Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Asymmetric Synthesis of Chloroisothreonine Derivatives *via syn*-Stereoselective Mannich-type Additions across N-Sulfinyl-α-chloroimines

Gert Callebaut,^{‡a} Filip Colpaert,^{§a} Melinda Nonn,^b Loránd Kiss,^b Reijo Sillanpää,^c Karl W. Törnroos,^d Ferenc Fülöp,^b Norbert De Kimpe^a and Sven Mangelinckx^{*a}

^aDepartment of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

Sven.Mangelinckx@UGent.be

Mannich-type reactions of *O*-Boc glycolic esters across chiral *N*-sulfinyl- α -chloroaldimines resulted in the efficient and *syn*-stereoselective synthesis of new γ -chloro- α -hydroxy- β -amino esters (dr > 99:1). The α -coordinating ability of the chlorine atom was of great importance for the diastereoselectivity of the Mannich-type reaction and overruled the chelation of the sulfinyl oxygen with the lithium ion of the incoming *E*-enolate in the transition state model. These novel chloroisothreonine derivatives proved to be excellent building blocks in asymmetric synthesis of novel *syn*- β , γ -aziridino- α -hydroxy esters and biologically relevant *trans*-oxazolidinone carboxylic esters.

Introduction

The enantioselective synthesis of β -amino acid derivatives, as biologically active compounds, constituents of biologically active natural products, chiral building blocks and monomers for the preparation of β -peptides, received a lot of attention among organic chemists and biochemists.¹ The incorporation of conformationally constrained α - and β -amino acids into biologically active peptides gained great interest in the preparation of peptide-based drug molecules. In particular, many efforts have focused on synthetic methods towards α -hydroxy- β -amino carboxylic acid derivatives.² This can be explained by the fact that the α -hydroxy- β -amino carboxylic acid unit is present in a wide range of biologically active molecules, such as (-)-bestatin 1, which is an aminopeptidase inhibitor,³ paclitaxel **2a** and docetaxel **2b**, which are both known for their antimitotic activity (Figure 1).⁴ The α -hydroxy- β -amino carboxylic acid moiety is also present in the natural product leuhistin, an inhibitor of aminopeptidase M.⁵

Figure 1. Biologically active compounds containing an α -hydroxy- β -amino carboxylic acid unit

The synthesis of non-proteinogenic α -hydroxy- β -amino acids, including norstatine, isoserine and isothreonine derivatives, has attracted much attention, as these compounds give access to new drug candidates and act as valuable biological probes. Norstatine and its analogues have been used in the synthesis of peptide-based inhibitors of aspartyl proteases such as renin and HIV-1 protease.⁶ Halogenated analogues of these non-proteinogenic α -hydroxy- β -amino carboxylic acids are of great

Organic & Biomolecular Chemistry

interest for the design of new protease inhibitors. Fluoroalkyl isoserine derivatives were synthesized via ring opening of the corresponding *cis*-4-(fluoroalkyl)-3-hydroxyazetidin-2-ones.⁷ The synthesis of γ -iodo- α -hydroxy- β -amino acid derivatives was also reported starting from aspartic acid via a lactone intermediate.⁸ Nevertheless, γ -chloro- α -hydroxy- β -amino acid derivatives are virtually unknown in literature, with the exception of one racemic example of a γ -chloro- γ , γ -difluoro- α hydroxy- β -amino acid derivative.⁷ More recently, in analogy with the synthesis of (3fluoroalkyl)isoserinates,⁷ our research group explored the use 4-(chloroalkyl)-3-hydroxyazetidin-2ones in the synthesis of chlorinated α -hydroxy- β -amino acid derivatives.⁹ Unfortunately, the chlorinated α -hydroxy- β -amino acid derivatives were only observed as intermediates towards the corresponding ω -alkylaminopentenoates. Therefore, in an effort to synthesize regioisomeric derivatives of the natural product 4-chloro-L-threonine, the present paper deals with the asymmetric synthesis of γ -chloro- α -hydroxy- β -amino acid derivatives, i.e. chloroisothreonine derivatives, via Mannich-type additions of O-Boc glycolic esters across enantiopure N-sulfinyl- α -chloroaldimines. 4-Chloro-L-threonine is biologically active as a serine hydroxymethyltransferase inhibitor,¹⁰ and as a herbicidal antimetabolite.¹¹ and is also a constituent of naturally occurring syringomycins (antifungal compounds),¹² and actinomycins (cytotoxic and antibacterial compounds).¹³

Generally, halogenated amino acid derivatives are biologically relevant compounds, which can also serve as very promising building blocks in synthetic organic chemistry due to the presence of the leaving group. Recently, our research group reported the stereoselective synthesis of γ -chloro α , β diamino acid derivatives via Mannich-type additions of *N*-(diphenylmethylene)glycine esters across α -chloro-*N*-sulfinylimines,¹⁴ and α -chloro β -amino acid derivatives via Mannich-type reactions of *N*-sulfinyl imidates with aromatic aldimines.¹⁵ Also γ -chloro- α , β -diamino- and β , γ -aziridino- α aminoacylpyrrolidines and –piperidines, as potential dipeptidyl peptidase (DPP) inhibitors,¹⁶ were synthesized via stereoselective Mannich-type additions of *N*-(diphenylmethylene)glycinamides across α -chloro-*N*-sulfinylimines.¹⁷

Chiral *N*-sulfinylimines have already proven to be valuable synthons for the preparation of a wide range of enantiopure aliphatic and cyclic amines.¹⁸ In this study, α -chloro *N*-sulfinylaldimines were used as starting products as these imines are known for their good reactivity and stereoselectivity by incorporation of chiral directing groups.¹⁹ In this context, addition reactions across non-halogenated *N*-sulfinylimines were already performed for the asymmetric synthesis of β -amino acid derivatives.²⁰ In addition, nucleophilic additions across α -chloroimines with different carbon and heteroatom nucleophiles have extensively been used in the past for the synthesis of azaheterocyclic compounds.^{9,21}

Results and Discussion

According to the good results obtained in the diastereoselective synthesis of non-functionalized α -hydroxy- β -amino acid derivatives, ^{20c} the addition of *O*-protected alkyl α -hydroxyacetates **3** across *N*-sulfinyl- α -chloroimines **4** was investigated (Scheme 1, Table 1) in view to provide access to γ -functionalized- α -hydroxy- β -amino acid building blocks, suitable for the synthesis of chloroisothreonine derivatives and functionalized heterocyclic compounds. Therefore, the *O*-protected alkyl α -hydroxyacetates **3**,^{20c} α -chloro *N*-*tert*-butanesulfinylaldimines **4a-c**,^{19f,g} and α -chloro *N*-*p*-toluenesulfinylaldimines **4d-e**,^{14,17} were synthesized via (modified) literature procedures.

In a first step, *O*-Boc alkyl α -hydroxyacetates **3a-c** were deprotonated using LiHMDS and subsequent addition of 0.20 equivalents of (R_s)-N-(*tert*-butanesulfinyl)-2-chloro-2,2-dimethylacetaldimine (R_s)-**4a** at -78 °C for 3 hours, resulted in the formation of Mannich-type addition products (R_s)-**5aa-ac** in good to excellent diastereomeric ratios (Scheme 1, Table 1, entries 1-3). γ -Chloro- α -hydroxy- β -amino esters (R_s ,2R,3R)-**5aa-ac** were isolated as single *syn*-diastereomers in high yields (75-88%) after purification via flash chromatography.

0 (<i>R</i>) '' <i>t</i> Bu [✔] S ^N H 0	1) 1 equiv LiHMDS THF, -78 °C, 1 h, N ₂	1 equiv O	1) 1 equiv LiHMDS THF, -78 °C, 1 h, N ₂	O (S) p-Tol ^{``} NH O
$\begin{array}{c c} R^2 & \overline{\cdot} & (R) \\ R^2 & (R) & \overline{\cdot} & OR^1 \end{array}$	2) X equiv tBu	BocO OR ¹	2) X equiv O	R^2 (S) OR ¹
CI OBoc	THF, -78 °C N O	3a R ¹ = Bn	THF, -78 °C ^{(∽} /S N	CI OBoc
(R _S ,2R,3R)- 5	R^2 H	3b R ¹ = Me	R ² H	(S _S ,2S,3S)- 5
(42-88%, dr > 99:1)	R² ∣ Cl	3c R ¹ = Et	R ^{2² ''}	(35-83%, dr > 99:1)
	(<i>R</i> _S)- 4a R ² = Me		(S _S)- 4d R ² = Me	
	(<i>R</i> _S)- 4b R ² = Et		(S_{s}) - 4e R ² = H	
	(<i>R</i> _S)- 4c R ² = H			

Scheme 1. Synthesis of chloroisothreonine derivatives 5

Table 1. Mannich-type addition reactions of α -hydroxyacetates 3 across (R_S)-N-(*tert*-butanesulfinyl)- α -chloroaldimines 4a-c and (S_S)-N-(p-toluenesulfinyl)- α -chloroaldimines 4d-e

