH₂), 55.1 (1C, OCH₃), 57.3 (1C, NCH₂Ph), 59.9 (1C, 1-CH₂), 86.4 (1C, H₃CO-CHPh), 125.8, 126.1, 126.5, 127.2, 127.8, 128.1, 128.7, 128.9, 129.0, 129.2, 129.3, 129.5, 129.6, 129.9, 130.2, 131.5, 138.5, 141.1 (18C, C_{arom}). Signals for the carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(5RS)-2-Benzyl-5-[(RS)-α-benzyloxybenyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (16b)

Under N₂, the secondary amine **13b** (70 mg, 0.20 mmol) and benzaldehyde (25 μ L, 0.25 mmol) were dissolved in CH₂Cl₂ (1.5 mL). NaBH(OAc)₃ (127 mg, 0.60 mmol) was added and the solution was stirred at rt for 16 h. A saturated NaCl solution (10 mL) was added and the mixture and was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2.5 cm, 25 cm, cyclohexane/EtOAc = 9:1, 10 mL, Rf = 0.25). Pale yellow oil, yield 59 mg (67 %). C₃₁H₃₁NO (433.2). HPLC (method I) Purity 99.4 %. HPLC (method II) Purity 99.2 %. MS (ESI): *m/z* (%) = 434 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3060 (C-H_{arom}), 2917, 2859 (CH₂), 1066, 1027 (C-O), 759, 697 (monosubst. arom.), 736 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.11 - 1.43 (m, 1H, 4-CH₂), 1.62 - 1.89 (m, 1H, 4-CH₂), 2.31 - 2.59 (m, 1H, 3-CH₂), 2.74 - 3.04 (m, 1H, 3-CH₂), 3.81 - 4.02 (m, 2H, 1-CH₂ und PhCH₂O), 4.26 (d, J = 13.1 Hz, 1H, PhCH₂O), 4.63 - 4.76 (m, 1H, BnO-CHPh), 6.63 - 7.43 (m, 19H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 26.1 (1C, 4-CH₂), 54.9 (1C, NCH₂Ph), 60.3 (1C, 1-CH₂), 71.9 (1C,

PhCH₂O),), 81.6 (1C, BnO-CHPh), 125.0, 125.4, 125.7, 127.6, 127.9, 128.0, 128.2, 128.4, 128.5, 128.6, 128.7, 128.8, 128.9, 129.1, 129.4, 137.7, 140.3, 141.6 (24C, *C*_{arom}). The signals for carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(5RS)-2-Benzyl-5-[(RS)-α-(4-methoxybenzyloxy)benzyl]-2,3,4,5-tetrahydro-1H-2-

benzazepine (16c)

Under N₂, the secondary amine **13c** (275 mg, 0.74 mmol) and benzaldehyde (90 µL, 0.89 mmol) were dissolved in CH₂Cl₂ (2 mL). NaBH(OAc)₃ (189 mg, 0.89 mmol) was added and the solution was stirred at rt for 16 h. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (3 cm, 24 cm, cyclohexane/EtOAc = 8:2, 30 mL, Rf = 0.18). Pale yellow oil, yield 199 mg (59 %). C₃₂H₃₃NO₂ (463.3). HPLC (method I) Purity 98.2 %. HPLC (method II) Purity 98.7 %. MS (ESI): *m/z* (%) = 464 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3060 (C-H_{arom}), 2930, 2859 (CH₂), 2836 (OCH₃), 1066, 1034 (C-O), 819 (1,4-disubst. arom.), 756, 699 (monosubst. arom.), 739 (1,2-disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 1.21 - 1.36 (m, 1H, 4-CH₂), 1.69 - 1.87 (m, 1H, 4-CH₂), 2.55 - 2.69 (m, 1H, 3-CH₂), 2.91 - 3.07 (m, 1H, 3-CH₂), 3.76 (s, 3H, OCH₃), 3.88 (d, J = 13.5 Hz, 1H, 1-CH₂), 3.99 (d, J = 11.8 Hz, 1H, PhCH₂O), 4.28 (d, J = 11.9 Hz, 1H, PhCH₂O), 4.73 (d, J = 10.1 Hz, 1H, ArCH₂O-CHPh), 6.61 - 6.89 (m, 3H, H_{arom}), 6.89 - 6.97 (m, 1H, H_{arom}), 7.12 - 7.42 (m, 14H, H_{arom}).

(±)-(RS)-1-[(5RS)-2-Benzyl-2,3,4,5-tetrahydro-1*H*-2-benzazepin-5-yl]-1-phenylmethanol (16d)

 $(NH_4)_2Ce(NO_3)_6$ (427 mg, 0.78 mmol) was added to a solution of the PMB-ether 16c (180 mg, 0.39 mmol) in CH₃CN-H₂O (8 mL, 9:1) and the mixture was stirred at rt for 30 min.

A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2.5 cm, 25 cm, cyclohexane/EtOAc = 7:3, 10 mL, Rf = 0.19). Pale yellow oil, yield 83 mg (62 %). C₂₄H₂₅NO (343.2). HPLC (method I) Purity 98.2 %. HPLC (method II) Purity 98.2 %. MS (ESI): m/z (%) = 344 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3353 (OH), 3060 (C-H_{arom}), 2922 (CH₂), 1276 (C-O), 754, 700 (monosubst. arom.), 736 (1,2-disubst. arom.). ¹H NMR (D₈-toluene, 100 °C): δ (ppm) = 1.55 - 1.65 (m, 1H, 4-CH₂), 1.73 - 1.81 (m, 1H, 4-CH₂), 2.30 - 2.36 (m, 1H, 3-CH₂), 2.91 - 2.97 (m, 1H, 3-CH₂), 3.15 - 3.19 (m, 1H, 5-*CH*), 3.34 (d, J = 13.7 Hz, 1H, NC*H*₂Ph), 3.44 (d, J = 13.6 Hz, 1H, NC*H*₂Ph), 3.48 (d, J = 15.6 Hz, 1H, 1-CH₂), 3.79 (d, J = 15.7 Hz, 1H, 1-CH₂), 4.89 (d, J = 5.2 Hz, 1H, HOCHPh), 6.58 -6.62 (m, 1H, H_{arom}), 6.66 - 6.71 (m, 1H, H_{arom}), 6.77 - 6.86 (m, 2H, H_{arom}), 6.89 - 6.94 (m, 1H, H_{arom}), 6.97 - 7.13 (m, 5H, H_{arom}), 7.16- 7.25 (m, 4H, H_{arom}). A signal for the proton of the OH group is not visible in the ¹H NMR spectrum. ¹³C NMR (D₈-toluene, 100 °C): δ (ppm) = 29.7 (1C, 4-CH₂), 53.8 (1C, 5-CH), 53.9 (1C, 3-CH₂), 58.4 (1C, 1-CH₂), 61.8 (1C, NCH₂Ph), 75.9 (1C, HOCHPh), 125.3, 125.4, 125.7, 125.9, 126.3, 127.1, 127.4, 128.1, 128.2, 128.4, 129.0, 129.3, 132.2, 137.9 (18C, Carom).

(±)-(5RS)-5-[(RS)-α-Methoxybenzyl]-2-(4-phenylbutyl)-2,3,4,5-tetrahydro-1*H*-2benzazepine (17a)

The secondary amine **13a** (140 mg, 0.52 mmol), K_2CO_3 (574 mg, 4.16 mmol), Bu_4NI (192 mg, 0.52 mmol) and 1-chloro-4-phenylbutane (115 µL, 0.68 mmol) were dissolved in CH₃CN (12 mL) and the mixture was heated to reflux for 16 h. Then a saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 25 cm, EtOAc/dimethylethanamine = 1:0.01, 10 mL, Rf = 0.42). Pale yellow oil, yield 131 mg (63 %). C₂₈H₃₃NO (399.3). HPLC (method I) Purity 98.9 %. HPLC (method II) Purity

98.4 %. MS (ESI): *m/z* (%) = 400 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3060 (C-H_{arom}), 2931, 2855 (CH₂), 2816 (OCH₃), 1093, 1055 (C-O), 763, 698 (monosubst. arom.), 751 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.23 - 1.34 (m, 1H, 4-CH₂), 1.34 - 1.44 (m, 2H, CH₂CH₂CH₂CH₂CH₂Ph), 1.47 - 1.57 (m, 2H, CH₂CH₂CH₂CH₂Ph), 1.55 - 1.69 (m, 1H, 4-CH₂), 2.14 - 2.34 (m, 2H, CH₂CH₂CH₂CH₂Ph), 2.44 (t, J = 7.5 Hz, 2H, CH₂CH₂CH₂CH₂CH₂Ph), 2.47 - 2.57 (m, 1H, 3-CH₂), 2.85 (s, 3H, OCH₃), 2.88 - 3.03 (m, 1H, 3-CH₂), 3.22 - 3.37 (m, 1H, 5-CH), 3.69 (d, J = 14.5 Hz, 1H, 1-CH₂), 3.94 - 4.18 (m, 1H, 1-CH₂), 4.44 (d, J = 9.4 Hz, 1H, H₃CO-CHPh), 6.93 - 7.32 (m, 14H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 26.3 (1C, 4-CH₂), 27.2 (1C, CH₂CH₂CH₂CH₂Ph), 29.1 (1C, CH₂CH₂CH₂CH₂Ph), 51.1 (1C, 5-CH), 53.8 (1C, OCH₃), 55.9 (1C, CH₂CH₂CH₂CH₂Ph), 58.6 (1C, 1-CH₂), 85.0 (1C, H₃CO-CHPh), 125.4, 125.7, 126.1, 126.6, 126.8, 127.4, 128.3, 128.6, 128.7, 128.9, 129.1, 129.2, 129.3, 129.5, 129.8, 130.9, 138.1, 142.0 (18C, C_{arom}). A signal for the carbon atom C-3 is not seen in the ¹³C NMR spectrum.

