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An acetal initiated Prins bicyclization approach has been 

developed for the stereoselective synthesis of 

hexahydrofuro[3,4-c]furan lignans. It also provides a direct 

access to generate a new series of octahydropyrano[3,4-

c]pyran derivatives in a single-step process. 10 

 

    Tetrahydrofuran core is frequently found in various 

biologically active natural products.1,2 In particular, furofuran 

lignans have attracted considerable interest over the years due to 

their promising biological activity.3 The sesamin, a furofuran 15 

lignan was isolated from Fagara plants and from sesame oil 

(Figure 1).4  
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Figure 1. Biologically active furo[3,4-c]furan lignans 

____________________________________________________ 

 35 

It is used as a dietary supplement for fat-reduction and is also 

known to induce apoptosis in human lymphoid leukemia Molt 4B 

cells.5 It contains a substituted 3,7-dioxabicyclooctane core, the 

synthesis of which poses a challenging task.6 Of various 

approaches, Prins cyclization is a powerful method for the 40 

stereoselective construction of oxygen-containing heterocycles7 

and has been employed successfully for the synthesis of several 

natural products.8 In particular, the intramolecular Prins 

cyclization is an attractive strategy for the stereoselective 

construction of fused heterobicycles and tricycles.9 However, a 45 

few methods are reported to the synthesis of tetrahydrofuran 

derivatives through a Prins cyclization10 wherein a five-

membered oxocarbenium ion is trapped with an external 

nucleophile.11 Furthermore, Prins cascade cyclization has not yet 

been explored to the stereoselective synthesis of furo[3,4-c]furan 50 

scaffolds. 

     In continuation of our interest on Prins cyclization and its 

application in total synthesis of natural products,12 we herein 

report a versatile method for the synthesis of 1,6-

diarylhexahydrofuro[3,4-c]furan and 1,8-diaryloctahydropyrano-55 

[3,4-c]pyran derivatives through a Prins bicyclization strategy. 

Initially, we performed the reaction of (E)-2-styrylpropane-1,3-

diol (1) with 2-bromobenzaldehyde in the presence of 10 mol% 

p-TSA. To our surprise, no cyclization was observed under the 

above conditions (Table 1, entry a). 60 

 

Table 1. Screening of acid catalysts in the formation of 2a/3aa 
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Therefore, the next reaction was performed using 10 mol% 

Sc(OTf)3. Though the reaction proceeds under the above 

conditions, the desired product was obtained only in 40% yield 

after a long reaction time (Table 1, entry b). Similarly, 10 

mol% In(OTf)3 also gave the product in poor yield (Table 1, 85 

entry c). In fact, no significant improvement either in yield or 

in reaction time was observed even by increasing the amount 

of Sc(OTf)3 from 10 mol% to 30 mol% (Table 1, entry d). 

Remarkably, the combination of Sc(OTf)3 and p-TSA gave the 

product in high yield in short reaction time (Table 1, entry e). 90 

From the above results, it was obvious that binary acid 
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(Sc(OTf)3/p-TSA) is essential to perform the reaction 

successfully. These results are consistent with our earlier 

observation in which a binary acid exhibits remarkable 

synergistic effects.13 Therefore, the cooperative effect between 

Sc(OTf)3 and p-TSA provides high conversions and enhanced 5 

rates in a tandem process. Under optimized conditions, the 

expected product 2a/3a was obtained in 86% yield with 6:4 

diastereoselectivity (Table 1, entry e). The ratio of the products 

(2:3) was confirmed by 1H NMR spectrum of crude mixture. 

The diastereomers were easily separated by flash 10 

chromatography. The structure and stereochemistry of 1-(2-

bromophenyl)-6-phenylhexahydrofuro[3,4-c]furan (2a) were 

established by detailed 1D and 2D NMR experiments (see 

supporting information). Furthermore, the stereochemistry of 

2a and 3a was confirmed by X-ray crystallography (Figure 2).  15 
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Figure 2. ORTEP diagram of 2a 

   The scope of this process is further illustrated with respect to 

various aldehydes (Table 2). Both electron-rich and electron-30 

deficient aromatic aldehydes such as 4-methoxy-, 3,4-

methylenedioxy-, 4-chloro-, 4-bromo-, 4-cyano-, and 4-nitro-

benzaldehydes reacted well with (E)-homoallylic diol (1) to 

furnish the corresponding cis-fused 1,6-diarylhexahydrofuro[3,4-

c]furan derivatives in good yields (Table 2, entries b-g). The 35 

reaction works not only with aromatic aldehyde but also with 

aliphatic aldehyde. In case of n-propionaldehyde, the respective 

ethyl substituted cis-fused hexahydrofuro[3,4-c]furan was 

obtained slightly in low yield than aromatic counterpart (Table 2, 

entry h). On the other hand, α,β-unsaturated aldehyde afforded 40 

the styryl substituted furo[3,2-c]furan in excellent yield (Table 2, 

entry i). In addition, the reaction was also successful with 

heterocyclic aldehyde. For example, furfural gave the 

corresponding bicyclic ethers 2 and 3 in 76% yield with 7:3 

selectivity (Table 2, entry j). It is entirely a new process for the 45 

direct conversion of homoallylic diol (1) into cis-fused furo[3,2-

c]furan derivatives. 
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    The reaction proceeds via the formation of an oxocarbenium 

ion generated from the acetal which is formed in situ from 

aldehyde and homoallylic diol likely after activation with p-TSA. 

The oxocarbenium ion is then attacked by an internal olefin 65 

resulting in the formation of a more stable benzylic carbocation 

which is simultaneously trapped by a tethered hydroxyl group 

leading to the formation of 2 and 3. The intermediate has a 

flexibility in terms of C-C bond rotation therefore which can 

result in the formation of 2 and 3. In contrast, a 70 

thermodynamically more stable diastereomer 2 forms 

predominantly. However, the formation of 4 was not observed 

due to elimination of the proton (Scheme 1).14  
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 Scheme 1. A plausible reaction pathway 

 
   To support the reaction mechanism, we carried out the 5 

cyclization of (E)-2-(4-methoxyphenyl)-5-styryl-1,3-dioxane (1a) 

in the presence of 10 mol% Sc(OTf)3 in DCE at 70 °C. Under the 

above conditions, the corresponding 1-(4-methoxyphenyl)-6-

phenylhexahydrofuro[3,4-c]furan was obtained in 95% yield with 

6:4 diastereoselectivity. It indicates that acetal formation is a 10 

highly likely mechanism for this reaction (Scheme 2). 