Entry	\mathbb{R}^1	\mathbb{R}^2	Х	4	Time (h)	syn/anti ^a	Yield 5 (%) ^b
1	Bn	Me	0.20	(R_S) -4a	3	80/20	$(R_S, 2R, 3R)$ -5aa (75)
2	Me	Me	0.20	(R_S) -4a	3	98/2	$(R_S, 2R, 3R)$ - 5ab (86)
3	Et	Me	0.20	(R_S) -4a	3	89/11	$(R_S, 2R, 3R)$ - 5ac (88)
4	Bn	Et	0.33	(R_S) -4b	4	> 99/1	$(R_S, 2R, 3R)$ -5ba (62)
5	Me	Et	0.33	(R_S) -4b	4	> 99/1	$(R_s, 2R, 3R)$ - 5bb $(44)^c$
6	Et	Et	0.33	(R_S) -4b	4	> 99/1	$(R_S, 2R, 3R)$ - 5bc (65)
7	Bn	Н	0.25	(R_S) -4c	1-4	-	$(R_{S}, 2R, 3R)$ -5ca (-)
8	Me	Н	0.25	(R_S) -4c	1	> 99/1	$(R_S, 2R, 3R)$ -5cb (42)
9	Et	Н	0.25	(R_S) -4c	1	> 99/1	$(R_s, 2R, 3R)$ -5cc (42)
10	Bn	Me	0.20	(S_S) -4d	5	95/5	$(S_S, 2S, 3S)$ -5da (51)
11	Me	Me	0.20	(S_S) -4d	5	87/13	$(S_S, 2S, 3S)$ -5db (83)
12	Et	Me	0.20	(S_S) -4d	5	82/18	$(S_S, 2S, 3S)$ -5dc (75)
13	Bn	Н	0.33	(S_S) -4e	4	-	$(S_S, 2S, 3S)$ -5ea (-)
14	Et	Н	0.33	(S_S) -4e	4	> 99/1	$(S_S, 2S, 3S)$ - 5ec (35)

^a Determined via ¹H NMR analysis of the crude reaction mixture. ^b Isolated yield of single diastereomer (dr > 99:1) after purification via flash chromatography. ^c The corresponding aziridine **6bb** was also formed and isolated in 13%.

Furthermore, to expand the scope, the use of *N*-(*tert*-butanesulfinyl)- α -chloroaldimines (*R*_S)-**4b-c** was explored. Performing the Mannich-type addition with *N*-(*tert*-butanesulfinyl)-2-chloro-2,2-diethylacetaldimine (*R*_S)-**4b**, the desired adducts (*R*_S)-**5ba-bc** were formed with excellent *syn*-diastereoselectivity (Table 1, entries 4-6). After purification via flash chromatography, single *syn*-diastereomers of γ -chloro- α -hydroxy- β -amino esters (*R*_S)-**5ba-bc** were isolated, although in moderate yields (44-65%). These lower yields were obtained due to the concomitant formation of the corresponding aziridines (*R*_S)-**6ba-bc**, resulting in a more tedious separation via flash

chromatography. In the case of Mannich-type adduct (R_S)-**5bb**, which was isolated in 44% yield, the corresponding aziridine (R_S)-**6bb** was also isolated in 13% yield (Table 1, entry 5).

Surprisingly, when *N*-(*tert*-butanesulfinyl)- α -chloroaldimine (R_S)-**4c** was used in the Mannich-type addition with benzyl ester **3a**, formation of the desired Mannich-type adduct could not be observed (Table 1, entry 7). The Mannich-type addition of aldimine (R_S)-**4c** with methyl and ethyl esters **3b-c** occurred with excellent *syn*-diastereoselectivity (Table 1, entries 8-9). Nevertheless, the reaction time was limited to 1 hour, as longer reaction times resulted in lower yields, due to the instability of aldimine (R_S)-**4c**. Single *syn*-diastereomers of chloroisothreonine derivatives (R_S)-**5cb-cc** were isolated in moderate yield (42%) after purification via flash chromatography (Table 1, entries 8-9). The high reactivity and *syn*-diastereoselectivity observed in the Mannich-type additions of Lienolates derived from *O*-Boc alkyl α -hydroxyacetates **3a-c** across *N*-(*tert*-butanesulfinyl)- α -chloroaldimines (R_S)-**4d** prompted the further investigation of the Mannich-type additions across *N*-(*p*-toluenesulfinyl)- α -chloroaldimine (S_S)-**4d**, the desired γ -chloro- α -hydroxy- β -amino esters (S_S)-**5da-dc** were formed in good to excellent diastereomeric ratios (Table 1, entries 10-12). Purification via flash chromatography afforded the pure chloroisothreonine derivatives (S_S)-**5da-dc** as single *syn*-diastereomerics in moderate to high yields (51-83%).

When *N*-(*p*-toluenesulfinyl)- α -chloroaldimine (*S_S*)-**4e** was applied, again no formation of the desired adduct (*S_S*)-**5ea** was observed (Table 1, entry 13). Due the high instability of aldimine (*S_S*)-**4e**, the Mannich-type addition with ethyl ester **3c** afforded the desired γ -chloro- α -hydroxy- β -amino esters (*S_S*)-**5ec** in moderate yield, although with with an excellent *syn*-diastereoselectivity (Table 1, entries 14).

The γ -chloro- α -hydroxy- β -sulfinylamino esters ($R_S, 2R, 3R$)-**5** and ($S_S, 2S, 3S$)-**5da-dc** were subsequently cyclized to the corresponding *N*-*tert*-butanesulfinyl- β, γ -aziridino- α -hydroxy esters ($R_S, 2R, 2^{\circ}S$)-**6** and *N*-*p*-toluenesulfinyl- β, γ -aziridino- α -hydroxy esters ($S_S, 2S, 2^{\circ}R$)-**6**, respectively

upon treatment with K_2CO_3 in acetone under reflux in good to excellent yields (47-96%) and all with an excellent diastereoselectivity (dr > 99:1) (Scheme 2-3).

$$\begin{array}{c} & O \\ (R) \stackrel{||}{} \stackrel{||}{} \\ t^{Bu} \stackrel{||}{} \stackrel{||}{} \\ R^{2} \stackrel{||}{} \stackrel{(R)}{} \stackrel{||}{} \\ Cl \stackrel{||}{} \\ OBoc \\ (R_{S},2R,3R)-5 \\ (dr > 99:1) \end{array}$$

$$\begin{array}{c} 3.0 \text{ equiv } K_{2}CO_{3} \\ \hline acetone, \Delta, 20-24 \text{ h} \\ \hline R^{2} \stackrel{||}{} \\ (dr > 99:1) \\ \hline OBoc \\ (R_{S},2R,2'S)-6aa \text{ R}^{1} = \text{Bn}, \text{ R}^{2} = \text{Me} (68\%) \\ (R_{S},2R,2'S)-6ab \text{ R}^{1} = \text{Bn}, \text{ R}^{2} = \text{Me} (68\%) \\ (R_{S},2R,2'S)-6ab \text{ R}^{1} = \text{Bn}, \text{ R}^{2} = \text{Me} (68\%) \\ (R_{S},2R,2'S)-6ab \text{ R}^{1} = \text{Bn}, \text{ R}^{2} = \text{Me} (67\%) \\ (R_{S},2R,2'S)-6bb \text{ R}^{1} = \text{Bn}, \text{ R}^{2} = \text{Et} (79\%) \\ (R_{S},2R,2'S)-6bb \text{ R}^{1} = \text{Bn}, \text{ R}^{2} = \text{Et} (66\%) \\ (R_{S},2R,2'S)-6bc \text{ R}^{1} = \text{Et}, \text{ R}^{2} = \text{Et} (47\%) \\ (R_{S},2R,2'S)-6bc \text{ R}^{1} = \text{Et}, \text{ R}^{2} = \text{H} (70\%) \\ (R_{S},2R,2'S)-6bc \text{ R}^{1} = \text{Et}, \text{ R}^{2} = \text{H} (70\%) \\ (R_{S},2R,2'S)-6bc \text{ R}^{1} = \text{Et}, \text{ R}^{2} = \text{H} (70\%) \\ (R_{S},2R,2'S)-6bc \text{ R}^{1} = \text{Et}, \text{ R}^{2} = \text{H} (70\%) \\ (R_{S},2R,2'S)-6bc \text{ R}^{1} = \text{Et}, \text{ R}^{2} = \text{H} (70\%) \\ (R_{S},2R,2'S)-6bc \text{ R}^{1} = \text{Et}, \text{ R}^{2} = \text{H} (64\%) \\ \end{array}$$

Scheme 3. Synthesis of *N*-*p*-toluenesulfinyl- β , γ -aziridino- α -hydroxy esters (S_S ,2S,2'R)-6

In order to extend the potential applicability of the synthesized $(R_S, 2R, 3R)$ - γ -chloro- α -hydroxy- β amino esters $(R_S, 2R, 3R)$ -**5** as building blocks in biomedicinal chemistry, a number of attempts was made to remove the protective groups of $(R_S, 2R, 3R)$ -**5** under acidic conditions (Scheme 4). In a first step, α -hydroxy- β -amino esters $(R_S, 2R, 3R)$ -**5aa-ac** and $(R_S, 2R, 3R)$ -**5bb** were treated with trifluoroacetic acid (30% v/v) in dichloromethane. After a basic workup with K₂CO₃, the desired α - deprotected *syn*- γ -chloro- α -hydroxy- β -amino esters (R_s ,2R,3R)-7 were purified by crystallization in Et₂O or by flash chromatography on silica gel (70-86% yield) (Scheme 4). Hereby, a selective deprotection of the *O*-Boc-protecting group with TFA occured in the presence of an *N*-tert-butanesulfinyl moiety. Moreover, the *O*-deprotected (R_s ,2R,3R)- γ -chloro- α -hydroxy- β -amino ester (R_s ,2R,3R)-**7ac** was isolated as a crystalline product which allowed the implementation of X-ray diffraction analysis (*vide infra*).