(±)-(RS)-5-[(RS)-α-Benzyloxybenzyl]-2-(4-phenylbutyl)-2,3,4,5-tetrahydro-1*H*-2benzazepine (17b)

The secondary amine **13b** (75 mg, 0.22 mmol), K₂CO₃ (381 mg, 2.76 mmol), Bu₄NI (81 mg, 0.22 mmol) and 1-chloro-4-phenylbutane (56 µL, 0.33 mmol) were dissolved in CH₃CN (8 mL) and the mixture was heated to reflux for 16 h. Then a saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 26 cm, cyclohexane/EtOAc = 1:1, 10 mL, Rf = 0.41). Pale yellow oil, yield 57 mg (55 %). C₃₄H₃₇NO (475.3). HPLC (method I) Purity 98.7 %. HPLC (method II) Purity 97.7 %. MS (ESI): *m/z* (%) = 476 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3060 (C-H_{arom}), 2929, 2857 (CH₂), 1067, 1027 (C-O), 763, 697 (monosubst. arom.), 735 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.06 - 1.25 (m, 1H, 4-CH₂), 1.26 - 1.39 (m, 2H, CH₂CH₂CH₂CH₂Ph), 1.39 - 1.54 (m,

2H, CH₂CH₂CH₂CH₂CH₂Ph), 1.59 - 1.77 (m, 1H, 4-CH₂), 2.07 - 2.31 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₂Ph), 2.40 (t, J = 7.3 Hz, 2H, CH₂CH₂CH₂CH₂CH₂Ph), 2.41 - 2.52 (m, 1H, 3-CH₂), 2.79 - 2.97 (m, 1H, 3-CH₂), 3.22 - 3.34 (m, 1H, 5-CH), 3.55 (d, J = 13.9 Hz, 1H, 1-CH₂), 3.80 - 3.95 (m, 2H, 1-CH₂ und PhCH₂O), 4.20 (d, J = 12.4 Hz, 1H, PhCH₂O), 4.66 (d, J = 10.2 Hz, 1H, BnO-CHPh), 6.65 - 6.82 (m, 2H, H_{arom}), 6.88 - 7.38 (m, 17H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 26.9 (1C, 4-CH₂), 28.0 (1C, CH₂CH₂CH₂CH₂Ph), 29.4 (1C, CH₂CH₂CH₂CH₂Ph), 36.2 (1C, CH₂CH₂CH₂CH₂Ph), 53.2 (1C, CH₂CH₂CH₂CH₂Ph), 62.9 (1C, 1-CH₂), 71.8 (1C, PhCH₂O), 82.6 (1C, BnO-CHPh), 124.2, 124.5, 125.3, 125.7, 126.0, 126.7, 127.0, 127.1, 127.3, 127.5, 127.6, 127.7, 127.9, 128.0, 128.1 128.2, 128.5, 129.7, 136.8, 138.4, 140.8, 141.9, 142.3 (24C, C_{arom}). Signals for the carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(5RS)-5-[(RS)-α-(4-Methoxybenzyloxy)benzyl]-2-(4-phenylbutyl)-2,3,4,5-tetrahydro-1*H*-2-benzazepine (17c)

The secondary amine **13c** (278 mg, 0.75 mmol), K₂CO₃ (815 mg, 5.89 mmol), Bu₄NI (137 mg, 0.37 mmol) and 1-chloro-4-phenylbutane (159 µL, 0.97 mmol) were dissolved in CH₃CN (15 mL) and the mixture was heated to reflux for 16 h. Then a saturated NaCl solution (20 mL) was added and the solution was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2.5 cm, 24 cm, cyclohexane/EtOAc/dimethylethanamine = 1:1:0.01, 10 mL, Rf = 0.38). Pale yellow oil, yield 266 mg (71 %). C₃₅H₃₉NO₂ (505.3). HPLC (method I) Purity 99.4 %. HPLC (method II) Purity 99.4 %. MS (ESI): *m/z* (%) = 506 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3024 (C-H_{aromat}), 2932, 2855 (CH₂), 2837 (OCH₃), 1074, 1036 (C-O), 819 (1,4-disubst. arom.), 752 (1,2-disubst. arom.), 707 (monosubst. arom.). ¹H NMR (D₈-toluene, 100 °C): δ (ppm) =1.18 - 1.30 (m, 1H, 4-CH₂), 1.28 - 1.40 (m, 2H, CH₂CH₂CH₂CH₂Ph), 1.43 - 1.55 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₂Ph), 1.57 - 1.72 (m, 1H, 4-CH₂), 2.12 - 2.31 (m, 2H, 2H)

CH₂CH₂CH₂CH₂CH₂Ph), 2.38 - 2.44 (m, 2H, CH₂CH₂CH₂CH₂CH₂Ph), 2.41 - 2.47 (m, 1H, 3-CH₂), 2.78 - 2.91 (m, 1H, 3-CH₂), 3.19 - 3.28 (m, 1H, 5-CH), 3.31 (s, 3H, OCH₃), 3.49 (d, J = 14.7 Hz, 1H, 1-CH₂), 3.88 (d, J = 14.7 Hz, 1H, 1-CH₂), 3.92 (d, J = 11.7 Hz, 1H, PhCH₂O), 4.13 (d, J = 11.6 Hz, 1H, PhCH₂O), 4.69 (d, J = 9.5 Hz, 1H, ArCH₂O-CHPh), 6.49 - 6.59 (m, 2H, H_{arom}), 6.65 - 6.75 (m, 2H, H_{arom}), 6.82 - 7.09 (m, 9H, H_{arom}), 7.10 - 7.18 (m, 2H, H_{arom}), 7.19 -7.30 (m, 3H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 20.2 (1C, CH₂CH₂CH₂CH₂Ph), 26.3 (1C, 4-CH₂), 27.6 (1C, CH₂CH₂CH₂CH₂Ph), 29.4 (1C, CH₂CH₂CH₂CH₂Ph), 38.2 (1C, CH₂CH₂CH₂CH₂Ph), 53.8 (1C, OCH₃), 54.6 (1C, 1-CH₂), 58.2 (1C, PhCH₂O), 69.8 (1C, ArCH₂O-CHPh), 113.7, 124.9, 125.1, 125.3, 125.9, 126.2, 126.6, 127.7, 127.9, 128.1, 128.2, 128.4, 128.5, 128.6, 128.7, 128.8, 129.1, 129.2, 130.9, 137.5, 141.6, 142.9, 159.4 (24C, C_{aromat}). Signals for the carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(RS)-1-Phenyl-1-[(5RS)-2-(4-phenylbutyl)-2,3,4,5-tetrahydro-1*H*-2-benzazepin-5yl]methanol (17d)

(NH₄)₂Ce(NO₃)₆ (237 mg, 0.43 mmol) was added to a solution of the PMB-ether **17c** (290 mg, 0.43 mmol) in CH₃CN-H₂O (10 mL, 9:1) and the mixture was stirred at rt for 30 min. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2.5 cm, 25 cm, *n*-hexane/EtOAc = 3:7, 10 mL, Rf = 0.11). Pale yellow oil, yield 84 mg (51 %). C₂₇H₃₁NO (385.2). HPLC (method I) Purity 96.1 %. HPLC (method II) Purity 92.8 %. MS (ESI): m/z (%) = 386 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3335 (OH), 3059 (C-H_{arom}), 2930 (CH₂), 1276 (C-O), 753, 704 (monosubst. arom.), 735 (1,2-disubst. arom.). ¹H NMR (D₈-toluene, 100 °C): δ (ppm) = 1.33 - 1.55 (m, 4H, CH₂CH₂CH₂CH₂Ph), 1.62 - 1.72 (m, 1H, 4-CH₂), 1.74 - 1.86 (m, 1H, 4-CH₂), 2.18 - 2.24 (m, 1H, 3-CH₂), 2.23 - 2.32 (m, 2H, CH₂CH₂CH₂Ph), 2.87 - 2.98 (m, 1H, 3-CH₂), 3.14 - 3.23 (m, 1H, 5-CH), 3.43 (d, J = 15.5

Hz, 1H, 1-CH₂), 3.61 (d, J = 15.5 Hz, 1H, 1-CH₂), 4.93 (d, J = 3.7 Hz, 1H, HOCHPh), 6.42 (d, J = 7.3 Hz, 1H, H_{arom}), 6.69 - 6.81 (m, 2H, H_{arom}), 6.82 - 7.15 (m, 9H, H_{arom}), 7.18 - 7.28 (m, 2H, H_{arom}). A signal for the proton of the OH group is not visible in the ¹H NMR spectrum. ¹³C NMR (D₈-toluene): δ (ppm) = 26.9 (1C, CH₂CH₂CH₂CH₂Ph), 29.3 (1C, CH₂CH₂CH₂CH₂Ph), 30.3 (1C, 4-CH₂), 35.9 (1C, CH₂CH₂CH₂CH₂Ph), 53.1 (1C, CH₂CH₂CH₂CH₂Ph), 57.9 (1C, 1-CH₂), 74.9 (1C, HOCHPh), 124.9, 125.1, 125.3, 125.8, 126.0, 126.7, 127.0, 127.7, 128.2, 129.1, 132.5, 137.4, 139.3, 142.6 (18C, C_{arom}). Signals for the carbon atoms C-3 and C-5 are not seen in the spectrum.