 

 

 

 15 

 

 

Scheme 2. Acetal initiated cyclization of 1a 

 

 Inspired by the results obtained with homoallylic diol (1), we 20 

extended this process to γ,δ-unsaturated alcohols. Accordingly, 

treatment of (E)-3-styrylpentane-1,5-diol (5) with 2-

bromobenzaldehyde in the presence of 10 mol% Sc(OTf)3 in 

dichloroethane at room temperature afforded the respective trans-

fused octahydropyrano[3,4-c]pyran 7a as a sole product in 90% 25 

yield (Table 3). The structure and stereochemistry of 1-(2-

bromophenyl)-8-phenyloctahydropyrano[3,4-c]pyran (7a) were 

assigned based on single crystal X-ray analysis (Figure 3). 
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Figure 3. ORTEP diagram of 7a 
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Table 3. Synthesis of octahydropyrano[3,4-c]pyrans derivativesa 
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 The above results provided a gateway to extend this process to 

other substrate such as (E)-3(2-bromostyryl)pentane-1,5-diol (6). 75 

The scope of the reaction is investigated with various aldehydes 

and the results are presented in Table 3. A variety of aromatic, 

heteroaromatic and aliphatic aldehydes were treated with (E)-3-

styrylpentane-1,5-diol to give the octahydropyrano[3,4-c]pyran in 

good to high yields (80–92%). Similarly, α,β-unsaturated 80 

aldehyde also worked well in this reaction to produce the styryl 

substituted pyrano[3,4-c]pyran (8f) in excellent yield. The 

structure and stereochemistry of 8d were established by detailed 

1D and 2D NMR experiments (see supporting information). In all 

cases, the corresponding trans-fused octahydropyrano[3,4-85 

c]pyrans were obtained in good yields with high selectivity 

(Table 3). Thus this method provides a direct approach for the 

conversion of γ,δ-unsaturated diols into trans-fused 

pyranopyrans. 

  
90 
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Scheme 3. Heck reaction of 7a for the construction of biaryl 

derivative 9a 

 105 
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To demonstrate the synthetic utility of this method, we applied 

this protocol to generate allocolchicine analogues. Accordingly, 

the compound 7a was transformed into polycyclic compound 9a 

in 76% yield via aryl-aryl bond formation15 using Pd(OAc)2 (10 

mol%), triphenylphosphine (10 mol %), and K2CO3 (2 equiv) in 5 

DMA at 130 °C (Scheme 3). The  6-7-6-carbocyclic framework is 

a common structural core in allocolchicine (A) and N-acetyl 

colchinol-O-methyl ether (NCME) (B). The allocolchicines are 

seven-membered biaryl derivatives of naturally occurring 

colchicines, which are potent tubulin inhibitors.16 
10 

Conclusions 

In summary, we have developed an acetal initiated Prins cascade 

reaction for the synthesis of cis-fused hexahydrofuro[3,4-c]furan 

derivatives. This reaction provides a direct access to furofuran 

lignan analogues which are reported as potent antitumor, 15 

antimitotic, and antiviral agents. This method generates two 

heterocyclic rings with four new stereogenic centers in a one-pot 

operation. 

Experimental 

General Remarks  20 

IR spectra were recorded on FT-IR spectrometer (KBr) and 

reported in reciprocal centimeters (cm-1). 1HNMR spectra were 

recorded at 500 MHz, 300 MHz and 13C NMR at 125MHz, 75 

MHz. For 1H NMR, tetramethylsilane (TMS) was used as internal 

standard (δ = 0) and the values are reported as follows: chemical 25 

shift, integration, multiplicity (s = singlet, d = doublet, t= triplet, 

q =quartet, m = multiplet, br = broad), and the coupling constants 

in Hz. For 13C NMR, CDCl3 (δ = 77.27) was used as internal 

standard and spectra were obtained with complete proton 

decoupling. Low-resolution MS and HRMS data were obtained 30 

using ESI and EI ionization. Melting points were measured on 

micro melting point apparatus. Commercially available 

salisaldehyde, acetophenone, and TMSOTf were used without 

further purification. DCE were distilled from CaH under N2 

atmosphere. 35 

Typical procedure for Prins cascade cyclization:  

To a stirred solution of alcohol (1 or 5 or 6) (0.5 mmol) and 

aldehyde (0.6 mmol) in dry dichloromethane (5 mL) at 0 oC was 

added the catalyst as specified in Table 2 and 3. The resulting 

mixture was stirred at the temperature specified in Table 2 and 3 40 

under nitrogen atmosphere. After completion, as indicated by 

TLC, the reaction mixture was quenched with saturated NaHCO3 

solution (1.0 mL) and extracted with dichloromethane (2x5 mL). 

The combined organic layers were washed with brine (5 mL), 

dried over anhydrous Na2SO4, and concentrated in vacuo. The 45 

resulting crude product was purified by silica gel column 

chromatography using ethyl acetate/hexane as eluent to afford the 

pure product. 

 (3aS,3a1S,11bR,14aS)-1,2,3a,3a1,11b,13,14,14a-octahydro-

3,12-dioxadibenzo[4,5:6,7]cyclohepta[1,2,3-de]naphthalene 50 

(9a):  

To a stirred solution of compound (7a) (372 mg, 1 mmol) in 

DMA (3 mL) were added triphenylphosphine (26 mg, 10 mmol), 

Pd(OAc)2 (22 mg, 10 mmol) and K2CO3 (276 mg, 2 equiv) at 

room temperature under nitrogen atmosphere. The resulting 55 

mixture was heated at 140 oC under vigorous stirring for 48 h. 

After completion, the reaction was diluted with water and 

extracted with EtOAc. The combined organic layers were dried 

over MgSO4. The solvent was removed under vacuum and the 

residue was purified by silica gel chromatography to give the 60 

compound 9a in 75% yield as a solid. 

(1R,4aS,8S,8aS)-1-(2-Bromophenyl)-8-phenyloctahydro 

pyrano[3,4-c]pyran (7a): 

White solid, m.p.110-112 °C; 1H NMR (300 MHz, CDCl3): δ 

7.06-6.96 (m, 4H), 6.90-6.80 (m, 4H), 6,71-6.63 (m, 1H), 4.71 (d, 65 

J = 9.6 Hz, 1H), 4.19-4.05 (m, 3H), 3.81-3.67 (m, 2H), 2.18 (q, J 

= 9.8 Hz, 1H), 2.05-1.89 (m, 1H), 1.82-1.63 (m, 4H) ppm; 13C 

NMR (125 MHz, CDCl3): δ 139.1, 138.8, 131.3, 129.1, 128.1, 

127.1, 127.0, 126.9, 126.6, 123.6, 81.7, 80.2, 68.8, 68.4, 50.8, 

40.4, 33.5, 33.3 ppm; IR (KBr): υ 3034, 2835, 2717, 1731, 1455, 70 

1149, 1081, 818, 766 cm-1; MS (EI): m/z ([M]+): 372; HRMS 

(EI): m/z calcd for C20H21BrO2: 372.0725; found: 372.0732. 