In a next step, the *N*-tert-butanesulfinyl group of the *O*-deprotected chloroisothreonine derivatives $(R_s, 2R, 3R)$ -**7aa** and **7ac** was deprotected by reaction with a saturated HCl-solution in dioxane towards the *N*,*O*-deprotected γ -chloro- α -hydroxy- β -amino esters $(R_s, 2R, 3R)$ -**8aa** and **8ac** (Scheme 4). Unfortunately, intensive screening of different purification techniques (crystallization, preparative TLC, acid-base extraction) in order to obtain of the pure *N*,*O*-deprotected esters $(R_s, 2R, 3R)$ -**8aa** and **8ac** in good yield, was only partially successful, affording 27-36% yield of $(R_s, 2R, 3R)$ -**8aa** and **8ac** after crystallization in dichloromethane.

Scheme 4. Further transformations of chloroisothreonine derivatives $(R_s, 2R, 3R)$ -5 and synthesis of oxazolidinones (4R, 5R)-11

Alternatively, a selective deprotection of the *N*-tert-butanesulfinyl group of $(R_s, 2R, 3R)$ - γ -chloro- α -hydroxy- β -amino esters $(R_s, 2R, 3R)$ -**5aa-ac** was performed under mild acidic treatment with HCl in dioxane, leading to *N*-deprotected (2R, 3R)- γ -chloro- α -hydroxy- β -amino esters (2R, 3R)-**9aa-ac** in high yields (79-93%) (Scheme 4). In a next step, deprotection of the *O*-Boc protective group of esters (2R, 3R)-**9aa-ac** was realized by stirring in dichloromethane/trifluoroacetic acid (30% v/v), resulting in the isolation of *O*,*N*-deprotected (2R, 3R)- γ -chloro- α -hydroxy- β -amino ester salts (2R, 3R)-**10aa-ac** as pure products in excellent yields (84-97% yield). In this way, a straightforward route towards the enantioselective synthesis of the *O*,*N*-deprotected chloroisothreonine derivatives (2R, 3R)-**10aa-ac** starting from the esters $(R_s, 2R, 3R)$ -**5** was developed (Scheme 4).

Furthermore, additional reactions were performed in order to synthesize oxazolidinones (4R,5R)-11. The *N*,*O*-deprotected ester salts (2R,3R)-10aa-ac were treated with *N*,*N*-diisopropylethylamine (DIPEA) in dichloromethane for 15 minutes at 0 °C to neutralize the trifluoroacetic acid salt (Scheme 4). Dropwise addition of triphosgene,²² resulted in the formation of the corresponding oxazolidinones (4R,5R)-11aa-ac in good isolated yields (64-82%) (Scheme 4).

Upon determination of the relative configuration of the synthesized γ-chloro-α-hydroxy-β-*N*-tertbutanesulfinylamino esters (R_S)-5, based on ¹H NMR analysis, it was observed that the isolated major diastereomers were *syn*-adducts, by comparison of the characteristic vicinal coupling constants (${}^{3}J_{\text{H2-H3,syn}} = 0$ -1.4 Hz), whereas the corresponding *anti*-adducts have larger coupling constants (${}^{3}J_{\text{H2-H3,anti}} > 2.5$ Hz).^{20c} Unfortunately, it was impossible to determine the absolute stereochemistry of these *syn*-adducts (R_S)-5 by means of an X-ray diffraction analysis as none of these compounds were crystalline. Therefore, the corresponding (S_S)-γ-chloro-α-hydroxy-β-amino ester (S_S)-5aa was synthesized by Mannich-type addition of the Li-enolate derived from the *O*-Boc benzyl α-hydroxyacetate 3a across (S_S)-*N*-(*tert*-butanesulfinyl)-α-chloroaldimine (S_S)-4a under the same reaction conditions as described in Table 1 (Scheme 2). As the optical rotation of the corresponding dehalogenated (S_S ,2R,3S)-α-hydroxy-β-amino ester (S_S ,2R,3S)-12aa was known in

the literature,²³ the reaction of compound (S_S)-**5aa** with Bu₃SnH and AIBN was attempted (Scheme 5). Unfortunately, this reaction failed to provide the desired dechlorinated compound (S_S ,2S,3R)-**12aa**, which would have allowed the determination of the absolute stereochemistry of (S_S)-**5aa** by comparison of the optical rotation. Additionally, having both enantiomers (R_S ,2S,3R)-**5aa** and (S_S ,2R,3S)-**5aa** in hand, an enantiomeric excess of >98% for both enantiomers could be determined by chiral HPLC. In analogy with an enantiomeric excess of >98% for the commercially available starting materials *tert*-butanesulfinamide and *p*-toluenesulfinamide, an enantiomeric excess of >98% can be concluded for all synthesized γ -chloro- α -hydroxy- β -amino acid derivatives **5**.

Scheme 5. Synthesis of (S_S) - γ -chloro- α -hydroxy- β -amino ester $(S_S, 2S, 3S)$ -5aa and an attempt for further dechlorination towards $(S_S, 2S, 3R)$ -12aa.

However, the absolute stereochemistry of chloroisothreonine derivative (R_S)-**5ac** was determined by means of X-ray diffraction analysis (Figure 2) of the corresponding crystalline (R_S ,2R,3R)-Odeprotected derivative (R_S ,2R,3R)-**7ac** (*vide supra*). The (R_S ,2R,3R)-stereochemistry of the synthesized (R_S)- γ -chloro- α -hydroxy- β -amino esters (R_S)-**5aa-ab** was deduced from the vicinal coupling constant ${}^{3}J_{\text{H2-H3,syn}} = 1.0-1.3$ Hz and the 1 H NMR chemical shift of H3 (4.01 ppm; CDCl₃), which were in the same range as for the (R_S)- γ -chloro- α -hydroxy- β -amino ester (R_S)-**5ac**. Also a (R_S ,2R,3R)-stereochemistry could be ascribed to 4,4-diethyl-substituted (R_S)- γ -chloro- α -hydroxy- β amino esters (R_S)-**5ba-bc** in analogy with their 4,4-dimethyl substituted derivatives (R_S)-**5aa-ac**.

Figure 2. X-ray crystal structure of $(R_S, 2R, 3R)$ - γ -chloro- α -hydroxy- β -amino ester $(R_S, 2R, 3R)$ -7ac

The same absolute (R_S ,2R,3R)-stereochemistry was confirmed for chloroisothreonine derivatives (R_S)-**5cb-cc** ($R^2 = H$) by means of an X-ray diffraction analysis of the corresponding crystalline *N*-*tert*-butanesulfinyl- β , γ -aziridino- α -hydroxy ester (R_S ,2R,2'S)-**6cc** (Figure 3).

Figure 3. X-ray crystal structure of *N-tert*-butanesulfinyl- β , γ -aziridino- α -hydroxy ester (R_S ,2R, $2^{\circ}S$)-6cc.

The stereochemical outcome of the Mannich-type reaction across (R_S) -*N*-(*tert*-butanesulfinyl)- α chloroaldimine (R_S) -**4a** was rationalized on the basis of the enolate geometry of the anions derived from the deprotonation of *O*-Boc alkyl α -hydroxyacetates **3**. Enolates obtained *via* deprotonation of *O*-Boc alkyl α -hydroxyacetates **3** with LiHMDS in THF were expected to have the *E*-geometry

(Scheme 6).^{20c,24} As commonly performed in the assignment of enolate geometry, in contrast to conventional *E/Z*-nomenclature, the highest priority designation was allocated to the *O*-metal group of the enolate substituents. The stereoselective formation of the *E*-enolates has been rationalized with the Ireland model,²⁴ which showed that deprotonation of *O*-Boc alkyl α -hydroxyacetates **3** with LiHMDS via transition state **TS-1A**, induced adverse sterical interactions of the axial TMS group and the O-Boc group. For this reason, the deprotonation proceeds via transition state **TS-1B** and afforded the corresponding *E*-enolate (Scheme 6).

Scheme 6. Proposed transition state model for rationalization of the enolate geometry of O-Boc alkyl α -hydroxyacetates 3

Reaction of the *E*-enolates of **3** via a six/four-membered Li-chelated bicyclic chairlike transition state model **TS-2A**, which was valid for Mannich-type additions across non-functionalized *N*-sulfinyl imines,^{20c} would have resulted in the formation of (R_S ,2S,3S)- γ -chloro- α -hydroxy- β -amino esters (R_S ,2S,3S)-**5** (Scheme 7). However, this transition state model **TS-2A**, which proceeded via a *Si*-face attack, lacked the important chelation between the α -coordinating chlorine atom and the lithium atom.

Organic & Biomolecular Chemistry

The formation of the $(R_S, 2R, 3R)$ - γ -chloro- α -hydroxy- β -amino esters $(R_S, 2R, 3R)$ -5 can be explained by a six/six-membered di-metal-chelated bicyclic chairlike transition state model **TS-2B**,²⁵ or by a six-membered Li-chelated cyclic chairlike transition state model **TS-2C** which proceeded both *via* a *Re*-face attack of the *E*-enolate (Scheme 7).