(±)-{(1RS,2SR)-3-Cyano-2-[2-(dimethoxymethyl)phenyl]-1-phenylpropyl} benzoate (18a) The alcohol 8 (228 g, 0.73 mmol), PPh₃ (957 mg, 3.65 mmol) and benzoic acid (392 mg, 3.21 mmol) were dissolved in THF (20 mL) and the mixture was cooled to 4 °C in an ice-bath. Diisopropyl diazodicarboxylate (709 µL, 3.65 mmol) was added dropwise within 4 h and the solution was stirred at rt for 12 h. A saturated NaCl solution (30 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 30 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (5 cm, 15 cm, *n*-hexane/EtOAc = 8:2, 65 mL, Rf = 0.31). Colorless solid, mp 148 °C, yield 209 mg (69 %). $C_{26}H_{25}NO_4$ (415.2). Anal. calcd. C 75.2 H 6.06 N 3.37 found C 74.5 H 6.30 N 3.19. MS (ESI): m/z (%) = 853 $[2 \cdot M + Na^{+}, 100], 438 [M + Na^{+}, 9]$. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3033 (C-H_{aron}), 2933, 2830 (CH₂), 2245 (C≡N), 1719 (COOR), 1093, 1049 (C-O), 764 (1,2-disubst. arom.), 699 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.85 (dd, J = 16.9/4.9 Hz, 1H, CHCH₂CN), 2.98 (dd, J = 16.9/8.9 Hz, 1H, CHCH₂CN), 3.19 (s, 3H, OCH₃), 3.28 (s, 3H, OCH₃), 4.34 -4.42 (m, 1H, CHCH₂CN), 5.14 (s, 1H, CH(OCH₃)₂), 6.32 (d, J = 7.2 Hz, 1H, COO-CHPh), 7.19 - 7.36 (m, 9H, Harom), 7.39 - 7.44 (m, 1H, Harom), 7.48 - 7.56 (m, 3H, Harom), 7.59 - 7.65 $(m, 1H, H_{arom})$.

(±)-{(1RS,2SR)-3-Cyano-2-[2-(dimethoxymethyl)phenyl]-1-phenylpropyl} 4-

nitrobenzoate (18b)

The alcohol **8** (1.01 g, 3.25 mmol), PPh₃ (4.28 g, 16.3 mmol) and 4-nitrobenzoic acid (2.39 g, 14.3 mmol) were dissolved in THF (70 mL) and the mixture was cooled to 4 °C in an ice-bath. Diisopropyl diazodicarboxylate (3.29 mL, 16.3 mmol) was added dropwise within 4 h and the mixture was stirred at rt for 12 h. A saturated NaCl solution (50 mL) was added and the mixture and was extracted with CH₂Cl₂ (4 x 60 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (8 cm, 20 cm, petroleum ether/EtOAc = 9:1, 100 mL, Rf = 0.27). Colorless solid, mp 66 °C, yield 1.39 g (90 %). C₂₆H₂₄N₂O₆ (460.2). MS (ESI): *m/z* (%) = 483 [M + Na⁺, 16], 943 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3034 (C-H_{arom}), 2935, 2831 (CH₂), 2246 (C≡N), 1727 (COOR), 1347 (NO₂), 1098, 1047 (C-O), 844 (1,4-disubst. arom.), 765 (1,2-disubst. arom.), 700 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.74 (dd, J = 17.0/5.5 Hz, 1H, CHCH₂CN), 2.86 (dd, J = 17.0/7.7 Hz, 1H, CHCH₂CN), 3.15 (s, 3H, OCH₃), 3.19 (s, 3H, OCH₃), 4.36 - 4.42 (m, 1H, CHCH₂CN), 5.04 (s, 1H, CH(OCH₃)₂), 6.33 (d, J = 7.7 Hz, 1H, COO-CHPh), 7.16 - 7.33 (m, 8H, H_{arom}), 7.46 (dd, J = 7.8/1.2 Hz, 1H, H_{arom}), 8.29 - 8.23 (m, 4H, H_{arom}).

(±)-(4RS,5SR)-4-[2-(Dimethoxymethyl)phenyl]-5-phenyl-4,5-dihydrofuran-2(3*H*)-one (19)

Under N₂, a mixture of the ester **18a** (402 mg, 0.85 mmol), K₂CO₃ (233 mg, 1.69 mmol) and CH₃OH (30 mL) was stirred at rt for 4 h. A saturated NaCl solution (20 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 30 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (4 cm, 20 cm, petroleum/EtOAc = 8:2, 20 mL, Rf = 0.34). Colorless oil, yield 228 mg (86 %). (C₁₉H₂₀O₄) (312.1). MS (ESI): m/z (%) = 647 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3058 (C-H_{arom}), 2979, 2938 (CH₂), 2823 (OCH₃), 1779 (COOR), 1199, 1065 (C-O), 764 (1,2-disubst. arom.), 700 (monosubst.

arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.75 (dd, J = 17.6/10.1 Hz, 1H, CHC*H*₂CO), 3.01 - 3.12 (m, 1H, CHC*H*₂CO), 3.05 (s, 3H, OC*H*₃), 3.07 (s, 3H, OC*H*₃), 4.92 (s, 1H, C*H*(OCH₃)₂), 4.21 - 4.31 (m, 1H, C*H*CH₂CO), 5.56 (d, J = 8.2 Hz, 1H, COO-C*H*Ph), 7.20 - 7.24 (m, 2H, *H*_{arom}), 7.29 - 7.33 (m, 4H, *H*_{arom}), 7.42 - 7.47 (m, 2H, *H*_{arom}), 7.52 - 7.56 (m, 1H, *H*_{arom}).

(±)-(3RS,4SR)-3-[2-(Dimethoxymethyl)phenyl]-4-hydroxy-4-phenylbutyronitrile (9)

Under N₂, the ester **18b** (1.82 g, 3.96 mmol) was dissolved in CH₃OH (160 mL) and the mixture was cooled to 4 °C in an ice-bath. Then K₂CO₃ (0.54 g, 3.91 mmol) was added and the mixture was stirred under cooling for 30 min. A saturated NaCl solution (50 mL) was added and the mixture and was extracted with CH₂Cl₂ (4 x 40 mL). The organic layer was dried (Na₂SO₄), the solvent was evaporated in vacuo and the residue was purified by fc (5.5 cm, 22 cm, cyclohexane/EtOAc = 7:3, 65 mL, Rf = 0.21). Colorless oil, yield 0.87 g (71 %). C₁₉H₂₁NO₃ (311.2). MS (ESI): *m/z* (%) = 645 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3439(OH), 2935, 2917 (CH₂), 2823 (OCH₃), 2246 (C≡N), 1216, 1047 (C-O), 765 (1,2-disubst. arom.), 701 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.34 (d, J = 3.3 Hz, 1H, *H*OCHPh), 2.59 (dd, J = 16.9/4.5 Hz, 1H CHCH₂CN), 2.88 (dd, J = 16.9/9.5 Hz, 1H, CHCH₂CN), 3.09 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.94 - 4.00 (m, 1H, CHCH₂CN), 4.92 (dd, J = 6.3/3.3 Hz, 1H, HOCHPh), 5.08 (s, 1H, CH(OCH₃)₂), 7.13 - 7.22 (m, 6H, *H*_{arom}), 7.26 - 7.39 (m, 3H, *H*_{arom}).