4-((1R,4aS,8S,8aS)-8-Phenyloctahydropyrano[3,4-c]pyran-1-

yl)benzonitrile (7b): 

White solid, m.p.186-188 °C; 1H NMR (300 MHz, CDCl3): δ 75 

7.12 (d, J = 8.3 Hz, 2H), 6.98-6.77 (m, 7H), 4.15-4.03 (m, 4H), 

3.77-3.65 (m, 2H), 2.13 (q, J = 9.8 Hz, 1H), 1.97-1.66 (m, 5H) 

ppm; 13C NMR (75 MHz, CDCl3): δ 144.6, 138.8, 130.6, 128.0, 

127.4, 127.2, 127.0, 118.3, 110.1, 82.5, 81.7, 68.6, 68.5, 50.9, 

40.6, 33.5, 33.4 ppm; IR (KBr): υ 2925, 2890, 2851, 2221, 1453, 80 

1092, 983, 833, 764 cm-1; MS (EI): m/z ([M]+): 319; HRMS (EI): 

m/z calcd for C21H21NO2: 319.1572; found: 319.1577. 

(1R,4aS,8S,8aS)-1-(Furan-2-yl)-8-phenyloctahydro 

pyrano[3,4-c]pyran (7c): 

White solid, m.p.85-87 °C; 1H NMR (300 MHz, CDCl3): δ 7.10-85 

6.95 (m, 5H), 6.86 (brs, 1H), 5.74-5.69 (m, 1H), 5.61 (d, J = 3.7 

Hz, 1H), 4.20-3.99 (m, 4H), 3.76-3.62 (m, 2H), 2.29 (q, J = 9.8 

Hz, 1H), 1.89-1.53 (m, 5H) ppm; 13C NMR (75 MHz, CDCl3): δ 

150.5, 140.6, 139.1, 127.1, 126.8, 126.4, 109.4, 108.3, 82.9, 74.2, 

68.6, 68.4, 48.6, 40.6, 33.4, 31.2 ppm; IR (KBr): υ 3034, 2835, 90 

2717, 1731, 1455, 1149, 1081, 818, 766 cm-1; MS (EI): m/z 

([M]+): 284; HRMS (EI): m/z calcd for C18H20O3: 284.1412; 

found: 284.1425. 

 (1R,4aS,8S,8aS)-1,8-Diphenyloctahydropyrano[3,4-c]pyran 

(7d): 95 

White solid, m.p.104-106 °C; 1H NMR (300 MHz, CDCl3): δ 

6.86-6.79 (m, 10H), 4.15-4.04 (m, 4H), 3.77-3.66 (m, 2H), 2.21 

(q, J = 9.8 Hz, 1H), 1.97-1.64 (m, 5H) ppm; 13C NMR (75 MHz, 

CDCl3): δ 139.3, 127.3, 126.9, 126.4, 82.9, 68.5, 50.6, 40.9, 33.6 

ppm; IR (KBr): υ 3033, 2924, 2852, 1729, 1454, 1147, 1088, 100 

979, 754 cm-1; MS (EI): m/z ([M]+): 294; HRMS (EI): m/z calcd 

for C20H22O2: 294.1619; found: 294.1623. 

(1R,4aS,8S,8aS)-1-(4-Chlorophenyl)-8-phenyloctahydro 

pyrano[3,4-c]pyran (7e): 

White solid, m.p.124-126 °C; 1H NMR (300 MHz, CDCl3): δ 105 

7.01-6.70 (m, 9H), 4.16-4.01 (m, 4H), 3.77-3.65 (m, 2H), 2.12 (q, 

J = 9.8 Hz, 1H), 1.94-1.64 (m, 5H) ppm; 13C NMR (75 MHz, 

CDCl3): δ 139.2, 137.9, 131.9, 128.5, 127.3, 127.1, 126.9, 126.4, 

82.7, 81.9, 68.5, 51.1, 40.8, 33.6 ppm; IR (KBr): υ 3064, 2924, 

2837, 1731, 1492, 1149, 1091, 980, 756 cm-1; MS (EI): m/z 110 
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([M]+): 328; HRMS (EI): m/z calcd for C20H21ClO2: 328.1230; 

found: 328.1234. 

(1R,4aS,8S,8aS)-1-(4-Nitrophenyl)-8-phenyloctahydro 

pyrano[3,4-c]pyran (7f): 

White solid, m.p.218-220 °C; 1H NMR (300 MHz, CDCl3): δ 5 

7.70-7.61 (d, J = 9.0 Hz, 2H), 7.01 (d, J = 8.3 Hz, 2H), 6.90-6.77 

(m, 6H), 4.21-4.04 (m, 4H), 3.77-3.67 (m, 2H), 2.17 (q, J = 9.0 

Hz, 1H), 2.01-1.86 (m, 1H), 1.84-1.67 (m, 4H) ppm; 13C NMR 

(75 MHz, CDCl3): δ 146.7, 145.6, 138.9, 128.1, 127.4, 127.1, 

126.8, 121.9, 82.4, 81.3, 68.5, 68.5, 51.2, 40.5, 32.5, 32.5 ppm; 10 

IR (KBr): υ 3078, 2925, 2846, 1517, 1346, 1084, 982, 755 cm-1; 

MS (EI): m/z ([M]+): 339; HRMS (EI): m/z calcd for C20H21NO4: 

339.1470; found: 339.1472. 

(1S,4aR,8S,8aR)-1-Pentyl-8-phenyloctahydropyrano[3,4-

c]pyran (7g): 15 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.32-7.26 (m, 5H), 

4.11-4.07 (m, 1H), 4.02-3.96 (m, 2H), 3.70-3.64 (m, 1H), 3.54-

3.48 (m, 1H), 3.09 (dt, J = 3.6, 8.5 Hz, 1H), 1.74-1.55 (m, 5H), 

1.16-1.08 (m, 1H), 1.08-0.93 (m, 1H), 0.73 (t, J = 7.3 Hz, 1H), 

0.60-0.55 (m, 1H) ppm; 13C NMR (125 MHz, CDCl3): δ 141.7, 20 

128.0, 127.7, 127.3, 83.0, 78.9, 68.5, 67.8, 50.1, 40.4, 34.4, 33.6, 

33.5, 31.8, 25.0, 22.7, 14.4 ppm; IR (KBr): υ 3365, 2993, 2795, 

1697, 1654, 1056, 872, 755, 732 cm-1; MS (EI): m/z ([M]+): 288; 

HRMS (EI): m/z calcd for C19H28O2: 288.2089; found: 288.2093. 