Scheme 7. Proposed transition state model for the Mannich-type addition reactions of *O*-Boc alkyl α -hydroxyacetates 3 across (R_S)-N-(*tert*-butanesulfinyl)- α -chloroaldimine (R_S)-4a.

In transition state model **TS-2B**, the α -coordinating ability of the chlorine atom overrides the chelation of the sulfinyl oxygen with the lithium ion of the incoming *E*-enolate and induced chelation of the sulfinyl oxygen with an extra Li-cation to form a six/six-membered di-Li-chelated

bicyclic chairlike transition state model. In an alternative transition state model **TS-2C**, the coordinating ability of the chlorine atom overrules the chelation of the sulfinyl oxygen as well and an extra stabilizing effect is attained by the fact that the *N*-sulfinyl imine (R_S)-4a in this transition state is present in the energetically favoured s-*cis* configuration.^{18b}

Concerning the γ -chloro- α -hydroxy- β -*N-tert*-butanesulfinylamino esters (R_S)-5, the major diastereomers of γ -chloro- α -hydroxy- β -*N-p*-toluenesulfinylamino esters (S_S)-5 were assigned as *syn*-adducts based on ¹H NMR analysis. According to these transition state models **TS-2B** and **TS-2C** (Scheme 7), it was assumed that the Mannich-type addition products (S_S)-5 would have an (S_S ,2S,3S)-stereochemistry. Indeed, determination of the absolute stereochemistry of the crystalline chloroisothreonine derivative (S_S)-**5db** by means of X-ray diffraction analysis proved this assumption (Figure 4). The (S_S ,2S,3S)-stereochemistry of the other (S_S)- γ -chloro- α -hydroxy- β amino esters (S_S)-**5da** and (S_S)-**5dc** was again confirmed by comparison of the vicinal coupling constant ³ $J_{H2-H3} = 1.10$ Hz and the ¹H NMR chemical shift of H3 (4.00 ppm), which were in the same range as for the (S_S)- γ -chloro- α -hydroxy- β -amino ester (S_S)-**5db**.

Figure 4. X-ray crystal structure of $(S_S, 2S, 3S)$ - γ -chloro- α -hydroxy- β -amino ester $(S_S, 2S, 3S)$ -5db

The absolute (S_S ,2S,3S)-stereochemistry could be also ascribed for (S_S)- γ -chloro- α -hydroxy- β -amino esters (S_S)-**5eb-ec** ($\mathbb{R}^2 = \mathbb{H}$) in analogy with the assigned stereochemistry of (R_S)- γ -chloro- α -hydroxy- β -amino esters (R_S)-**5cb-cc** ($\mathbb{R}^2 = \mathbb{H}$).

Conclusions

In conclusion, it was demonstrated that new $(R_s, 2R, 3R)$ - and $(S_s, 2S, 3S)$ -*N*-sulfinyl- γ -chloro- α hydroxy- β -amino esters were synthesized in high yields and excellent diastereomeric ratios (dr > 99:1) via stereoselective Mannich-type reactions of *O*-Boc glycolic esters across chiral *N*-sulfinyl- α -chloroimines. In these reactions, the influence of the imine in the Mannich-type addition, i.e. *N*-(*tert*-butanesulfinyl)- α -chloroaldimines or *N*-(*p*-toluenesulfinyl)- α -chloroaldimines, did not cause significant differences in the obtained yields and diastereoselectivities. Furthermore, the γ -chloro- α hydroxy- β -amino esters, as novel chloroisothreonine derivatives, proved to be versatile building blocks in asymmetric synthesis of novel *syn*- β , γ -aziridino- α -hydroxy esters and *trans*-alkyl oxazolidinone-5-carboxylates.

Experimental Section

Synthesis of alkyl (*tert*-butoxycarbonyloxy)acetates 3. Benzyl and methyl (tertbutoxycarbonyloxy) acetates **3a-b** were synthesized according to the literature starting from the corresponding benzyl and methyl α -hydroxyacetates.^{20c} In a flame dried round-bottomed 250 mL flask, ethyl α-hydroxyacetate (1.0 equiv, 4.00 g, 38.42 mmol) was dissolved in acetonitrile (150 mL). Subsequently, DMAP (0.1 equiv, 0.43 g, 3.84 mmol) and Boc₂O (3.0 equiv, 10.90 g, 49.95 mmol) were added and the mixture was stirred for 18 hours at room temperature. The reaction mixture was poured in brine (300 mL) and the aqueous phase was extracted with diethyl ether (3 x 200 mL). The combined organic phases were dried (MgSO₄), filtered and evaporated in vacuo to yield 7.68 g (37.65 mmol, 98%) of ethyl (tert-butoxycarbonyloxy)acetate 3c. Ethyl (tertbutoxycarbonyloxy)acetate 3c was stored with molecular sieves for further use.

Ethyl (*tert*-butoxycarbonyloxy)acetate 3c. Brown oil, 98% (7.68 g). IR (cm⁻¹): 1745, ¹H NMR (300 MHz, CDCl₃): δ 1.29 (3H, t, *J* = 7.15 Hz), 1.51 (9H, s), 4.25 (2H, q, *J* = 7.15 Hz), 4.56 (2H, s).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 27.7 (3C), 61.5, 62.8, 83.2, 153.0, 167.9, MS (ES⁺): *m/z* (%): 527 (100), 427 (77), 222 (M+NH₄⁺, 50). HRMS (ES) calcd for C₉H₁₆O₅: 205.1071 MH⁺; found: 205.1082.

Synthesis of γ -chloro- α -hydroxy- β -amino esters 5. The synthesis of $(R_S, 2R, 3R)$ -benzyl 2-(*tert*butoxycarbonyloxy)-4-chloro-4-methyl-3-(tert-butanesulfinylamino)pentanoate is 5aa representative. A similar procedure was used for the synthesis of γ -chloro- α -hydroxy- β -amino esters 5, using the amounts of reagents and the exact reaction time as depicted in Table 1. In a flame dried round-bottomed 250 mL flask, benzyl (tert-butoxycarbonyloxy)acetate 3a (1.0 equiv, 3.00 g, 11.13 mmol) was dissolved in anhydrous THF (40 mL) under N₂-atmosphere. Subsequently, the reaction mixture was cooled to -78 °C and a 1M solution of LiHMDS in THF (1.0 equiv, 11.13 mL, 11.13 mmol) was added dropwise and the mixture was stirred for 1 hour at -78 °C. After deprotonation, N-(tert-butanesulfinyl)- α -chloroaldimine (R_s)-4a (0.20 equiv, 0.34 g, 2.26 mmol) in THF (10 mL) was added dropwise. The reaction mixture was stirred for 3 hours at -78 °C and quenched at -78 °C with a saturated aqueous solution of NH₄Cl (50 mL). After 2 minutes, the cooling bath was removed and the temperature was slowly increased to room temperature. The aqueous phase of the mixture was extracted with EtOAc (3 x 100 mL). The combined organic phases were dried ($MgSO_4$), filtered and evaporated in vacuo. The crude product was purified via flash chromatography to yield 0.80 g (1.70 mmol, 75%) of pure (R_s , 2R, 3R)-benzyl 2-(*tert*butoxycarbonyloxy)-4-chloro-4-methyl-3-(tert-butanesulfinylamino)pentanoate 5aa.

(*R_s*,2*R*,3*R*)-Benzyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methyl-3-(*tert*-butanesulfinyl-

amino)pentanoate 5aa. $R_f = 0.20$ (petroleum ether/EtOAc: 5/4). Brown oil, 75% (0.80 g). $[\alpha]_D$ -8.5 (*c* 0.4, CHCl₃). ee > 98%, HPLC Daicel Chiralcel OD-H column: hexane (99%) / EtOH (1%), 1.0 mL min⁻¹, 35 °C, t_R (R_S , 2R, 3R)-5aa = 21.77 min, (S_S , 2S, 3S)-5aa = 29.27 min. IR (cm⁻¹): 3333,

1745, ¹H NMR (300 MHz, CDCl₃): δ 1.13 (9H, s), 1.47 (9H, s), 1.67 (3H, s), 1.81 (3H, s), 3.96 (1H, d, *J* = 10.5 Hz), 4.01 (1H, d × d, *J* = 10.5, 1.3 Hz), 5.12 (1H, d, *J* = 12.1 Hz), 5.19 (1H, d, *J* = 12.1 Hz), 5.65 (1H, d, *J* = 1.3 Hz), 7.33-7.39 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 22.6 (3C), 27.7 (3C), 29.8, 31.5, 57.2, 66.0, 67.7, 70.6, 74.3, 83.6, 128.5 (2C), 128.7 (3C), 134.7, 152.3, 168.3. MS (ES⁺): *m*/*z* (%): 476/478 (M+H⁺, 100). HRMS (ES) calcd for C₂₂H₃₄ClNO₆S: 476.1862 MH⁺; found: 476.1876/478.1847.