(±)-(3RS,4SR)-3-[2-(Dimethoxymethyl)phenyl]-4-methoxy-4-phenylbutyronitrile (20a)

Under N₂, the alcohol **9** (125 mg, 0.40 mmol) and CH₃I (249 μ l, 4.00 mmol) were dissolved in DMF (20 mL) and the mixture was cooled to 4 °C in an ice-bath. Then, NaH (18 mg, 0.44 mmol) was added and the mixture was stirred under cooling for 4 h and at rt for 12 h. H₂O (100 ml) was added and the solution and was extracted with Et₂O (3 x 30 mL). The organic layer was dried (Na₂SO₄), the solvent was evaporated in vacuo and the residue was

purified by fc (3 cm, 20 cm, cyclohexane/EtOAc = 8:2, 20 mL, Rf = 0.19). Colorless solid, mp 50 °C, yield 77 mg (59 %). $C_{20}H_{23}NO_3$ (325.2). Anal. calcd. C 73.8 H 7.12 N 4.30 found C 73.6 H 7.10 N 4.07. MS (ESI): *m/z* (%) = 673 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3061 (C-H_{arom}), 2983, 2932 (CH₂), 2826 (OCH₃), 2245 (C=N), 1192, 1101 (C-O), 762 (1,2disubst. arom.), 703 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.73 (dd, J = 16.8/3.9 Hz, 1H, CHCH₂CN), 3.02 (dd, J = 16.8/8.8 Hz, 1H, CHCH₂CN), 3.11 (s, 3H, OCH₃), 3.19 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.85 - 3.91 (m, 1H, CHCH₂CN), 4.44 (d, J = 7.7 Hz, 1H, H₃CO-CHPh), 5.01 (s, 1H, CH(OCH₃)₂), 7.14 - 7.27 (m, 6H, H_{arom}), 7.33 - 7.39 (m, 2H, H_{arom}), 7.58 - 7.63 (m, 1H, H_{arom}).

(±)-(3RS,4SR)-3-[2-(Dimethoxymethyl)phenyl]-4-(4-methoxybenzyloxy)-4-

phenylbutyronitrile (20c)

Under N₂, the alcohol **9** (870 g, 2.79 mmol) and *p*-methoxybenzyl bromide (423 µl, 3.00 mmol) were dissolved in DMF (40 mL) and the solution was cooled to 4 °C in an ice-bath. NaH (134 mg, 3.35 mmol) was added and the mixture was stirred under cooling for 4 h and at rt for 12 h. H₂O (400 ml) was added and the solution was extracted with Et₂O (3 x 100 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (4 cm, 24 cm, *n*-hexane²/EtOAc = 7:3, 30 mL, Rf = 0.36). Colorless oil, yield 1.04 g (62 %). C₂₇H₂₉NO₄ (431.2). MS (ESI): *m/z* (%) = 885 [2·M + Na⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3030 (C-H_{arom}), 2934 (CH₂), 2835 (OCH₃), 2244 (C≡N), 1093, 1049 (C-O), 821 (1,4-disubst. arom.), 758 (1,2-disubst. arom.), 700 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 2.68 (dd, J = 16.8/3.9 Hz, 1H, CHCH₂CN), 2.95 (dd, J = 16.8/8.9 Hz, 1H, CHCH₂CN), 3.00 (s, 3H, OCH₃), 3.75 (s, 3H, ArOCH₃), 3.83 - 3.90 (m, 1H, CHCH₂CN), 4.13 (d, J = 10.8 Hz, 1H, PhCH₂O), 4.32 (d, J = 10.8 Hz, 1H, PhCH₂O), 4.59 (d, J = 7.6 Hz, 1H, ArCH₂O-CHPh), 4.94 (s, 1H, CH(OCH₃)₂), 6.80 - 6.82 (m, 2H, arom}), 7.12 - 7.20 (m, 8H, H_{arom}), 7.29 - 7.31 (m, 2H, H_{arom}), 7.50 - 7.52 (m, 1H, H_{aromat}).

((±)-(5RS)-5-[(SR)-α-Methoxybenzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (23a)

Under N₂, LiAlH₄ (46 mg, 1.20 mmol) was added to a cooled (4 °C, ice-bath) solution of the nitrile 20a (389 mg, 1.20 mmol) in THF (25 mL) and the mixture was stirred under cooling for 4 h and at rt for 12 h. The suspension was diluted with THF (25 mL) and hydrolyzed by dropwise addition of water. The resulting precipitate was removed by filtration and the solvent was evaporated in vacuo. Under N₂, the crude product (21a) was dissolved in THF (450 mL), p-toluenesulfonic acid hydrate (342 mg, 1.80 mmol) was added and the mixture was stirred at rt for 2 h (22a). Afterwards NaBH₃CN (151 mg, 2.40 mmol) was added and the mixture was stirred at rt for 1 h. A saturated NaHCO₃ solution (150 mL) was added and the suspension was extracted with CH₂Cl₂ (4 x 100 mL). The combined organic layer was dried (K_2CO_3) , the solvent was evaporated in vacuo and the residue was purified by fc (3 cm, 24 cm, EtOAc/CH₃OH/dimethylethanamine = 9:1:0.02, 20 mL, Rf = 0.28). Pale yellow oil, yield 103 mg (32 %). C₁₈H₂₁NO (267.2). Anal. calcd. C 80.9 H 7.92 N 5.24 found C 80.2 H 7.97 N 5.15. MS (ESI): m/z (%) = 268 [M + H⁺,100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3318 (NH), 3025 (C-Harom), 2979, 2927 (CH₂), 2827 (OCH₃), 1089 (C-O), 768, 699 (monosubst. arom.), 759 (1,2disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 1.49 - 1.68 (m, 1H, 4-CH₂), 1.79 - 1.94 (m, 1H, 4-CH₂), 2.12 - 2.34 (m, 1H, 3-CH₂), 3.04 - 3.14 (m, 1H, 3-CH₂), 3.12 - 3.22 (m, 1H, 5-CH), 3.29 (s, 3H, OCH₃), 3.96 (d, J = 15.2 Hz, 1H, 1-CH₂), 4.22 (d, J = 15.2 Hz, 1H, 1-CH₂), 4.73 $(d, J = 8.5 Hz, 1H, H_3CO-CHPh), 6.54 - 6.72 (m, 1H, H_{arom}), 6.82 - 6.93 (m, 1H, H_{arom}), 6.96 -$ 7.11 (m, 4H, H_{arom}), 7.12 - 7.25 (m, 3H, H_{arom}). A signal for the proton of the NH group is not visible in the 1H NMR spectrum.

(±)-(5RS)-5-[(SR)-α-(4-Methoxybenzyloxy)benzyl]-2,3,4,5-tetrahydro-1*H*-2-benzazepine (23c)

Under N₂, LiAlH₄ (87 mg, 2.30 mmol) was added to a cooled (4 °C, ice-bath) solution of the nitrile 20c (904 mg, 2.09 mmol) in THF (50 mL) and the mixture was stirred under cooling for 4 h and at rt for 12 h. The suspension was diluted with THF (40 mL) and hydrolyzed by dropwise addition of water. The resulting precipitate was removed by filtration and the solvent was evaporated in vacuo. Under N_2 , the crude product (21c) was solved in THF (450 mL), p-toluenesulfonic acid hydrate (798 mg, 2.41 mmol) was added and the solution was stirred at rt for 2 h (22c). NaBH₃CN (264 mg, 4.19 mmol) was added and the mixture was stirred at rt for q h. A saturated NaHCO₃ solution (100 mL) was added and the suspension was extracted with CH₂Cl₂ (4 x 100 mL). The organic layer was dried (Na₂SO₄), the solvent was evaporated in vacuo and the residue was purified by fc (5.5 cm, 20 cm, EtOAc/CH₃OH/dimethylethanamine = 8/2/0.01, 40 mL, Rf = 0.28). Colorless oil, yield 335 mg (43 %). C₂₅H₂₇NO₂ (373.2). HPLC (method I) Purity 97.4 %. HPLC (method II) Purity 94.8 %. MS (ESI): m/z (%) = 374 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3334 (NH), 3026 (C-H_{arom}), 2923 (CH₂), 2838 (OCH₃), 1060, 1033 (C-O), 819 (1,4-disubst. arom.), 755 (1,2-disubst. arom.), 700 (monosubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 1.49 - 1.60 (m, 1H, NH), 1.58 - 1.66 (m, 1H, 4-CH₂), 1.73 - 1.87 (m, 1H, 4-CH₂), 2.24 - 242 (m, 1H, 3-CH₂), 3.06 - 3.18 (m, 1H, 3-CH₂), 3.17 - 3.25 (m, 1H, 5-CH), 3.81 (s, 3 H, OCH₃), 3.89 (d, J = 15.1 Hz, 1H, 1-CH₂), 4.13 (d, J = 15.2 Hz, 1H, 1-CH₂), 4.23 (d, J = 11.4 Hz, 1H, PhCH₂O), 4.45 (d, J = 11.2 Hz, 1H, PhCH₂O), 4.89 (d, J = 9.0 Hz, 1H, ArCH₂O-CHPh), 6.79 - 6.89 (m, 4H, *H*_{arom}), 6.95 - 7.14 (m, 4H, *H*_{arom}), 7.16 - 7.24 (m, 5H, *H*_{arom}).