(1S,4aR,8S,8aR)-1-Ethyl-8-phenyloctahydropyrano[3,4-25 

c]pyran (7h): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.32-7.25 (m, 5H), 

4.10-4.06 (m, 1H), 4.03-3.98 (m, 2H), 3.69-3.64 (m, 1H), 3.55-

3.49 (m, 1H), 3.05-3.00 (m, 1H), 1.75-1.55 (m, 5H), 0.70-0.64 

(m, 1H), 0.56 (t, J = 3.3 Hz, 1H) ppm; 13C NMR (125 MHz, 30 

CDCl3): δ 141.7, 128.0, 127.7, 127.3, 82.8, 80.1, 68.5, 67.8, 49.8, 

40.3, 33.6, 33.4, 27.4, 10.2 ppm; IR (KBr): υ 3088, 2920, 2843, 

1717, 1646, 1184, 791, 768 cm-1; MS (EI): m/z ([M]+): 246; 

HRMS (EI): m/z calcd for C16H22O2: 246.1620; found: 246.1626. 

(1S,4aS,8R,8aS)-1-(2-Bromophenyl)-8-(thiophen-2-35 

yl)octahydropyrano[3,4-c]pyran (8a): 

White solid, m.p.78-80 °C; 1H NMR (300 MHz, CDCl3): δ 6.96-

6.93 (m, 5H), 6.84 (d, J = 5.2 Hz, 1H), 6.35-6.26 (m, 2H), 4.42 

(d, J = 9.8 Hz, 1H), 4.16-4.06 (m, 3H), 3.76-3.66 (m, 2H), 2.14 

(q, J = 9.8 Hz, 1H), 1.93-1.57 (m, 6H) ppm; 13C NMR (125 MHz, 40 

CDCl3): δ 143.0, 139.6, 127.3 127.1, 126.6, 125.8, 125.4, 124.2, 

83.1, 77.1, 68.5, 68.4, 52.0, 40.7, 33.3, 33.1 ppm; IR (KBr): υ 

3035, 2838, 2707, 1701, 1475, 1159, 1081, 811, 700 cm-1; MS 

(EI): m/z ([M]+): 378; HRMS (EI): m/z calcd for C18H19BrO2S: 

378.0289; found: 378.0297. 45 

(1S,4aS,8R,8aS)-1-(2-Bromophenyl)-8-(furan-2-yl)octa 

hydropyrano[3,4-c]pyran (8b): 

White solid, m.p.85-87 °C; 1H NMR (300 MHz, CDCl3): δ 7.07-

6.94 (m, 5H), 6.84 (brs, 1H), 5.72-5.69 (m, 1H), 5.61 (d, J = 3.0 

Hz, 1H), 4.18-4.00 (m, 5H), 3.75-3.64 (m, 2H), 2.35 (q, J = 9.8 50 

Hz, 1H), 1.89-1.55 (m, 7H) ppm; 13C NMR (75 MHz, CDCl3): δ 

150.5, 140.6, 139.1, 127.1, 126.8, 126.4, 109.5, 108.3, 83.0, 74.2, 

68.7, 68.4, 48.7, 40.7, 33.5, 33.1 ppm; IR (KBr): υ 3028, 2924, 

2844, 1739, 1436, 1370, 1248, 1147, 1083, 756 cm-1; MS (EI): 

m/z ([M]+): 362; HRMS (EI): m/z calcd for  C18H19BrO3: 55 

362.0518; found: 362.0513. 

(1S,4aR,8R,8aR)-1-(2-Bromophenyl)-8-(3,4,5-trimethoxy 

phenyl)octahydropyrano[3,4-c]pyran (8c): 

White solid, m.p.102-104 °C; 1H NMR (300 MHz, CDCl3): δ 

6.97-6.84 (m, 4H), 6.08 (s, 1H), 4.15-3.97 (m, 3H), 3.72 (s, 6H), 60 

3.66 (s, 3H), 2.14 (q, J = 9.8 Hz, 1H), 1.92-1.53 (m, 4H) ppm; 
13C NMR (75 MHz, CDCl3): δ 151.4, 139.6, 135.9, 134.9, 127.2, 

126.6, 126.5, 105.3, 83.2, 82.5, 68.6, 68.4, 60.3, 55.9, 50.9, 40.8, 

33.6, 33.5 ppm; IR (KBr): υ 2924, 2717, 1436, 1370, 1248, 1083, 

756, 697 cm-1; MS (EI): m/z ([M]+): 462; HRMS (EI): m/z calcd 65 

for C23H27BrO5: 462.1042; found: 462.1051. 

(1R,4aR,8S,8aR)-1-(3-Bromo-4-fluorophenyl)-8-(2-

bromophenyl)octahydropyrano[3,4-c]pyran (8d): 

White solid, m.p.128-130 °C; 1H NMR (500 MHz, CDCl3): δ 

6.97-6.90 (m, 4H), 6.85-6.77 (m, 3H), 6.57 (t, J = 8.3 Hz, 1H), 70 

4.12-3.98 (m, 4H), 3.72-3.65 (m, 2H), 2.07 (q, J = 9.9 Hz, 1H), 

1.90-1.81 (m, 1H), 1.78-1.64 (m, 4H) ppm; 13C NMR (75 MHz, 

CDCl3): δ 158.2, 155.0, 139.0, 136.9, 132.5, 127.7, 127.6, 127.1, 

126.9, 126.8, 114.9, 114.6, 82.4, 81.2, 68.5, 68.5, 51.1, 40.5, 

33.5, 33.4 ppm; IR (KBr): υ 2967, 2717, 1739, 1436, 1370, 1147, 75 

1083, 756, 690 cm-1; MS (EI): m/z ([M]+): 467; HRMS (EI): m/z 

calcd for C20H19Br2FO2: 467.9738; found: 467.9726. 

(1S,4aR,8R,8aR)-1-(2-Bromophenyl)-8-(3,5-difluorophenyl) 

octahydropyrano[3,4-c]pyran (8e): 

White solid, m.p.104-106 °C; 1H NMR (300 MHz, CDCl3): δ 80 

6.99-6.87 (m, 5H), 6.38-6.23 (m, 3H), 4.14-3.98 (m, 4H), 3.75-

3.64 (m, 2H), 2.08 (q, J = 9.6 Hz, 1H), 1.90-1.64 (m, 5H) ppm; 
13C NMR (125 MHz, CDCl3): δ 162.3, 160.3, 143.5, 139.2, 

127.5, 127.3, 127.2, 110.7, 110.5, 102.4, 102.2, 102.0, 82.6, 81.5, 

68.5, 68.5, 50.7, 40.4, 33.3, 33.2 ppm; IR (KBr): υ 3028, 2967, 85 

1739, 1436, 1370, 1147, 1083, 1020, 983, 756, 697 cm-1; MS 

(EI): m/z ([M]+): 408; HRMS (EI): m/z calcd for C20H19BrF2O2: 

408.0532; found: 408.0529. 