(S_5,2S,3S)-Benzyl2-(tert-butoxycarbonyloxy)-4-chloro-4-methyl-3-(tert-butanesulfinyl-
amino)pentanoate 5aa. $R_f = 0.20$ (petroleum ether/EtOAc: 5/4). Brown oil, 75% (0.47 g). $[\alpha]_D$
+7.2 (c 0.3, CHCl₃). ee > 98%, HPLC Daicel Chiralcel OD-H column: hexane (99%) / EtOH (1%),
1.0 mL min⁻¹, 35 °C, t_R ($R_5,2R,3R$)-5aa = 21.77 min, ($S_5,2S,3S$)-5aa = 29.27 min. IR (cm⁻¹): 1745.
¹H NMR (300 MHz, CDCl₃): δ 1.13 (9H, s), 1.47 (9H, s), 1.67 (3H, s), 1.81 (3H, s), 3.96 (1H, d, J
= 10.5 Hz), 4.02 (1H, d × d, J = 10.5, 1.4 Hz), 5.12 (1H, d, J = 12.1 Hz), 5.20 (1H, d, J = 12.1 Hz),
5.65 (1H, d, J = 1.4 Hz), 7.33-7.39 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 22.6 (3C), 27.7 (3C),
29.8, 31.5, 57.2, 66.0, 67.7, 70.6, 74.3, 83.6, 128.5 (2C), 128.7 (3C), 134.7, 152.2, 168.3. MS (ES⁺):
m/z (%): 476/478 (M+H⁺, 100). HRMS (ES) calcd for C₂₂H₃₄ClNO₆S: 476.1862 MH⁺; found:
476.1883/478.1854.

($R_S, 2R, 3R$)-Methyl2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methyl-3-(*tert*-butanesulfinyl-amino)pentanoate 5ab. $R_f = 0.28$ (petroleum ether/EtOAc: 5/4). Yellow solid, 86% (0.89 g). [α]_D -6.5 (c 0.3, CHCl₃). Mp. 118.5-118.9 °C. IR (cm⁻¹): 1733. ¹H NMR (300 MHz, CDCl₃): δ 1.20 (9H,s), 1.51 (9H, s), 1.68 (3H, s), 1.82 (3H, s), 3.76 (3H, s), 3.94 (1H, d, J = 10.5 Hz), 4.01 (1H, d × d, J= 10.5, 1.0 Hz), 5.64 (1H, d, J = 1.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 22.6 (3C), 27.7 (3C), 29.7,31.5, 52.7, 57.2, 66.1, 70.5, 74.2, 83.6, 152.3, 168.9. MS (ES⁺): m/z (%): 400/402 (M+H⁺, 100).Anal. Calcd for C₁₆H₃₀ClNO₆S: C 48.05; H 7.56; N 3.50, Found: C 48.27; H 7.83; N 3.59.

(R_s ,2R,3R)-Ethyl2-(tert-butoxycarbonyloxy)-4-chloro-4-methyl-3-(tert-butanesulfinyl-
amino)pentanoate 5ac. $R_f = 0.34$ (petroleum ether/EtOAc: 5/4). Yellow solid, 88% (0.77 g). [α]_D -
2.3 (c 0.4, CHCl_3). Mp. 73.6-74.4 °C. IR (cm⁻¹): 3325, 1743, 1726. ¹H NMR (300 MHz, CDCl_3): δ
1.20 (9H, s), 1.30 (3H, t, J = 7.2 Hz), 1.50 (9H, s), 1.68 (3H, s), 1.82 (3H, s), 3.96 (1H, d, J = 10.5
Hz), 4.00 (1H, d × d, J = 10.5, 1.1 Hz), 4.19 (1H, d × q, J = 10.9, 7.2 Hz), 4.21 (1H, d × q, J = 10.9,
7.2 Hz), 5.59 (1H, d, J = 1.1 Hz). ¹³C NMR (75 MHz, CDCl_3): δ 14.1, 22.6 (3C), 27.7 (3C), 29.7,
31.5, 57.2, 62.0, 66.0, 70.6, 74.2, 83.4, 152.3, 168.4. MS (ES⁺): m/z (%): 414/416 (M+H⁺, 100).
Anal. Calcd for $C_{17}H_{32}$ ClNO₆S: C 49.32; H 7.79; N 3.38. Found: C 49.66; H 7.87; N 3.51.

($R_s, 2R, 3R$)-Benzyl2-(*tert*-butoxycarbonyloxy)-4-chloro-4-ethyl-3-(*tert*-butanesulfinyl-
amino)hexanoate 5ba. $R_f = 0.27$ (petroleum ether/EtOAc: 5/1). Yellow oil, 62% (0.85 g). $[\alpha]_D$ -
17.8 (c 0.3, CHCl₃). IR (cm⁻¹): 1737, 1280, 1241, 1046. ¹H NMR (300 MHz, CDCl₃): δ 0.98 (3H, t,
J = 7.2 Hz), 1.03 (3H, t, J = 7.2 Hz), 1.13 (9H, s), 1.47 (9H, s), 1.87-2.11 (4H, m), 4.09 (1H, d, J =
10.2 Hz), 4.17 (1H, d, J = 10.2 Hz), 5.10 (1H, d, J = 12.1 Hz), 5.22 (1H, d, J = 12.1 Hz), 5.54 (1H, s
(br)), 7.31-7.39 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 8.6 (2C), 22.6 (3C), 29.7 (3C), 30.0, 30.3,
57.1, 62.2, 67.7, 73.6, 79.1, 83.4, 128.5 (2C), 128.6 (3C), 134.8, 152.5, 168.5, MS (ES⁺): m/z (%):
504/506 (M+H⁺, 100). HRMS (ES) calcd for C₂₄H₃₈CINO₆S: 504.2175 MH⁺; found:
504.2177/506.2148.

($R_s, 2R, 3R$)-Methyl2-(*tert*-butoxycarbonyloxy)-4-chloro-4-ethyl-3-(*tert*-butanesulfinyl-
amino)hexanoate 5bb. $R_f = 0.22$ (petroleum ether/EtOAc: 5/1). Yellow solid, 44% (0.70 g). $[\alpha]_D$ -
39.4 (c 0.6, CHCl₃). Mp. 78.5-81.5 °C. IR (cm⁻¹): 1736, 1247, 1077. ¹H NMR (300 MHz, CDCl₃): δ
0.99 (3H, t, J = 7.2 Hz), 1.04 (3H, t, J = 7.2 Hz), 1.21 (9H, s), 1.50 (9H, s), 1.86-2.14 (4H, m), 3.76
(3H, s), 4.09 (1H, d, J = 9.9 Hz), 4.16 (1H, d, J = 9.9 Hz), 5.54 (1H, s (br)). ¹³C NMR (75 MHz,
CDCl₃): δ 8.6 (2C), 22.7 (3C), 27.7 (3C), 30.0, 30.3, 53.0, 57.1, 62.2, 73.5, 79.0, 83.4, 152.6, 169.2,

MS (ES⁺): m/z (%): 428/430 (M+H⁺, 100). HRMS (ES) calcd for C₁₈H₃₄ClNO₆S: 428.1862 MH⁺; found: 428.1849/430.1820.

($R_s, 2R, 3R$)-Ethyl2-(tert-butoxycarbonyloxy)-4-chloro-4-ethyl-3-(tert-butanesulfinyl-
amino)hexanoate 5bc. $R_f = 0.19$ (petroleum ether/EtOAc: 3/1). Yellow oil, 65% (1.20 g). $[\alpha]_D$ -
36.7 (c 0.8, CHCl₃). IR (cm⁻¹): 1737, 1240, 1046. ¹H NMR (300 MHz, CDCl₃): δ 0.99 (3H, t, J =
7.2 Hz), 1.04 (3H, t, J = 7.2 Hz), 1.22 (9H, s), 1.30 (3H, t, J = 7.2 Hz), 1.50 (9H, s), 1.86-2.13 (4H,
m), 4.09-4.29 (4H, m), 5.49 (1H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 8.6 (2C), 14.1, 22.8 (3C),
27.7 (3C), 30.0, 30.3, 53.0, 57.2, 62.0, 62.2, 73.5, 79.1, 83.3, 152.6, 168.6, MS (ES⁺): m/z (%):
442/444 (M+H⁺, 100). HRMS (ES) calcd for C₁₉H₃₆ClNO₆S: 442.2019 MH⁺; found:
442.2027/444.1998.

(*R*_{*s*},2*R*,3*R*)-Methyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-3-(*tert*-butanesulfinylamino)butanoate 5cb. R_f = 0.25 (petroleum ether/EtOAc: 5/1). Yellow oil, 42% (0.60 g). [α]_D -37.4 (*c* 0.6, CHCl₃). IR (cm⁻¹): 1738, 1241, 1046. ¹H NMR (300 MHz, CDCl₃): δ 1.17 (9H, s), 1.52 (9H, s), 3.62 (2H, t, J = 11.0 Hz), 3.76 (3H, s), 3.92-4.19 (2H, m), 5.43 (1H, d, J = 1.7 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 22.4 (3C), 27.6 (3C), 42.6, 52.6, 56.8, 59.7, 72.9, 84.0, 152.1, 168.3, MS (ES⁺): *m/z* (%): 394/396 (M+Na, 100). HRMS (ES) calcd for C₁₄H₂₆ClNO₆S: 372.1236 MH⁺; found: 372.1254/374.1225.