(±)-(5RS)-5-[(SR)-α-(4-Methoxybenzyloxy)benzyl]-2-methyl-2,3,4,5-tetrahydro-1*H*-2benzazepine (24c)

Under N₂, a solution of the secondary amine **23c** (313 mg, 0.84 mmol), formalin (37%, 82 µL, 1.09 mmol) and NaBH(OAc)₃ (2.66 g, 12.6 mmol) in CH₂Cl₂ (10 mL) was stirred at rt for 16 h. A saturated NaCl solution (20 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 20 mL). The organic layer was dried (Na₂SO₄), the solvent was evaporated in vacuo and the residue was purified by fc (2 cm, 24 cm, EtOAc/dimethylethanamine = 1:0.01, 10 mL, Rf = 0.19). Pale yellow oil, yield 220 mg (68 %). $C_{26}H_{29}NO_2$ (387.2). HPLC (method I) Purity 97.7 %. HPLC (method II) Purity 99.6 %. MS (ESI): m/z (%) = 388 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3060 (C-H_{arom}), 2925 (CH₂), 2789 (N-C-H), 1075, 1033 (C-O), 821 (1,4-disubst. arom.), 753 (1,2-disubst. arom.), 701 (monosubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.94 - 2.03 (m, 1H, 4-CH₂), 2.15 (s, 3H, NCH₃), 2.25 - 2.37 (m, 1H, 4-CH₂), 2.58 -2.72 (m, 1H, 3-CH₂), 2.99 - 3.09 (m, 1H, 3-CH₂), 3.09 - 3.17 (m, 1H, 5-CH), 3.29 (s, 3H, OCH_3), 3.50 (d, J = 14.7 Hz, 1H, 1-CH₂), 4.00 - 4.09 (m, 1H, 1-CH₂), 4.08 (d, J = 11.3 Hz, 1H, PhCH₂O), 4.57 (d, J = 11.3 Hz, 1H, PhCH₂O), 4.88 (d, J = 9.1 Hz, 1H, ArCH₂O-CHPh), 6.67 - 6.76 (m, 2H, H_{arom}), 6.81 - 6.87 (m, 2H, H_{arom}), 6.93 - 7.14 (m, 9H, H_{arom}). ¹³C NMR $(D_8$ -toluene): δ (ppm) = 25.9 (1C, 4-CH₂), 43.5 (1C, NCH₃), 54.9 (1C, OCH₃), 55.8 (1C, 1-CH₂), 62.6 (1C, PhCH₂O), 70.7 (1C, ArCH₂O-CHPh), 114.2, 125.0, 125.4, 125.7, 126.4, 126.9, 127.8, 127.9, 129.1, 129.4, 129.9, 131.2, 137.7, 141.3 (18C, Carom). Signals for the carbon atoms C-3-C and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(RS)-1-[(5SR)-2-Methyl-2,3,4,5-tetrahydro-1*H*-2-benzazepin-5-yl]-1-phenylmethanol (24d)

 $(NH_4)_2Ce(NO_3)_6$ (482 mg, 0.88 mmol) was added to a solution of the *p*-methoxybenzyl ether **24c** (162 mg, 0.42 mmol) in CH₃CN-H₂O (7 mL, 9:1) and the mixture was stirred at rt for 30 min. HCl 2 M (0.44 mL, 0.88 mmol) and a saturated NaCl solution (10 mL) were added

and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), the solvent was evaporated in vacuo and the residue was purified by fc (2 cm, 20 cm, EtOAc/CH₃OH/dimethylethanamin = 9:1:0.01, 10 mL, Rf = 0.20). Colorless oil, yield 82 mg (73 %). C₁₈H₂₁NO (267.2). HPLC (method I) Purity 98.2 %. HPLC (method II) Purity 97.6 %. MS (ESI): *m/z* (%) = 268 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3142 (OH), 3058 (C-H_{arom}), 2931 (CH₂), 2799 (NCH₃), 1289 (C-O), 752 (1,2-disubst. arom.), 701 (monosubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) =1.45 - 1.60 (m, 1H, 4-CH₂), 1.61 - 1.84 (m, 1H, 4-CH₂), 1.95 - 2.15 (m, 1H, 3-CH₂), 2.46 (s, 3H, NCH₃), 2.87 - 3.06 (m, 1H, 3-CH₂), 3.39 - 3.64 (m, 3H, 1-CH₂ and 5-CH), 5.36 (d, J = 3.8 Hz, 1H, HOCHPh), 7.00 (d, J = 7.7 Hz, 1H, *H*_{arom}), 7.16 - 7.39 (m, 5H, *H*_{arom}), 7.41 - 7.53 (m, 2H, *H*_{arom}), 7.65 (s broad, 1H, *H*_{arom}). A signal for the proton of the OH group is not visible in the ¹H NMR spectrum. ¹³C NMR (D₈-toluene): δ (ppm) = 25.5 (1C, 4-CH₂), 45.6 (1C, 3-CH₂), 52.1 (1C, NCH₃), 55.7 (1C, 5-CH), 60.6 (1C, 1-CH₂), 76.3 (1C, HOCHPh), 124.9, 125.2, 125.5, 125.9, 126.1, 130.9, 137.5, 138.9, 142.4, 145.8 (12C, *C*_{arom}).

(±)-(5RS)-2-Butyl-5-[(SR)-α-(4-methoxybenzyloxy)benzyl]-2,3,4,5-tetrahydro-1*H*-2benzazepine (25c)

A mixture of the secondary amine **23c** (199 mg, 0.54 mmol), K₂CO₃ (597 mg, 4.32 mmol), 1-bromobutane (81 µl, 0.75 mmol) and CH₃CN (12 mL) was heated to reflux for 16 h. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 24 cm, cyclohexane/EtOAc = 4:6, 10 mL, Rf = 0.07). Pale yellow oil, yield 119 mg (52 %). C₂₉H₃₅NO₂ (429.3). HPLC (method I) Purity 100.0 %. HPLC (method II) Purity 99.8 %. MS (ESI): m/z (%) = 430 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3026 (C-H_{arom}), 2928, 2860 (CH₂), 2832 (OCH₃), 1078, 1037 (C-O), 821 (1,4-disubst. arom.), 755 (1,2-disubst. arom.), 700 (monosubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 0.92 (t, J =

7.2 Hz, 3H, CH₂CH₂CH₂CH₃), 1.24 - 1.40 (m, 2H, CH₂CH₂CH₂CH₃), 1.38 - 1.53 (m, 2H, CH₂CH₂CH₂CH₃), 1.45 - 1.55 (m, 1H, 4-CH₂), 1.95 - 2.08 (m, 1H, 4-CH₂), 2.24 - 2.43 (m, 2H, CH₂CH₂CH₂CH₃), 2.36 - 2.44 (m, 1H, 3-CH₂), 2.69 - 2.97 (m, 1H, 3-CH₂), 3.15 - 3.29 (m, 1H, 5-CH), 3.35 (s, 3H, OCH₃), 3.71 (d, J = 14.9 Hz, 1H, 1-CH₂), 4.15 (d, J = 11.3 Hz, 1H, PhCH₂O), 4.16 - 4.29 (m, 1H, 1-CH₂), 4.44 (d, J = 11.3 Hz, 1H, PhCH₂O), 4.98 (d, J = 9.1 Hz, 1 H, ArCH₂O-CHPh), 6.68 - 6.83 (m, 2H, H_{arom}), 6.83 - 6.98 (m, 2H, H_{arom}), 6.99 - 7.32 (m, 9H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 14.5 (1C, CH₂CH₂CH₂CH₃), 20.6 (1C, CH₂CH₂CH₂CH₃), 25.1 (1C, 4-CH₂), 30.6 (1C, CH₂CH₂CH₂CH₃), 33.9 (1C, CH₂CH₂CH₂CH₃), 53.1 (1C, OCH₃), 54.4 (1C, 1-CH₂), 59.6 (1C, PhCH₂O), 70.3 (1C, ArCH₂O-CHPh), 113.7, 124.6, 124.9, 125.2, 125.9, 126.4, 127.3, 127.4, 128.6, 128.9, 129.5, 130.8, 137.3, 141.9 (18C, C_{arom}). Signals for the carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(RS)-1-[(5SR)-2-Butyl-2,3,4,5-tetrahydro-1*H*-2-benzazepin-5-yl]-1-phenylmethanol (25d)

(NH₄)₂Ce(NO₃)₆ (208 mg, 0.38 mmol) was added t o a solution of the *p*-methoxybenzyl ether **25c** (83 mg, 0.19 mmol) in CH₃CN-H₂O (5 mL, 9:1) and the mixture was stirred at rt for 30 min. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 20 cm, EtOAc/dimethylethanamine = 1:0.01, 10 mL, Rf = 0.23). Pale yellow oil, yield 11 mg (20 %). C₂₁H₂₇NO (309.2). HPLC (method I) Purity 98.4 %. HPLC (method II) Purity 97.4 %. MS (ESI): *m/z* (%) = 310 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3342 (OH), 3060 (C-H_{arom}), 2929 (CH₂), 1247 (C-O), 756, 700 (monosubst. arom.), 738 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 0.77 (t, J = 7.3 Hz,3H, CH₂CH₂CH₂CH₃), 1.05 - 1.19 (m, 2H, CH₂CH₂CH₂CH₃), 1.18 - 1.29 (m, 1H, 4-CH₂), 1.25 -1.39 (m, 2H, CH₂CH₂CH₂CH₃), 1.48 - 1.58 (m, 1H, 4-CH₂), 1.78 - 1.95 (m, 1H, 3-CH₂), 2.14