(1S,4aR,8S,8aR)-1-(2-Bromophenyl)-8-styryloctahydro 

pyrano[3,4-c]pyran (8f): 90 

White solid, m.p.94-96 °C; 1H NMR (300 MHz, CDCl3): δ 7.30-

7.06 (m, 7H), 7.05-6.98 (m, 1H), 6.80-6.69 (m, 2H), 6.15 (d, J 

=15.8 Hz, 1H), 5.25 (dd, J = 7.5, 15.8 Hz, 1H), 4.16-4.04 (m, 

3H), 3.77-3.60 (m, 4H), 1.91 (q, J = 9.8 Hz, 1H), 1.73-1.54 (m, 

6H) ppm; 13C NMR (125 MHz, CDCl3): δ 140.7, 136.1, 131.1, 95 

129.2, 128.1, 127.8, 127.5, 127.3, 126.7, 126.0, 82.5, 80.2, 68.5, 

68.1, 51.2, 40.1, 33.3, 33.2 ppm; IR (KBr): υ 3062, 3028, 2924, 

1739, 1370, 1147, 1083, 1020, 983, 756 cm-1; MS (EI): m/z 

([M]+): 398; HRMS (EI): m/z calcd for C22H23BrO2: 398.0880; 

found: 398.0883. 100 

(3aS,3a1S,11bR,14aS)-1,2,3a,3a1,11b,13,14,14a-octahydro-3,12 

dioxadibenzo[4,5:6,7]cyclohepta[1,2,3-de]naphthalene (9a):  

White solid, m.p.68-70 °C; 1H NMR (300 MHz, CDCl3): δ 7.64-

7.58 (m, 2H), 7.51-7.44 (m, 2H), 7.38-7.31 (m, 5H), 4.62 (d, J = 

9.0 Hz, 2H), 4.21-4.12 (m, 2H), 3.91-3.81 (m ,2H), 1.88-1.70 (m, 105 

4H), 1.50-1.36 (m, 2H) ppm; 13C NMR (75 MHz, CDCl3): δ 

138.6, 135.5, 131.1, 127.0, 126.9, 126.6, 78.6, 67.3, 49.8, 40.5, 

32.5 ppm; IR (KBr): υ 2924, 1726, 1447, 1379, 1259, 1121, 

1070, 983, 755 cm-1; MS (EI): m/z ([M]+): 292; HRMS (EI): m/z 

calcd for C20H20O2: 292.1463; found: 292.1462. 110 

(1R,3aR,6R,6aS)-1-(2-Bromophenyl)-6-phenylhexahydro 

furo[3,4-c]furan (2a): 
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Solid, m.p.102-104 °C; 1H NMR (300 MHz, CDCl3): δ 7.79-7.68 

(m, 1H), 7.43-7.30 (m, 2H), 7.18-7.06 (s, 4H), 6.70-6.63 (m, 2H), 

5.01 (d, J = 5.2 Hz, 1H), 4.38 (d, J = 8.3 Hz, 1H), 4.20-4.01 (m, 

2H), 3.86 (q, J = 6.0 Hz, 1H), 3.65-3.57 (m, 1H), 3.49-3.39 (m, 

1H), 3.30-3.17 (m, 1H), ppm; 13C NMR (125 MHz, CDCl3): δ 5 

140.1, 137.2, 131.7, 128.4, 127.8, 127.5, 126.9, 126.6, 125.8, 

121.6, 82.5, 81.6, 74.2, 71.4, 55.0, 47.0 ppm; IR (KBr): υ 3035, 

2954, 2862, 1494, 1253, 1048, 1023, 758 cm-1; MS (EI): m/z 

([M]+): 344; HRMS (EI): m/z calcd for C18H17BrO2: 344.0411; 

found: 344.0426. 10 

(1S,3aS,6R,6aR)-1-(2-Bromophenyl)-6-phenylhexahydrofuro 

[3,4-c]furan (3a): 

Liquid; 1H NMR (500 MHz, CDCl3): δ 7.53-7.42 (m, 2H), 7.37-

7.22 (m, 7H), 7.15-7.07 (m, 1H), 5.31 (d, J = 4.5 Hz, 1H), 5.01 

(d, J = 4.5 Hz, 1H), 4.35 (m, 1H), 4.19 (q, J = 6.7 Hz , 1H), 3.91-15 

3.83 (m, 2H), 3.23-3.11 (m, 1H), 3.05-2.96 (m, 1H) ppm; 13C 

NMR (125 MHz, CDCl3): δ 140.7, 140.4, 132.5, 128.5, 127.9, 

127.1, 127.1, 126.8, 125.8, 121.5, 85.3, 84.3, 73.4, 72.1, 61.0, 

46.6 ppm; IR (KBr): υ 2954, 2860, 1466, 1252, 1040, 750, 699, 

574 cm-1; MS (EI): m/z ([M]+): 344; HRMS (EI): m/z calcd for 20 

C18H17BrO2: 344.0411; found: 344.0415. 

5-((1R,3aR,6R,6aS)-6-Phenylhexahydrofuro[3,4-c]furan-1-

yl)benzo[d][1,3]dioxole (2b): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.37-7.21 (m, 4H), 

7.12-7.10 (m, 1H), 6.84-6.73 (m, 3H), 5.96-5.88 (m, 2H), 4.93-25 

4.89 (m, 1H), 4.87-4.83 (m, 1H), 4.36-4.33 (m, 1H), 4.20-4.16 

(m, 1H), 3.84-3.77 (m, 2H), 3.23-3.13 (m, 1H), 3.01-2.94 (m, 1H) 

ppm; 13C NMR (125 MHz, CDCl3): δ 146.7, 140.8, 132.5, 127.1, 

126.5, 126.1, 120.4, 107.1, 107.0, 100.4, 83.0, 82.3, 72.4, 67.7, 

58.0, 45.1 ppm; IR (KBr): υ 2875, 1731, 1616, 1494, 1442, 1387, 30 

1245, 1038, 931, 810, 770 cm-1; MS (EI): m/z ([M]+): 310; 

HRMS (EI): m/z calcd for C19H18O4: 310.1205; found: 310.1213. 