$(R_{S}, 2R, 3R)$ -Ethyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-3-(*tert*-butanesulfinylamino)butanoate

5cc. $R_f = 0.31$ (petroleum ether/EtOAc: 5/1). Yellow oil, 35% (0.60 g). $[\alpha]_D$ -21.3 (*c* 0.9, CHCl₃). IR (cm⁻¹): 1739, 1248, 1046. ¹H NMR (300 MHz, CDCl₃): δ 1.18 (9H, s), 1.29 (3H, t, *J* = 7.2 Hz), 1.52 (9H, s), 3.62 (2H, t, *J* = 11.0 Hz), 3.96 (1H, d x d, *J* = 11.0, 4.4 Hz), 4.00-4.10 (1H, m), 4.21 (2H, q, *J* = 7.2 Hz), 5.39 (1H, d, *J* = 2.8 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 22.4 (3C), 27.6 (3C), 42.7, 56.8, 59.7, 61.9, 72.9, 83.9, 152.1, 168.3. MS (ES⁺): m/z (%): 386/388 (M+H⁺, 100). HRMS (ES) calcd for C₁₅H₂₈ClNO₆S: 386.1392 MH⁺; found: 386.1409/388.1380.

(S₅,2S,3S)-Benzyl2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methyl-3-(*p*-toluenesulfinyl-
amino)pentanoate 5da. $R_f = 0.63$ (petroleum ether/EtOAc: 5/4). White solid, 51% (0.68 g). $[\alpha]_D$
+85.2 (*c* 0.4, CHCl₃). Mp. 127.2-127.6 °C. IR (cm⁻¹): 3301, 1747, 1722. ¹H NMR (300 MHz,
CDCl₃): δ 1.46 (9H, s), 1.47 (3H, s), 1.53 (3H, s), 2.40 (3H, s), 4.00 (1H, d × d, J = 10.5, 1.1 Hz),
4.84 (1H, d, J = 10.5 Hz), 5.24 (1H, d, J = 12.1 Hz), 5.35 (1H, d, J = 12.1 Hz), 5.69 (1H, d, J = 1.1
Hz), 7.23 (2H, d, J = 8.3 Hz), 7.31-7.42 (5H, m), 7.49 (2H, d, J = 8.3 Hz). ¹³C NMR (75 MHz,
CDCl₃): δ 21.4, 27.6 (3C), 29.3, 31.3, 62.9, 67.9, 70.2, 73.8, 83.6, 125.8 (2C), 128.5, 128.6 (4C),
129.5 (2C), 135.0, 141.4, 141.7, 152.1, 168.3. MS (ES⁺): m/z (%): 510/512 (M+H⁺, 100). Anal.
Calcd for C₂₅H₃₂ClNO₆S: C 58.87; H 6.32; N 2.75. Found: C 58.92; H 6.60; N 2.64.

(*S*_{*s*}, *2S*, *3S*)-Methyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate 5db. $R_f = 0.20$ (petroleum ether/EtOAc: 3/1). White solid, 51% (0.91 g). [α]_D +95.8 (*c* 0.4, CHCl₃). Mp. 149.4-149.8 °C. IR (cm⁻¹): 3283, 1748, 1720, ¹H NMR (300 MHz, CDCl₃): δ 1.47 (3H, s), 1.50 (9H, s), 1.54 (3H, s), 2.42 (3H, s), 3.88 (3H, s), 3.98 (1H, d × d, *J* = 10.5, 1.4 Hz), 4.86 (1H, d, *J* = 10.5 Hz), 5.66 (1H, d, *J* = 1.4 Hz), 7.32 (2H, d, *J* = 8.0 Hz), 7.57 (2H, d, *J* = 8.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 21.5, 27.8 (3C), 29.5, 31.3, 53.0, 62.8, 70.4, 73.7, 83.7, 125.9 (2C), 129.7 (2C), 141.4, 142.0, 152.2, 169.0, MS (ES⁺): *m*/*z* (%): 434/436 (M+H⁺, 100). Anal. Calcd for C₁₉H₂₈CINO₆S: C 52.29; H 6.50; N 3.23. Found: C 52.59; H 6.59; N 3.41.

 $(S_{s}, 2S, 3S)$ -Ethyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methyl-3-(*p*-toluenesulfinylamino)pentanoate 5dc. R_f = 0.24 (petroleum ether/EtOAc: 3/1). White solid, 75% (1.03 g). [α]_D +85.1 (*c* 0.4, CHCl₃). Mp. 98.2-98.8 °C. IR (cm⁻¹): 3280, 1745, 1714. ¹H NMR (300 MHz, CDCl₃): δ 1.34 (3H, t, J = 7.2 Hz), 1.50 (9H, s), 1.51 (3H, s), 1.60 (3H, s), 2.42 (3H, s), 4.02 (1H, d × d, J = 10.7, 1.1 Hz), 4.30 (1H, d × q, J = 10.7, 7.2 Hz), 4.36 (1H, d × q, J = 10.7, 7.2 Hz), 4.82 (1H, d, J = 10.5 Hz), 5.63 (1H, d, J = 1.1 Hz), 7.31 (2H, d, J = 8.3 Hz), 7.59 (2H, d, J = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 21.4, 27.7 (3C), 29.4, 31.3, 62.2, 63.4, 70.2, 73.7, 83.5, 125.9 (2C₃), 129.6 (2C), 141.6, 141.8, 152.1, 168.5. MS (ES⁺): m/z (%): 448/450 (M+H⁺, 100). Anal. Calcd for C₂₀H₃₀ClNO₆S: C 53.62; H 6.75; N 3.13. Found: C 53.25; H 6.40; N 2.79.

(*S_s*,2*S*,3*S*)-Ethyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-3-(*p*-toluenesulfinylamino)butanoate 5ec. $R_f = 0.18$ (petroleum ether/EtOAc: 2/1). Yellow oil, 35% (0.70 g). [α]_D +5.6 (*c* 0.2, CHCl₃). IR (cm⁻¹): 1744, 1251, 1093. ¹H NMR (300 MHz, CDCl₃): δ 1.35 (3H, t, *J* = 7.2 Hz), 1.49 (9H, s), 2.42 (3H, s), 3.52 (1H, t, *J* = 11.0 Hz), 3.66 (1H, d x d, *J* = 11.0, 4.4 Hz), 4.03-4.19 (1H, m), 4.23-4.41 (2H, m), 4.59 (1H, d, *J* = 11.0 Hz), 5.38 (1H, d, *J* = 2.2 Hz), 7.30 (2H, d, *J* = 8.0 Hz), 7.50 (2H, d, *J* = 8.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 21.4, 27.6 (3C), 42.9, 56.6, 62.2, 73.1, 83.9, 125.5 (2C), 129.7 (2C), 141.1, 142.0, 152.0, 167.9, MS (ES⁺): *m/z* (%): 420/422 (M+H⁺, 100). HRMS (ES) calcd for C₁₈H₂₆ClNO₆S: 420.1236 MH⁺; found: 420.1246/422.1217.

Synthesis of β , γ -aziridino-*a*-hydroxy esters 6. The synthesis of (R_s ,2R,2'S)-benzyl 2-(*tert*butoxycarbonyloxy)-2-(3,3-dimethyl-1-*tert*-butanesulfinylaziridin-2-yl)acetate 6aa is representative. To a solution of (R_s ,2R,3R)-benzyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methyl-3-(*tert*-butanesulfinylamino)pentanoate 5aa (0.18 g, 0.38 mmol) in acetone (10 mL) was added K₂CO₃ (3.0 equiv, 1.13 mmol, 0.16 g) at room temperature. The reaction mixture was allowed to stir for 24 hours at reflux temperature. After 24 hours, the K₂CO₃ was filtered off and the solvent was evaporated *in vacuo*. The resulting oil was redissolved in EtOAc (10 mL) and washed with water (2 x 5 mL). The organic phase was dried (MgSO₄), filtered and evaporated *in vacuo*. The crude product was purified by flash chromatography to yield 0.13 g (0.26 mmol, 68%) of $(R_{S},2R,2'S)$ -benzyl 2-(*tert*-butoxycarbonyloxy)-2-(3,3-dimethyl-1-*tert*-butanesulfinylaziridin-2-yl)acetate **6aa**.

(R_s , 2R, $2^{\circ}S$)-Benzyl 2-(*tert*-butoxycarbonyloxy)-2-(3, 3-dimethyl-1-*tert*-butanesulfinylaziridin-2yl)acetate 6aa. R_f = 0.43 (petroleum ether/EtOAc: 5/4). Brown oil, 68% (0.13 g). [α]_D -54.8 (c 0.4, CHCl₃). IR (cm⁻¹): 1744. ¹H NMR (300 MHz, CDCl₃): δ 1.25 (9H, s), 1.33 (3H, s), 1.47 (9H, s), 1.50 (3H, s), 2.72 (1H, d, J = 9.6 Hz), 4.76 (1H, d, J = 9.6 Hz), 5.13 (1H, d, J = 12.1 Hz), 5.33 (1H, d, J = 12.1 Hz), 7.30-7.41 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 22.1, 22.8 (3C), 23.3, 27.8 (3C), 46.6, 48.6, 56.9, 67.7, 74.5, 83.5, 128.6 (2C), 128.8 (3C), 134.9, 152.7, 167.8. MS (ES⁺): m/z (%): 440 (M+H⁺, 50), 384 (100). HRMS (ES) calcd for C₂₂H₃₃NO₆S: 440.2095 MH⁺; found: 440.2119.