- 2.29 (m, 2H, $CH_2CH_2CH_2CH_3$), 2.69 - 2.89 (m, 1H, 3- CH_2), 3.19 - 3.27 (m, 1H, 5-CH), 3.27 - 3.49 (m, 2H, 1- CH_2), 5.08 (d, J = 4.6 Hz, 1H, HOC*H*Ph), 6.76 - 7.29 (m, 9H, H_{arom}). A signal for the proton of the OH group is not visible in the ¹H NMR spectrum. ¹³C NMR (D₈-toluene): δ (ppm) = 14.7 (1C, CH_2CH_2CH_2CH_3), 21.3 (1C, CH_2CH_2CH_2CH_3), 25.6 (1C, 4- CH_2), 30.8 (1C, CH_2CH_2CH_2CH_3), 51.9 (1C, CH_2CH_2CH_2CH_3), 54.3 (1C, 5-CH), 58.8 (1C, 1- CH_2), 76.9 (1C, HOCHPh), 125.3, 125.7, 125.9, 126.5, 126.6, 127.1, 138.0, 139.7, 142.9, 146.2, (12C, C_{arom}). A signal for the carbon atom C-3 is not seen in the ¹³C NMR spectrum.

benzazepine (26c)

Under N₂, a solution of the secondary amine **23c** (138 mg, 0.37 mmol), benzaldehyde (41 µl, 0.41 mmol) and NaBH(OAc)₃ (86 mg, 0.41 mmol) in CH₂Cl₂ (1.5 mL) was stirred at rt for 16 h. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The combined organic layer was dried (Na₂SO₄), the solvent was evaporated in vacuo and the residue was purified by fc (2 cm, 20 cm, cyclohexane/EtOAc = 85:15, 10 mL, Rf = 0.17). Pale yellow oil, yield 53 mg (36 %). C₃₂H₃₃NO₂ (463.3). HPLC (method I) Purity 97.8 %. HPLC (method II) Purity 97.3 %. MS (ESI): *m/z* (%) = 464 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3059 (C-H_{arom}), 2932, 2861 (CH₂), 2837 (OCH₃), 1067, 1037 (C-O), 821 (1,4-disubst. arom.), 752, 700 (monosubst. arom.), 739 (1,2-disubst. arom.). ¹H NMR (CDCl₃): δ (ppm) = 1.99 - 2.13 (m, 1H, 4-CH₂), 2.17 - 2.29 (m, 1H, 4-CH₂), 2.75 - 2.96 (m, 1H, 3-CH₂), 3.08 - 3.17 (m, 1H, 3-CH₂), 3.15 - 3.25 (m, 1H, 5-CH), 3.52 (s, 2H, NCH₂Ph), 3.69 (d, J = 14.8 Hz, 1H, 1-CH₂), 3.81 (s, 3H, OCH₃), 4.09 - 4.18 (m, 1H, 1-CH₂), 4.19 (d, J = 11.3 Hz, 1H, PhCH₂O), 4.42 (d, J = 11.2 Hz, 1H, PhCH₂O), 4.95 (d, J = 8.9 Hz, 1H, ArCH₂O-CHPh), 6.79 - 6.91 (m, 4H, H_{arom}), 6.94 - 7.02 (m, 1H, H_{arom}), 7.03 - 7.15 (m, 2H, H_{arom}), 7.14 - 7.36 (m, 11H, H_{arom}).

((±)-(5RS)-5-[(SR)-α-(4-Methoxybenzyloxy)benzyl]-2-(4-phenylbutyl)-2,3,4,5-

tetrahydro-1*H*-2-benzazepine (27c)

A mixture of the secondary amine 23c (299 mg, 0.80 mmol), K₂CO₃ (884 mg, 6.39 mmol), Bu₄NI (148 mg, 0.40 mmol), 1-chloro-4-phenylbutane (176 µl, 1.04 mmol) and CH₃CN (16 mL) was heated to reflux for 24 h. A saturated NaCl solution (10 mL) was added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), the solvent was evaporated in vacuo and the residue was purified by fc (2 cm, 26 cm, cyclohexane/EtOAc = 8:2, 10 mL, Rf = 0.09). Pale yellow oil, yield 220 mg (68 %). C₃₅H₃₉NO₂ (505.3). HPLC (method I) Purity 100.0 %. HPLC (method II) Purity 100.0 %. MS (ESI): m/z (%) = 506 [M + H⁺, 100]. IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3025 (C-H_{aron}), 2929, 2856 (CH₂), 2838 (OCH₃), 1079, 1037 (C-O), 821 (1,4-disubst. arom.), 751 (1,2-disubst. arom.), 699 (monosubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.17 - 1.38 (m, 1H, 4-CH₂), 1.37 -1.47 (m, 2H, CH₂CH₂CH₂CH₂Ph), 1.46 - 1.61 (m, 2H, CH₂CH₂CH₂CH₂Ph), 1.92 - 2.05 (m, 1H, 4-CH₂), 2.18 - 2.33 (m, 1H, CH₂CH₂CH₂CH₂CH₂Ph), 2.31 - 2.40 (m, 1H, 3-CH₂), 2.41 - 2.49 (m, 1H, $CH_2CH_2CH_2CH_2Ph$), 2.46 (t, J = 7.6 Hz, 2H, $CH_2CH_2CH_2CH_2Ph$), 2.67 - 2.88 (m, 1H, 3-CH₂), 3.12 - 3.21 (m, 1H, 5-CH), 3.30 (s, 3H, OCH₃), 3.64 (d, J = 15.8 Hz, 1H, 1-CH₂), 4.10 (d, J = 11.2 Hz, 1H, PhC H_2O), 4.09 - 4.21 (m, 1H, 1-C H_2), 4.39 (d, J = 11.2 Hz, 1H, PhCH₂O), 4.92 (d, J = 9.1 Hz, 1H, ArCH₂O-CHPh), 6.65 - 6.76 (m, 2H, H_{arom}), 6.79 - 6.90 (m, 2H, H_{arom}), 6.93 - 6.21 (m, 14H, H_{arom}). ¹³C NMR (D₈-toluene): δ (ppm) = 21.0 (1C, CH₂CH₂CH₂CH₂Ph), 26.9 (1C, 4-CH₂), 29.2 (1C, CH₂CH₂CH₂CH₂Ph), 31.0 (1C, CH₂CH₂CH₂CH₂Ph), 37.8 (1C, CH₂CH₂CH₂CH₂Ph), 55.1 (1C, OCH₃), 56.2 (1C, 1-CH₂), 61.2 (1C, PhCH₂O), 72.0 (1C, ArCH₂O-CHPh), 114.5, 125.4, 125.7, 126.0, 126.5, 128.1, 128.2, 128.3, 128.5, 128.8, 129.1, 129.3, 129.4, 129.7, 130.3, 131.5, 138.0, 142.6 (24C, C_{arom}). Signals for carbon atoms C-3 and C-5 are not visible in the ¹³C NMR spectrum.

(±)-(RS)-1-Phenyl-1-[(5SR)-2-(4-phenylbutyl)-2,3,4,5-tetrahydro-1*H*-2-benzazepine-5yl]methanol (27d)

 $(NH_4)_2Ce(NO_3)_6$ (328 mg, 0.59 mmol) was added to a solution of the *p*-methoxybenzyl ether 27c (137 mg, 0.27 mmol) in CH₃CN-H₂O (6 mL, 9:1) and the mixture was stirred at rt for 30 min. HCl 2 M (0.29 mL, 0.59 mmol) and a saturated NaCl solution (10 mL) were added and the mixture was extracted with CH₂Cl₂ (4 x 10 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (2 cm, 25 cm, EtOAc/dimethylethanamine = 1:0.01, 10 mL, Rf = 0.30). Pale yellow oil, yield 67 mg (64 %). C₂₇H₃₁NO (385.2). HPLC (method I) Purity 98.9 %. HPLC (method II) Purity 96.6 %. MS (ESI): m/z (%) = 386 [M + H⁺, 100]. IR (ATR): v (cm⁻¹) = 3344 (OH), 3059 (C-H_{arom}), 2931, 2856 (CH₂), 1285 (C-O), 753, 704 (monosubst. arom.), 735 (1,2-disubst. arom.). ¹H NMR (D₈-toluene): δ (ppm) = 1.57 - 1.75 (m, 5H, CH₂CH₂CH₂CH₂Ph and 4-CH₂), 1.74 - 1.87 (m, 1H, 4-CH₂), 2.27 - 2.24 (m, 1H, 3-CH₂), 2.38 - 2.53 (m, 2H, CH₂CH₂CH₂CH₂Ph), 2.56 - 2.71 (m, 2H, CH₂CH₂CH₂CH₂Ph), 2.99 - 3.16 (m, 1H, 3-CH₂), 3.42 - 3.79 (m, 3H, 1-CH₂ and 5-*CH*), 5.35 (d, J = 3.9 Hz, 1H, HOC*H*Ph), 7.05 (d, J = 7.6 Hz, 1H, *H*_{arom}), 7.19 - 7.39 (m, 11H, H_{arom} , 7.43 - 7.52 (m, 2H, H_{arom}). A signal for the proton of the OH group is not visible in the ¹H NMR spectrum. ¹³C NMR (D₈-toluene): δ (ppm) = 25.5 (1C, 4-CH₂), 27.5 (1C, CH₂CH₂CH₂CH₂Ph), 29.7 (1C, CH₂CH₂CH₂CH₂Ph), 36.4 (1C, CH₂CH₂CH₂CH₂Ph), 51.9 (1C, CH₂CH₂CH₂CH₂Ph), 54.2 (1C, 5-CH), 58.7 (1C, 1-CH₂), 76.7 (1C, HOCHPh), 124.9, 125.1, 125.3, 125.8, 126.0, 126.7, 127.0, 127.7, 128.2, 129.1, 132.5, 137.4, 139.3, 142.6 (18C, C_{arom}). A signal for the carbon atom C-3 is not seen in the ¹³C NMR spectrum.