5-((1S,3aS,6R,6aR)-6-Phenylhexahydrofuro[3,4-c]furan-1-

yl)benzo[d][1,3]dioxole (3b): 

Semi solid; 1H NMR (300 MHz, CDCl3): δ 7.35-7.22 (m, 4H), 35 

7.16-7.12 (m, 1H), 6.82 (s, 1H), 6.79-6.72 (m, 2H), 5.95-5.90 (m, 

2H), 4.93-4.90 (m, 1H), 4.86-4.81 (m, 1H), 4.39-4.34 (m, 1H), 

4.23-4.17 (m, 1H), 4.02-3.98 (m, 1H), 3.85-3.74 (m, 2H), 3.24-

3.09 (m, 1H), 3.04-2.95 (m, 1H) ppm; 13C NMR (125 MHz, 

CDCl3): δ 147.3, 146.5, 140.5, 134.4, 128.1, 127.7, 127.6, 127.1, 40 

125.8, 125.3, 119.0, 107.9, 106.2, 100.8, 85.1, 84.7, 72.7, 72.5, 

61.5, 46.7 ppm; IR (KBr): υ 2870, 1616, 1494, 1387, 1246, 930, 

810, 770 cm-1; MS (EI): m/z ([M]+): 310; HRMS (EI): m/z calcd 

for C19H18O4: 310.1205; found: 310.1213. 

4-((1R,3aR,6R,6aS)-6-Phenylhexahydrofuro[3,4-c]furan-1-45 

yl)benzonitrile (2c): 

Solid, m.p.86-88 °C; 1H NMR (500 MHz, CDCl3): δ 7.55 (d, J = 

8.4 Hz, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.19-7.09 (m, 3H), 6.68-

6.62 (m, 2H), 4.96 (d, J = 5.5 Hz, 1H), 4.41 (t, J = 8.4 Hz, 1H), 

4.15-4.04 (m, 2H), 3.91 (dd, J = 6.4, 9.4 Hz, 1H), 3.61 (dd, J = 50 

6.9, 8.8 Hz, 1H), 3.35-3.26 (m, 1H), 3.20-3.13 (m, 1H) ppm; 13C 

NMR (125 MHz, CDCl3): δ 142.9, 139.9, 131.5, 127.8, 127.3, 

126.6, 126.1, 118.4, 110.8, 82.6, 81.5, 74.3, 71.9, 57.7, 47.3 ppm; 

IR (KBr): υ 3055, 2861, 2228, 1735, 1604, 1218, 1602, 932, 826 

cm-1; MS (EI): m/z ([M]+): 291; HRMS (EI): m/z calcd for 55 

C19H17NO2: 291.1259; found: 291.1254. 

4-((1S,3aS,6R,6aR)-6-Phenylhexahydrofuro[3,4-c]furan-1-

yl)benzonitrile (3c): 

Solid, m.p.94-96 °C; 1H NMR (300 MHz, CDCl3): δ 7.63 (d, J = 

8.3 Hz, 2H), 7.42-7.34 (m, 5H), 7.32-7.29 (m, 3H), 4.98 (dd, J = 60 

4.7, 13.2 Hz, 2H), 4.26-4.21 (m, 2H), 3.88-3.80 (m, 2H), 3.22-

3.15 (m, 1H), 2.98-2.94 (m, 1H) ppm; 13C NMR (75 MHz, 

CDCl3): δ 145.9, 139.7, 131.7, 128.1, 127.2, 125.6, 125.1, 118.1, 

85.0, 84.2, 73.0, 72.5, 62.0, 46.8 ppm; IR (KBr): υ 3055, 2922, 

2228, 1735, 1604, 1218, 1062, 932, 828, 714 cm-1; MS (EI): m/z 65 

([M]+): 291; HRMS (EI): m/z calcd for C19H17NO2: 291.1259; 

found: 291.1254. 

(1R,3aR,6R,6aS)-1-(4-Chlorophenyl)-6-phenylhexahydro 

furo[3,4-c]furan (2d): 

Solid, m.p.106-108 °C; 1H NMR (500 MHz, CDCl3): δ 7.29-7.24 70 

(m, 4H), 7.20-7.13 (m, 2H), 7.10 (d, J = 8.5 Hz, 1H), 6.70-6.67 

(m, 1H), 6.57 (d, J = 8.3 Hz, 1H), 4.93-4.86 (m, 1H), 4.39 (t, J = 

8.3 Hz, 1H), 4.27-4.17 (m, 1H), 4.11-4.01 (m, 1H), 3.91-3.78 (m, 

1H), 3.65-3.56 (m, 1H), 3.32-3.20 (m, 1H), 3.12-2.95 (m, 1H) 

ppm; 13C NMR (100 MHz, CDCl3): δ 140.8, 140.1, 131.6, 128.6, 75 

127.7, 127.4, 125.8, 125.7, 121.4, 84.9, 84.5, 72.8, 72.5, 61.6, 

46.5 ppm; IR (KBr): υ 2924, 2854, 1739, 1636, 1459, 1376, 

1071, 1017, 755 cm-1; MS (EI): m/z ([M]+): 300; HRMS (EI): m/z 

calcd for C18H17ClO2: 300.0917; found: 300.0919. 

(1S,3aS,6R,6aR)-1-(4-Chlorophenyl)-6-phenylhexahydro 80 

furo[3,4-c]furan (3d): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.39-7.22 (m, 9H), 

4.97-4.87 (m, 2H), 4.27-4.17 (m, 2H), 3.85-3.77 (m, 2H), 3.24-

3.17 (m, 1H), 3.03-2.89 (m, 1H) ppm; 13C NMR (75 MHz, 

CDCl3): δ 128.0, 127.9, 127.6, 127.4, 127.3, 127.0, 126.5, 125.1, 85 

84.8, 84.5, 72.7, 72.5, 61.7, 46.8 ppm; IR (KBr): υ 2924, 2854, 

1739, 1636, 1459, 1376, 1071, 821, 755 cm-1; MS (EI): m/z 

([M]+): 300; HRMS (EI): m/z calcd for C18H17ClO2: 300.0917; 

found: 300.0919. 