(R_s ,2R,2'S)-Methyl 2-(*tert*-butoxycarbonyloxy)-2-(3,3-dimethyl-1-*tert*-butanesulfinylaziridin-2-yl)acetate 6ab. $R_f = 0.46$ (petroleum ether/EtOAc: 5/4). Brown oil, 88% (0.15 g). [α]_D -11.5 (c 0.4, CHCl₃). IR (cm⁻¹): 1745. ¹H NMR (300 MHz, CDCl₃): δ 1.27 (9H, s), 1.42 (3H, s), 1.50 (9H, s), 1.63 (3H, s), 2.76 (1H, d, J = 9.4 Hz), 3.81 (3H, s), 4.78 (1H, d, J = 9.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 22.2, 22.7 (3C), 23.2, 27.7 (3C), 46.4, 48.7, 52.8, 56.8, 74.2, 83.5, 152.6, 168.4. MS (ES⁺): m/z (%): 364 (M+H⁺, 99), 308 (100). HRMS (ES) calcd for C₁₆H₂₉NO₆S: 364.1782 MH⁺; found: 364.1771.

(R_s ,2R,2'S)-Ethyl 2-(*tert*-butoxycarbonyloxy)-2-(3,3-dimethyl-1-*tert*-butanesulfinylaziridin-2yl)acetate 6ac. $R_f = 0.41$ (petroleum ether/EtOAc: 5/4). Brown oil, 67% (0.12 g). [α]_D -83.4 (c 0.4, CHCl₃). IR (cm⁻¹): 1744. ¹H NMR (300 MHz, CDCl₃): δ 1.26 (9H, s), 1.29 (3H, t, J = 7.2 Hz), 1.41 (3H, s), 1.48 (9H, s), 1.61 (3H, s), 2.73 (1H, d, J = 9.4 Hz), 4.21 (1H, d × q, J = 11.0, 7.2 Hz), 4.29 (1H, d × q, J = 11.0, 7.2 Hz), 4.72 (1H, d, J = 9.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 22.3, 22.8 (3C), 23.4, 27.8 (3C), 46.6, 48.6, 56.9, 62.0, 74.5, 83.4, 152.7, 167.9. MS (ES⁺): *m/z* (%): 378 (M+H⁺, 100), 322 (76). HRMS (ES) calcd for C₁₇H₃₁NO₆S: 378.1939 MH⁺; found: 378.1958.

(R_{s} , 2R, 2'S)-Benzyl 2-(*tert*-butoxycarbonyloxy)-2-(3, 3-diethyl-1-*tert*-butanesulfinylaziridin-2yl)acetate 6ba. R_f = 0.37 (petroleum ether/EtOAc: 3/1). Yellow oil, yield 79% (0.35 g). [α]_D -75.6 (c 1.0, CHCl₃). IR (cm⁻¹): 1756, 1734, 1298, 1112, 861. ¹H NMR (300 MHz, CDCl₃): δ 0.79 (3H, t, J = 7.2 Hz), 1.01 (3H, t, J = 7.2 Hz), 1.24 (9H, s), 1.46 (9H, s), 1.45-1.50 (1H, m), 1.60-1.75 (1H, m), 1.79-1.91 (1H, m), 2.10-2.23 (1H, m), 2.70 (1H, d, J = 9.4 Hz), 4.80 (1H, d, J = 9.4 Hz), 5.18 (1H, d, J = 11.7 Hz), 5.26 (1H, d, J = 11.7 Hz), 7.29-7.38 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 9.0, 11.1, 22.1 (3C), 24.5, 25.6, 27.6 (3C), 49.8, 54.8, 57.2, 67.7, 74.1, 83.4, 128.6 (2C), 128.7, 128.8 (2C), 134.7, 152.5, 167.8. MS (ES⁺): m/z (%): 468 (M+H⁺, 100). HRMS (ES) calcd for C₂₄H₃₇NO₆S: 468.2414 MH⁺; found: 468.2425.

(R_s ,2R,2'S)-Methyl 2-(*tert*-butoxycarbonyloxy)-2-(3,3-diethyl-1-*tert*-butanesulfinylaziridin-2yl)acetate 6bb. R_f = 0.41 (petroleum ether/EtOAc: 3/1). White solid, 66% (0.15 g). [α]_D -118.9 (c 0.2, CHCl₃). Mp. 99.0-101.0 °C. IR (cm⁻¹): 1736, 1252, 1089. ¹H NMR (300 MHz, CDCl₃): δ 0.99 (3H, t, J = 7.2 Hz), 1.06 (3H, t, J = 7.2 Hz), 1.25 (9H, s), 1.49 (9H, s), 1.55-1.59 (2H, m), 1.90-2.05 (1H, m), 2.17-2.32 (1H, m), 2.71 (1H, d, J = 9.4 Hz), 3.80 (3H, s), 4.80 (1H, d, J = 9.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 9.0, 11.3, 22.1 (3C), 24.4, 25.6, 27.7 (3C), 49.8, 52.6, 54.7, 57.2, 73.9, 83.4, 152.5, 168.4, MS (ES⁺): m/z (%): 392 (M+H⁺, 100). HRMS (ES) calcd for C₁₈H₃₃NO₆S: 392.2095 MH⁺; found: 392.2112.

 $(R_s, 2R, 2'S)$ -Ethyl2-(*tert*-butoxycarbonyloxy)-2-(3,3-diethyl-1-*tert*-butanesulfinylaziridin-2-yl)acetate 6bc. $R_f = 0.35$ (petroleum ether/EtOAc: 3/1). Yellow oil, 47% (0.28 g). $[\alpha]_D$ -80.2 (c 1.2,CHCl_3). IR (cm⁻¹): 1744, 1252, 1089. ¹H NMR (300 MHz, CDCl_3): δ 1.00 (3H, t, J = 7.2 Hz), 1.08

(3H, t, J = 7.2 Hz), 1.26 (9H, s), 1.33 (3H, t, J = 7.2 Hz), 1.49 (9H, s), 1.52-1.60 (2H, m), 1.90-2.04 (1H, m), 2.20-2.32 (1H, m), 2.71 (1H, d, J = 9.4 Hz), 4.26 (2H, q, J = 7.2 Hz), 4.76 (1H, d, J = 9.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 9.0, 11.4, 14.1, 22.1 (3C), 24.5, 25.7, 27.7 (3C), 49.9, 54.7, 57.2, 62.0, 74.0, 83.3, 152.5, 167.9. MS (ES⁺): m/z (%): 406 (M+H⁺, 100). HRMS (ES) calcd for C₁₉H₃₅NO₆S: 406.2252 MH⁺; found: 406.2271.

(R_s ,2R,2'S)-Methyl 2-(*tert*-butoxycarbonyloxy)-2-(1-*tert*-butanesulfinylaziridin-2-yl)acetate 6cb. R_f = 0.35 (petroleum ether/EtOAc: 3/1). Yellow solid, 70% (0.70 g). [α]_D -179.4 (c 0.5, CHCl₃). Mp. 88.0-90.0 °C. IR (cm⁻¹): 1740, 1250, 1079. ¹H NMR (300 MHz, CDCl₃): δ 1.22 (9H, s), 1.51 (9H, s), 2.10 (1H, d, J = 3.9 Hz), 2.54-2.60 (1H, m), 2.72 (1H, d, J = 7.2 Hz), 3.79 (3H, s), 4.82 (1H, d, J = 6.6 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 22.1, 22.6 (3C), 27.6 (3C), 32.4, 53.0, 57.4, 74.5, 83.7, 152.5, 168.0, MS (ES⁺): m/z (%): 358 (M+Na⁺, 100). HRMS (ES) calcd for C₁₄H₂₅NO₆S: 336.1469 MH⁺; found: 336.1459.

(R_S,2R,2'S)-Ethyl 2-(tert-butoxycarbonyloxy)-2-(1-tert-butanesulfinylaziridin-2-yl)acetate 6cc.

R_f = 0.24 (petroleum ether/EtOAc: 3/1). Yellow solid, 64% (0.50 g). [α]_D -212.8 (*c* 1.1, CHCl₃). Mp. 119.0-121.0 °C. IR (cm⁻¹): 1739, 1244, 1117. ¹H NMR (300 MHz, CDCl₃): δ 1.22 (9H, s), 1.29 (3H, t, *J* = 7.2 Hz), 1.51 (9H, s), 2.10 (1H, d, *J* = 3.9 Hz), 2.58 (1H, d x d x d, *J* = 7.2, 6.9, 3.9 Hz), 2.72 (1H, d, *J* = 7.2 Hz), 4.16-4.32 (2H, m), 4.79 (1H, d, *J* = 6.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 22.0, 22.6 (3C), 27.7 (3C), 32.4, 57.4, 61.8, 74.4, 83.5, 152.5, 167.4, MS (ES⁺): m/z (%): 372 (M+Na⁺, 100). HRMS (ES) calcd for C₁₅H₂₇NO₆S: 350.1626 MH⁺; found: 350.1640.