Receptor binding studies

Materials

The guinea pig brains and rat liver for the σ_1 and σ_2 receptor binding assays were commercially available (Harlan-Winkelmann, Borchen, Germany). Pig brains were obtained

from the local slaughter-house. Homogenizer: Elvehjem Potter (B. Braun Biotech International, Melsungen, Germany). Cooling centrifuge model Rotina 35R (Hettich, Tuttlingen, Germany) and High-speed cooling centrifuge model Sorvall RC-5C plus (Thermo Fisher Scientific, Langenselbold, Germany). Multiplates: standard 96-well multiplates (Diagonal, Muenster, Germany). Shaker: self-made device with adjustable temperature and tumbling speed (scientific workshop of the institute). Vortex: Vortex Genie 2 (Thermo Fisher Scientific, Langenselbold, Germany). Harvester: MicroBeta FilterMate-96 Harvester. Filter: Printed Filtermat type A and B. Scintillator: Meltilex (type A or B) solid state scintillator. Scintillation analyzer: MicroBeta Trilux (all Perkin Elmer LAS, Rodgau-Jügesheim, Germany). Chemicals and reagents were purchased from different commercial sources and of analytical grade.

Preparation of membrane homogenates from guinea pig brain^{39,40}

Five guinea pig brains were homogenized with the potter (500-800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 23,500 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 7.4) and centrifuged again at 23,500 x g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein/mL.

Preparation of membrane homogenates from rat liver^{39,40}

Two rat livers were cut into small pieces and homogenized with the potter (500-800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS,

pH 8.0) and incubated at room temperature for 30 min. After the incubation, the suspension was centrifuged again at 31,000 x g for 20 min at 4 °C. The final pellet was resuspended in 5-6 volumes of buffer and stored at -80,°C in 1.5 mL portions containing about 2 mg protein/mL.

Preparation of membrane homogenates from big brain cortex^{44,46}

Fresh pig brain cortex was homogenized with the potter (500-800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of TRIS/EDTA buffer (5 mM/1 mM, pH 7.5) and centrifuged again at 31,000 x g (20 min, 4 °C). The final pellet was resuspended in 5-6 volumes of buffer, the protein concentration was determined according to Section 5.3.5. and subsequently the preparation was frozen (-80 °C) in 1.5 mL portions containing about 0.8 mg protein/mL.

Protein determination

The protein concentration was determined by the method of Bradford,⁵¹ modified by Stoscheck.⁵² The Bradford solution was prepared by dissolving 5 mg of Coomassie Brilliant Blue G 250 in 2.5 mL of EtOH (95 %, v/v). 10 mL deionized H₂O and 5 mL phosphoric acid (85%, m/v) were added to this solution, the mixture was stirred and filled to a total volume of 50.0 mL with deionized water. The calibration was carried out using bovine serum albumin as a standard in 9 concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0 and 4.0 mg /mL). In a 96-well standard multiplate, 10 µL of the calibration solution or 10 µL of the membrane receptor preparation were mixed with 190 µL of the Bradford solution, respectively. After 5 min, the UV absorption of the protein-dye complex at $\lambda = 595$ nm was measured with a platereader (Tecan Genios, Tecan, Crailsheim, Germany).

General protocol for the binding assays

The test compound solutions were prepared by dissolving approximately 10 µmol (usually 2-4 mg) of test compound in DMSO so that a 10 mM stock solution was obtained. To obtain the required test solutions for the assay, the DMSO stock solution was diluted with the respective assay buffer. The filtermats were presoaked in 0.5% aqueous polvethylenimine solution for 2 h at room temperature before use. All binding experiments were carried out in duplicates in 96-well multiplates. The concentrations given are the final concentrations in the assay. Generally, the assays were performed by addition of 50 μ L of the respective assay buffer, 50 µL test compound solution in various concentrations (10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸, 10⁻⁹ and 10^{-10} mol/L), 50 µL of corresponding radioligand solution and 50 µL of the respective receptor preparation into each well of the multiplate (total volume 200 µL). The receptor preparation was always added last. During the incubation, the multiplates were shaken at a speed of 500-600 rpm at the specified temperature. Unless otherwise noted, the assays were terminated after 120 min by rapid filtration using the harvester. During the filtration each well was washed five times with 300 µL of water. Subsequently, the filtermats were dried at 95 °C. The solid scintillator was melted on the dried filtermats at a temperature of 95 °C for 5 min. After solidifying of the scintillator at room temperature, the trapped radioactivity in the filtermats was measured with the scintillation analyzer. Each position on the filtermat corresponding to one well of the multiplate was measured for 5 min with the $[^{3}H]$ -counting protocol. The overall counting efficiency was 20%. The IC₅₀-values were calculated with the program GraphPad Prism[®] 3.0 (GraphPad Software, San Diego, CA, USA) by non-linear regression analysis. Subsequently, the IC₅₀ values were transformed into K_i-values using the equation of Cheng and Prusoff.⁵³ The K_i -values are given as mean value \pm SEM from three independent experiments.

Protocol of the σ_1 receptor binding assay

The assay was performed with the radioligand [3 H]-(+)-pentazocine (22.0 Ci/mmol; Perkin Elmer). The thawed membrane preparation of guinea pig brain cortex (about 100 µg of protein) was incubated with various concentrations of test compounds, 2 nM [3 H]-(+)-Pentazocine, and TRIS buffer (50 mM, pH 7.4) at 37 °C. The non-specific binding was determined with 10 µM unlabeled (+)-Pentazocine. The K_d-value of (+)-pentazocine is 2.9 nM.⁵⁴

Protocol of the σ_2 receptor binding assay

The assays were performed with the radioligand [3 H]DTG (specific activity 50 Ci/mmol; ARC, St. Louis, MO, USA). The thawed membrane preparation of rat liver (about 100 µg of protein) was incubated with various concentrations of the test compound, 3 nM [3 H]DTG and buffer containing (+)-pentazocine (500 nM (+)-pentazocine in 50 mM TRIS, pH 8.0) at room temperature. The non-specific binding was determined with 10 µM non-labeled DTG. The K_d value of [3 H]DTG is 17.9 nM.⁵⁵

Protocol of the assay recording interactions with the PCP binding site of the NMDA receptor

The assay was performed with the radioligand $[^{3}H]$ -(+)-MK 801 (22.0 Ci/mmol; Perkin Elmer). The thawed membrane preparation of pig brain cortex (about 100 µg of the protein) was incubated with various concentrations of test compounds, 2 nM $[^{3}H]$ -(+)-MK 801, and TRIS/EDTA buffer (5 mM/1 mM, pH 7.5) at room temperature. The non-specific binding was determined with 10 µM unlabeled (+) MK 801. The K_d-value of $[^{3}H]$ -(+)-MK 801 is 2.26 nM.^{44,46}

Acknowledgement

This work was supported by the *Deutsche Forschungsgemeinschaft (DFG), Cells-in-motion Cluster of Excellence* (EXC, 1003-CiM), University of Münster, Germany. We are very grateful to Schwarz Pharma AG, Monheim for supporting this project by conducting the NMDA receptor assays of selected compounds.

References

- W. R. Martin, C. G. Eades, J. A. Thompson, R. E. Huppler, P. E. Gilbert, *J. Pharmacol. Exp. Ther.* 1976, **197**, 517–532.
- R. Quirion, R. Chicheportiche, P. C. Contreras, K. M. Johnson, D. Lodge, S. W. Tam, J. H. Woods, S. R. Zukin, *Trends Neurosci.* 1987, 10, 444–446.
- R. Quirion, W. D. Bowen, Y. Itzhak, J. L. Junien, J. M. Musachio, R. B. Rothman, T. P. Su, S. W. Tam, D. P. Taylor, *Trends Pharmacol. Sci.* 1992, 13, 85–86.
- 4. T. Hayashi, T.-P. Su, *Cell* 2007, **131**, 596–610.
- P. J. Lupardus, R. A. Wilke, E. Aydar, C. P. Palmer, Y. Chen, A. E. Ruoho, M. B. Jackson, J. Physiol. (Lond) 2000, 526, 527–539.
- 6. E. Aydar, C. P. Palmer, V. A. Klyachko, M. B. Jackson, *Neuron*. 2002, 34, 399–410.
- C. Ela, J. Barg, Z. Vogel, Y. Hasin, Y. Eilam, J. Pharmacol. Exp. Ther. 1994, 269, 1300–1309.
- M. Johannessen, S. Ramachandran, L. Riemer, A. Ramos-Serrano, A. E. Ruoho, M. B. Jackson, *Am. J. Physiol. Cell Physiol.* 2009, 296, C1049–C1057.
- D. A. Meyer, M. Carta, L. D. Partridge, D. F. Covey, C. F. Valenzuela, J. Biol. Chem. 2002, 277, 28725–28732.
- 10. Z. Wu, W. D. Bowen, J. Biol. Chem. 2008, 283, 28198-28215.
- 11. T. Hayashi, T.-P. Su, Proc. Natl. Acad. Sci. USA 2001, 98, 491-496.
- 12. T. Hayashi, T. P. Su, CNS Drugs 2004, 18, 269–284.
- E. J. Cobos, J. M. Entrena, F. R. Nieto, C. M. Cendan, E. DelPezo, *Curr. Pharmacol.* 2008, 6, 344–366.
- 14. T. Maurice, T. P. Su, *Pharmacol. Ther.* 2009, **124**, 195–206.
- 15. M. Ishikawa, K. Hashimoto, J. Receptor Ligand Channel Res. 2010, 3, 25-36.
- 16. J. A. Butera, J. Med. Chem. 2007, 50, 2543–2546.
- 17. J. D. Kennedy, J. Med. Chem. 2007, 50, 2547–2556.