(1R,3aR,6R,6aS)-1-(4-Bromophenyl)-6-phenylhexahydro 90 

furo[3,4-c]furan (2e): 

Solid, m.p.94-96 °C; 1H NMR (300 MHz, CDCl3): δ 7.52-7.38 

(m, 2H), 7.36-7.24 (m, 2H), 7.1-7.10 (m, 3H), 6.71-6.66 (m, 1H), 

6.51 (d, J = 8.3 Hz, 1H), 4.91-4.84 (m, 1H), 4.39 (t, J = 8.3 Hz, 

1H), 4.29-4.16 (m, 1H), 4.08-4.01 (m, 1H), 3.90-3.77 (m, 1H), 95 

3.65-3.56 (m, 1H), 3.31-3.21 (m, 1H), 3.15-3.01 (m, 1H) ppm; 
13C NMR (75 MHz, CDCl3): δ 145.4, 140.2, 128.2, 127.8, 127.0, 

126.4, 123.3, 82.6, 81.4, 74.2, 71.9, 57.6, 47.0 ppm; IR (KBr): υ 

2926, 2855, 1737, 1487, 1238, 1073, 1010, 756, 700 cm-1; MS 

(EI): m/z ([M]+): 344; HRMS (EI): m/z calcd for C18H17BrO2: 100 

344.0411; found: 344.0426. 

(1S,3aS,6R,6aR)-1-(4-Bromophenyl)-6-phenylhexahydro 

furo[3,4-c]furan (3e): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.49-7.42 (m, 2H), 

7.37-7.24 (m, 6H), 7.19 (d, J = 8.0 Hz, 2H), 4.94 (d, J = 4.7 Hz, 105 

1H), 4.89 (d, J = 4.8 Hz, 1H), 4.25-4.19 (m, 2H), 3.84-3.79 (m, 

2H), 3.22-3.19 (m, 1H), 2.99-2.93 (m, 1H) ppm; 13C NMR (75 

MHz, CDCl3): δ 141.8, 141.1, 132.7, 129.7, 128.8, 128.6, 126.9, 

122.7, 86.6, 86.2, 74.6, 74.3, 63.5, 48.6 ppm; IR (KBr): υ 3028, 

2926, 2855, 1729, 1487, 1221, 1069, 1008, 770 cm-1; MS (EI): 110 

m/z ([M]+): 344; HRMS (EI): m/z calcd for C18H17BrO2: 

344.0411; found: 344.0426. 
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(1R,3aS,6R,6aR)-1-(4-Methoxyphenyl)-6-phenylhexahydro 

furo[3,4-c]furan (2f): 

Solid, m.p.80-82 °C; 1H NMR (500 MHz, CDCl3): δ 7.31-7.15 

(m, 5H), 6.89-6.81 (m, 3H), 6.68-6.59 (m, 1H), 4.90-4.87 (m, 

1H), 4.85 (d, J = 4.7 Hz, 1H), 4.39-4.27 (m, 1H), 4.22-4.17 (m, 5 

1H), 4.02 (d, J = 9.1 Hz, 1H), 3.79 (s, 3H), 3.78-3.73 (m, 1H), 

3.27-3.15 (m, 1H), 3.04-2.95 (m, 1H) ppm; 13C NMR (75 MHz, 

CDCl3): δ 158.7, 154.4, 132.6, 128.9, 127.7, 124.4, 120.6, 116.7, 

113.2, 83.0, 81.5, 88.0, 55.1, 47.8, 38.1 ppm; IR (KBr): υ 2870, 

1621, 1490, 1442, 1387, 1245, 1038, 931, 770 cm-1; MS (EI): m/z 10 

([M]+): 296; HRMS (EI): m/z calcd for C19H20O3: 296.1412; 

found: 296.1409. 

(1S,3aS,6R,6aR)-1-(4-Methoxyphenyl)-6-phenylhexahydro 

furo[3,4-c]furan (3f): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.35-7.23 (m, 5H), 15 

7.13-7.10 (m, 1H), 6.89-6.81 (m, 2H), 4.93-4.87 (m, 2H), 4.40-

4.35 (m, 1H), 4.26-4.18 (m, 1H), 4.04-4.00 (m, 1H), 3.87-3.74 

(m, 4H), 3.26-3.15(m, 1H), 3.06-2.99 (m, 1H) ppm; 13C NMR (75 

MHz, CDCl3): δ 159.2, 141.4, 131.1, 129.3, 127.9, 127.5, 127.0, 

126.8, 126.3, 113.3, 83.0, 82.4, 72.3, 67.7, 57.6, 55.2, 45.0 ppm; 20 

IR (KBr): υ 2875, 1731, 1616, 1494, 1245, 1308, 931, 810, 770 

cm-1; MS (EI): m/z ([M]+): 296; HRMS (EI): m/z calcd for 

C19H20O3: 296.1412; found: 296.1408. 

(1R,3aR,6R,6aS)-1-(4-Nitrophenyl)-6-phenylhexahydrofuro 

[3,4-c]furan (2g): 25 

Solid, m.p.78-80 °C; 1H NMR (300 MHz, CDCl3): δ 8.12 (d, J = 

8.3 Hz, 3H), 7.41 (d, J = 8.3 Hz, 2H), 7.19-7.08 (m, 3H), 6.70-

6.64 (m, 2H), 5.01 (d, J = 6.0 Hz, 1H), 4.42 (d, J = 8.3 Hz, 1H), 

4.16-4.06 (m, 2H), 3.96-3.89 (m, 1H), 3.63 (q, J = 6.7 Hz, 1H), 

3.38-3.16 (m, 2H) ppm; 13C NMR (75 MHz, CDCl3): δ 144.6, 30 

139.4, 127.6, 127.1, 126.4, 125.8, 122.7, 82.5, 81.4, 74.3, 72.0, 

57.8, 47.4 ppm; IR (KBr): υ 2926, 2850, 1720, 1602, 1520, 1345, 

1220, 1067, 850, 770 cm-1; MS (EI): m/z ([M]+): 311; HRMS 

(EI): m/z calcd for C18H17NO4: 311.1157; found: 311.1154. 

(1S,3aS,6R,6aR)-1-(4-Nitrophenyl)-6-phenylhexahydrofuro 35 

[3,4-c]furan (3g): 

Solid, m.p.82-84 °C; 1H NMR (500 MHz, CDCl3): δ 8.20 (d, J = 

8.6 Hz, 3H), 7.46 (d, J = 8.4 Hz, 2H), 7.40-7.24 (m, 7H), 5.04 (d, 

J = 4.7 Hz, 1H), 4.99 (d, J = 4.7 Hz, 1H), 4.30-4.20 (m, 2H), 

3.91-3.80 (m, 2H), 3.26-3.14 (m, 1H), 3.02-2.93 (m, 1H) ppm; 40 

13C NMR (75 MHz, CDCl3): δ 145.9, 139.7, 131.7, 128.1, 127.2, 

125.6, 125.1, 85.0, 84.2, 73.0, 72.5, 62.0, 46.8 ppm; IR (KBr): υ 

2926, 2857, 1729, 1602, 1520, 1345, 1607, 850, 771 cm-1; MS 

(EI): m/z ([M]+): 311; HRMS (EI): m/z calcd for C18H17NO4: 

311.1157; found: 311.1154. 45 

(1S,3aR,6R,6aS)-1-Ethyl-6-phenylhexahydrofuro[3,4-c]furan 

(2h):                                                             

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.41-7.25 (m, 5H), 

4.66 (d, J = 7.7 Hz, 1H), 4.35 (t, J = 8.5 Hz, 1H), 4.14-4.10 (m, 

1H), 3.85-3.81 (m, 1H), 3.67 (dd, J = 6.5, 2.9 Hz, 1H), 3.62-3.52 50 

(m, 2H), 3.19-3.11 (m, 1H), 2.90-2.85 (m, 1H), 1.84-1.75 (m, 

1H), 1.62-1.53 (m, 1H), 0.87 (t, J = 7.4 Hz, 3H) ppm; 13C NMR 

(100 MHz, CDCl3): δ 141.2, 128.5, 127.8, 127.1, 83.1, 81.6, 74.3, 

71.5, 55.9, 46.8, 23.4, 11.5 ppm; IR (KBr): υ 2922, 2228, 1604, 

1218, 1602, 826, 770, 700 cm-1; MS (EI): m/z ([M]+): 218; 55 

HRMS (EI): m/z calcd for C14H18O2: 218.1306; found: 218.1317. 

(1R,3aR,6R,6aS)-1-Ethyl-6-phenylhexahydrofuro[3,4-c]furan 

(3h):                          

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.37-7.24 (m, 6H), 

4.66 (d, J = 7.7 Hz, 1H), 4.28-4.38 (m, 1H), 4.84-4.81 (m, 1H), 60 

3.69-3.52 (m, 3H), 3.18-3.11 (m, 1H), 2.90-2.74 (m, 1H), 2.34-

2.29 (m, 1H), 2.08-1.98 (m, 1H), 1.83-1.76 (m, 1H), 0.85 (t, J = 

7.4 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3): δ 141.9, 128.3, 

128.0, 127.4, 82.6, 81.2, 72.2, 67.0, 55.0, 44.8, 27.0, 8.9 ppm; IR 

(KBr): υ 2924, 1729, 1480, 1001, 770, 701 cm-1; MS (EI): m/z 65 

([M]+): 218; HRMS (EI): m/z calcd for C14H18O2: 218.1306; 

found: 218.1317. 

(1R,3aR,6S,6aS)-1-Phenyl-6-styrylhexahydrofuro[3,4-c]furan 

(2i): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.42-7.21 (m, 10H), 70 

6.63 (d, J = 15.7 Hz, 1H), 6.24 (dd, J = 6.4, 16.0 Hz, 1H), 4.44-

4.40 (m, 2H), 4.20-4.16 (m, 2H), 3.72 (dd, J = 4.8, 9.1 Hz, 1H), 

3.17-3.11 (m, 1H), 2.73-2.68 (m, 1H) ppm; 13C NMR (125 MHz, 

CDCl3): δ 140.6, 130.9, 128.1, 127.7, 127.4, 127.2, 126.1, 125.4, 

84.8, 84.1, 72.8, 72.3, 59.7, 46.5 ppm; IR (KBr): υ 2973, 1815, 75 

1696, 1613, 1075, 832, 787 cm-1; MS (EI): m/z ([M]+): 292; 

HRMS (EI): m/z calcd for C20H20O2: 292.1463; found: 292.1471. 

 (1R,3aR,6R,6aS)-1-Phenyl-6-styrylhexahydrofuro[3,4-c]furan 

(3i): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.39-7.23 (m, 10H), 80 

6.64 (d, J = 15.4 Hz, 1H), 6.23 (dd, J = 6.4, 16.0 Hz, 1H), 4.83 (d, 

J = 4.7 Hz, 1H), 4.55 (t, J = 5.1 Hz, 1H), 4.26-4.16 (m, 2H), 3.79-

3.74 (m, 2H), 3.21-3.14 (m, 1H), 2.89-2.83 (m, 1H) ppm; 13C 

NMR (125 MHz, CDCl3): δ 135.9, 130.9, 128.2, 127.8, 127.4, 

126.1, 83.7, 72.5, 58.0, 46.1 ppm; IR (KBr): υ 2993, 1834, 1667, 85 

1563, 1016, 875, 735 cm-1; MS (EI): m/z ([M]+): 292; HRMS 

(EI): m/z calcd for C20H20O2: 292.1463; found: 292.1471. 

(1R,3aS,6R,6aR)-1-(Furan-2-yl)-6-phenylhexahydrofuro[3,4-

c]furan (2j): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.73-7.70 (m, 2H), 90 

7.55-7.53 (m, 2H), 7.40-7.33 (m, 2H), 6.34-6.28 (m, 2H), 5.02 (d, 

J = 3.2 Hz, 1H), 4.77 (d, J = 5.7 Hz, 1H), 4.31-4.16 (m, 3H), 

3.85-3.74 (m, 2H), 3.31-3.16 (m, 2H) ppm; 13C NMR (75 MHz, 

CDCl3): δ 147.4, 137.8, 130.1, 129.5, 128.1, 127.9, 125.2, 107.2, 

78.0, 71.9, 68.2, 62.2, 52.3, 39.2 ppm; IR (KBr): υ 2982, 1765, 95 

1604, 1542, 1064, 837, 763 cm-1; MS (EI): m/z ([M]+): 256; 

HRMS (EI): m/z calcd for C16H16O3: 256.1098; found: 256.1096. 

(1S,3aS,6R,6aR)-1-(Furan-2-yl)-6-phenylhexahydrofuro[3,4-

c]furan (3j): 

Semi solid; 1H NMR (500 MHz, CDCl3): δ 7.42-7.28 (m, 4H), 100 

6.34 (s, 2H), 5.97 (d, J = 3.1 Hz, 1H), 4.94 (d, J = 5.8 Hz, 1H), 

4.66 (d, J = 6.6 Hz, 1H), 4.38-4.30 (m, 1H), 4.05-3.88 (m, 2H), 

3.74-3.65 (m, 1H), 3.46-3.25 (m, 2H) ppm; 13C NMR (125 MHz, 

CDCl3): δ 152.3, 142.3, 129.8, 128.4, 126.8, 125.5, 109.9, 107.6, 

78.4, 72.7, 68.2, 54.2, 38.9 ppm; IR (KBr): υ 2895, 1761, 1642, 105 

1502, 1134, 898, 754 cm-1; MS (EI): m/z ([M]+): 256; HRMS 

(EI): m/z calcd for C16H16O3: 256.1098; found: 256.1097. 
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