- J. M. Entrena, E. J. Cobos, F. R. Nieto, C. M. Cendan, G. Gris, E. Del Pozo, D. Zampanillo, J. M. Baeyens, *Pain* 2009, 143, 252–261.
- Diaz, J. L. Zamanillo, D. Corbera, J. Baeyens, J. M. Maldonado, R. Pericas, M. A. Vela,
 J. M. Torrens, A. Cent. Nerv. Syst. Agents Med. Chem. 2009, 9, 172–183.
- Corbera, A. J. Vaño, D. Martínez, D. Vela, J. M. Zamanillo, D. Dordal, A. Andreu, F.: Hernandez, E. Perez, R. Escriche, M. Salgado, L. Yeste, S. Serafini, M. T. Pascual, R. Alegre, J. Calvet, M. C. Cano, N.: Carro, M. Buschmann, H. Holenz, J. *Chem. Med. Chem.* 2006, 1, 140–54.
- Diaz, J. L. Cuberes, R. Berrocal, J. Contijoch, M. Christmann, U. Fernández, A. Port, A. Holenz, J. Buschmann, H. Laggner, C. Serafini, M. T. Burgeno, J. Zamanillo, D. Merlos, M. Vela, J. M. Almansa, C. J. Med. Chem. 2012, 55, 8211–8224.
- 22. Wünsch, B. J. Med. Chem. 2012, 55, 8209-8210.
- E. Laurini, V. Dal Col, S. Pricl, B. Wünsch, *Bioorg. Med. Chem. Lett.* 2013, 23, 2868– 2871.
- E. Laurini, V. Dal Col, M. G. Mamolo, D. Zampieri, P. Posocco, M. Fermeglia, V. Vio,
 S. Pricl, ACS Med. Chem. Lett. 2011, 2, 834-839.
- S. Brune, D. Schepmann, K.-H. Klempnauer, D. Marson, V. Dal Col, E. Laurini, M. Fermeglia, B. Wünsch, S. Pricl, *Biochem.* 2014, submitted.
- P. Hasebein, K. Aulinger, D. Schepmann, B. Wünsch, *Tetrahedron* 2013, 69, 4552–4562.
- R. A. Glennon, S. Y. Ablordeppey, A. M. Ismaiel, M. B. El-Ashmawy, J. B. Fischer, K.
 B. Howie, *J. Med. Chem.* 1994, 37, 1214–19.
- 28. R. A. Glennon, Mini Rev. Med. Chem. 2005, 5, 927-40.
- C. Laggner, C. Schieferer, B. Fiechtner, G. Poles, R. D. Hoffmann, H. Glossmann, T. Langer, F. F. Moebius, *J. Med. Chem.* 2005, 48, 4754.

- P. Hasebein, B. Frehland, D. Schepmann, B. Wünsch, *Chem. Med. Chem.* 2014, DOI: 10.1002/cmdc.201402110.
- 31. A. Tarcsay, K, Nyiri, G. M. Keseerü, J. Med. Chem. 2012, 55, 1252-1260.
- 32. H. Stetter, M. Schrekenberg, Chem. Ber. 1974, 107, 210-214.
- 33. H. Stetter, M. Schrekenberg, Angew. Chem. 1973, 85, 89.
- 34. J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369–375.
- C. Meyer, B. Neue, D. Schepmann, S. Yanagisawa, J. Yamaguchi, E.-U. Würthwein, K. Itami, B. Wünsch, *Org. Biomol. Chem.* 2011, 9, 8016–8029.
- 36. B. Classon, J. Garregg, B. Samuelsson, Acta Chem. Scand. 1984, 419-422.
- 37. R. Jonhansson, B. Samuelsson, J. Soc. Perkin Trans. I 1984, 2371-2374.
- K. C. Kumara Swamy, N. N. Bhuvan Kumar, E. Balaraman, K. V. P. Pavan Kumar, *Chem. Rev.* 2009, **109**, 2551-2651.
- 39. C. A. Maier, B. Wünsch, J. Med. Chem. 2002, 45, 4923–4930.
- C. Meyer, B. Neue, D. Schepmann, S. Yanagisawa, J. Yamaguchi, E.-U. Würthwein, K. Itami, B. Wünsch, *Bioorg. Med. Chem.* 2013, 21, 1844–1856.
- F. I. Caroll, P. Abraham, K. Parham, X. Bai, X. Zhang, G. A. Brine, S. W. Mascarella,
 B. R. Martin, F. L. May, C. Sauss, L. Di Paolo, P. Wallace, J. M. Walker, W. D.
 Bowen, J. Med. Chem. 1992, 35, 2812–2818.
- 42. E. L. May, M. D. Aceto, E. R. Bowman, C. Bentley, B. R. Martin, C. S. Harris, F. Medzihradsky, M. V. Mattson, A. E. Jacobson, *J. Med. Chem.* 1994, **37**, 3408–3418.
- 43. T. Utech, J. Köhler, B. Wünsch, Eur. J. Med. Chem. 2011, 46, 2257–2169.
- J. Köhler, K. Bergander, J. Fabian, D. Schepmann, B. Wünsch, *J. Med. Chem.* 2012, 55, 8953–8957.
- 45. O. Krull, B. Wünsch, Bioorg. Med. Chem. 2004, 12, 1439–1451.
- A. Banerjee, D. Schepmann, J. Köhler, E.-U. Würthwein, B. Wünsch, *Bioorg. Med. Chem.* 2010, 18, 7855–7867.

- 47. Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326.
- Z. Otwinowski, D. Borek, W. Majewski, W. Minor, *Acta Crystallogr. Sect. A* 2003, 59, 228–234.
- 49. G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467-473.
- 50. G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- 51. M. M. A. Bradford, Anal. Biochem. 1976, 72, 248-254.
- 52. C. Stoscheck, Methods in Enzymology 1990, 182, 50-68.
- 53. Y. C. Cheng, W. H. Prusoff, *Biochem. Pharmacol*, 1973, 22, 3099–3108.
- 54. D. L. DeHaven-Hudkins, L. C. Fleissner, F. Y. Ford-Rice, *Eur. J. Pharmacol. Mol. Pharmacol. Sect.*, 1992, **22**7, 371–378.
- 55. H. Mach, C. R. Smith, S. R. Childers, Life Sci. 1995, 57, PL-57-62.

Table of contents entry

5-Substituted tetrahydro-2-benzazepines were prepared and relationships between the structure, in particular the stereochemistry, and the σ_1 affinity were analyzed.

10a-c

14-17a-c

 \mathbb{R}^2

14d-17d (like)

 \mathbb{R}^2

'Η

Ph

	R ¹	R ²	
10a-13a	CH ₃	-	
10b-13b	CH_2Ph	-	
10c-13c	PMB	-	
14a	CH ₃	CH ₃	
14b	CH_2Ph	CH_3	
14c	PMB	CH_3	
14d	Н	CH_3	
15a	CH ₃	<i>n</i> -Bu	
15b	CH_2Ph	<i>n</i> -Bu	
15c	PMB	<i>n</i> -Bu	
15d	Н	<i>n</i> -Bu	
16a	CH ₃	CH ₂ Ph	
16b	CH_2Ph	CH_2Ph	
16c	PMB	CH_2Ph	
16d	Н	CH_2Ph	
17a	CH ₃	(CH ₂) ₄ Ph	
17b	CH_2Ph	$(CH_2)_4Ph$	
17c	PMB	(CH ₂) ₄ Ph	
17d	Н	(CH ₂) ₄ Ph	

Scheme 4

20a,c

22a,c

23a,c

24-27a,c

24d-27d (*unlike*)

R^1	R ²
CH_3	-
PMB	-
PMB	CH ₃
Н	CH_3
PMB	<i>n</i> -Bu
Н	<i>n</i> -Bu
PMB	CH₂Ph
Н	CH₂Ph)
PMB	(CH ₂) ₄ Ph
Н	$(CH_2)_4Ph$
	R ¹ CH ₃ PMB H PMB H PMB H PMB H