(*S_s*,2*S*,2'*R*)-Benzyl 2-(*tert*-butoxycarbonyloxy)-2-(3,3-dimethyl-1-*p*-toluenesulfinylaziridin-2yl)acetate 6da. $R_f = 0.31$ (petroleum ether/EtOAc: 3/1). Yellow oil, 96% (0.16 g). [α]_D -50.5 (*c* 2.1, CHCl₃). IR (cm⁻¹): 1743, 1252, 1099. ¹H NMR (300 MHz, CDCl₃): δ 1.24 (3H, s), 1.34 (3H, s), 1.44 (9H, s), 2.42 (3H, s), 2.77 (1H, d, J = 9.4 Hz), 4.72 (1H, d, J = 9.4 Hz), 5.08 (1H, d, J = 12.1 Hz), 5.33 (1H, d, J = 12.1 Hz), 7.26-7.37 (7H, m), 7.65 (2H, d, J = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 20.5, 21.5, 23.1, 27.6 (3C), 44.4, 49.1, 67.5, 74.0, 83.2, 125.4 (2C), 128.5 (2C), 128.5, 128.6 (2C), 129.5 (2C), 134.9, 141.6, 142.0, 152.5, 167.7. MS (ES⁺): m/z (%): 474 (M+H⁺, 100). HRMS (ES) calcd for C₂₅H₃₁NO₆S: 474.1945 MH⁺; found: 474.1934.

(*S*_{*s*}, *2S*, *2*'*R*)-Methyl 2-(*tert*-butoxycarbonyloxy)-2-(3,3-dimethyl-1-*p*-toluenesulfinylaziridin-2yl)acetate 6db. $R_f = 0.41$ (petroleum ether/EtOAc: 5/4). Brown oil, 68% (0.14 g). [α]_D +149.4 (*c* 0.4, CHCl₃). IR (cm⁻¹): 1744. ¹H NMR (300 MHz, CDCl₃): δ 1.33 (3H, s), 1.47 (3H, s), 1.48 (9H, s), 2.43 (3H, s), 2.81 (1H, d, *J* = 9.4 Hz), 3.79 (3H, s), 4.73 (1H, d, *J* = 9.4 Hz), 7.31 (2H, d, *J* = 8.3 Hz), 7.67 (2H, d, *J* = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 20.6, 21.5, 23.1, 27.6 (3C), 44.3, 49.2, 52.8, 73.9, 83.2, 125.4 (2C), 129.5 (2C), 141.6, 142.1, 152.5, 168.3. MS (ES⁺): *m*/*z* (%): 398 (M+H⁺, 65), 342 (95), 288 (100). HRMS (ES) calcd for C₁₉H₂₇NO₆S: 398.1626 MH⁺; found: 398.1644.

(*S_s*, *2S*, *2*'*R*)-Ethyl **2**-(*tert*-butoxycarbonyloxy)-**2**-(**3**, **3**-dimethyl-1-*p*-toluenesulfinylaziridin-2yl)acetate 6dc. $R_f = 0.33$ (petroleum ether/EtOAc: 3/1). Yellow oil, 82% (0.50 g). [α]_D +18.0 (*c* 2.8, CHCl₃). IR (cm⁻¹): 1737, 1241, 1045, ¹H NMR (300 MHz, CDCl₃): δ 1.28 (3H, t, *J* = 7.2 Hz), 1.34 (3H, s), 1.46 (3H, s), 1.48 (9H, s), 2.43 (3H, s), 2.81 (1H, d, *J* = 9.4 Hz), 4.11-4.35 (2H, m), 4.70 (1H, d, *J* = 9.4 Hz), 7.31 (2H, d, *J* = 8.3 Hz), 7.67 (2H, d, *J* = 8.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 20.7, 21.6, 23.2, 27.7 (3C), 44.4, 49.2, 61.9, 74.1, 83.2, 125.5 (2C), 129.6 (2C), 141.6, 142.2, 152.6, 167.8. MS (ES⁺): *m*/*z* (%): 412 (M+H⁺, 100). HRMS (ES) calcd for C₂₀H₂₉NO₆S: 412.1788 MH⁺; found: 412.1781.

Synthesis of O-deprotected $(R_s, 2R, 3R)$ - γ -chloro- α -hydroxy- β -amino esters $(R_s, 2R, 3R)$ - γ . The

synthesis of $(R_S, 2R, 3R)$ -benzyl 4-chloro-2-hydroxy-4-methyl-3-(tertbutanesulfinylamino)pentanoate 7aa is representative. To a solution of $(R_S, 2R, 3R)$ -benzyl 2-(tertbutoxycarbonyloxy)-4-chloro-4-methyl-3-(*tert*-butanesulfinylamino)pentanoate **5aa** (1.0 equiv, 0.61 g, 1.29 mmol) in CH₂Cl₂ (7 mL) was added dropwise trifluoroacetic acid (3 mL) at room temperature. The reaction mixture was stirred for one hour at room temperature and subsequently poured out in water (7 mL) and quenched with K_2CO_3 until pH = 7. The aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic phases were dried (MgSO₄), filtered and evaporated in vacuo. The crude product was purified via flash chromatography to yield 0.36 g (0.96)mmol, 75%) of pure $(R_S, 2R, 3R)$ -benzyl 4-chloro-2-hydroxy-4-methyl-3-(tertbutanesulfinylamino)pentanoate 7aa. Compound 7ac was purified by crystallization in diethyl ether.

(R_s ,2R,3R)-Benzyl 4-chloro-2-hydroxy-4-methyl-3-(*tert*-butanesulfinylamino)pentanoate 7aa. R_f = 0.27 (petroleum ether/EtOAc: 1/1). Yellow oil, 75% (0.36 g). [α]_D +6.3 (*c* 2.0, CHCl₃). IR (cm⁻¹): 3266, 1739. ¹H NMR (300 MHz, CDCl₃): δ 1.09 (9H, s), 1.68 (3H, s), 1.82 (3H, s), 3.48 (1H, s (br)), 3.88 (1H, d x d, J = 9.9, 1.1 Hz), 4.04 (1H, d, J = 9.9 Hz), 4.86 (1H, d, J = 1.1 Hz), 5.16 (1H, d, J = 12.1 Hz), 5.24 (1H, d, J = 12.1 Hz), 7.35-7.40 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 22.6 (3C), 28.8, 31.5, 57.1, 66.7, 68.1, 70.8, 71.8, 128.7 (4C), 128.8, 134.5, 173.5. MS (ES⁺): m/z (%): 376/378 (M+H⁺, 100). HRMS (ES) calcd for C₁₇H₂₆ClNO₄S: 376.1344 MH⁺; found: 376.1345/378.1311.

 $(R_{S},2R,3R)$ -Methyl 4-chloro-2-hydroxy-4-methyl-3-(*tert*-butanesulfinylamino)pentanoate 7ab. R_f = 0.29 (petroleum ether/EtOAc: 1/2). White crystals, 80% (0.27 g). [α]_D -27.1 (*c* 2.0, CHCl₃). Mp. 113.1-115.1 °C. IR (cm⁻¹): 3293, 1742, ¹H NMR (300 MHz, CDCl₃): δ 1.17 (9H, s), 1.70 (3H, s), 1.85 (3H, s), 3.23 (1H, s (br)), 3.82 (3H, s), 3.86 (1H, d, *J* = 9.9 Hz), 3.97 (1H, d, *J* = 9.9 Hz), 4.86 (1H, s). ¹³C NMR (75 MHz, CDCl₃): δ 22.6 (3C), 28.8, 31.5, 53.1, 57.1, 66.6, 70.7, 71.8, 174.1. MS (ES⁺): *m*/*z* (%): 300/302 (M+H⁺, 100). HRMS (ES) calcd for C₁₁H₂₂ClNO₄S: 300.1031 MH⁺; found: 300.1024/302.0995.

(R_s ,2R,3R)-Ethyl 4-chloro-2-hydroxy-4-methyl-3-(*tert*-butanesulfinylamino)pentanoate 7ac. White crystals, 86% (0.24 g). [α]_D -9.3 (*c* 2.1, CHCl₃). Mp 96.3-100.3 °C. IR (cm⁻¹): 3288, 1738. ¹H NMR (300 MHz, CDCl₃): δ 1.18 (9H, s), 1.34 (3H, t, *J* = 7.2 Hz), 1.70 (3H, s), 1.85 (3H, s), 3.29 (1H, d, *J* = 3.9 Hz), 3.85 (1H, d x d, *J* = 9.9, 1.1 Hz), 3.99 (1H, d, *J* = 9.9 Hz), 4.16-4.35 (2H, m), 4.82 (1H, d x d, *J* = 3.9, 1.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 22.6 (3C), 28.8, 31.6, 57.0, 62.6, 66.6, 70.7, 71.8, 173.7. MS (ES⁺): m/z (%): 314/316 (M+H⁺, 100). HRMS (ES) calcd for C₁₂H₂₄CINO₄S: 314.1187 MH⁺; found: 314.1176/316.1147.

(*R*_{*S*},2*R*,3*R*)-Methyl 4-chloro-4-ethyl-2-hydroxy-3-(*tert*-butanesulfinylamino)hexanoate 7bb. R_f = 0.58 (petroleum ether/EtOAc: 1/2). Yellow oil, 70% (0.19 g). [α]_D -12.5 (*c* 0.2, CHCl₃). IR (cm⁻¹): 3341, 2976, 1737, 1212, 1044. ¹H NMR (300 MHz, CDCl₃): δ 1.02 (3H, t, *J* = 7.2 Hz), 1.08 (3H, t, *J* = 7.2 Hz), 1.20 (9H, s), 1.94-2.18 (5H, m), 3.82 (3H, s), 4.00 (1H, d, *J* = 9.7 Hz), 4.14 (1H, d, *J* = 9.7 Hz), 4.71 (1H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 8.7 (2C), 22.7 (3C), 29.9, 30.4, 53.1, 57.2, 62.7, 70.5, 80.4, 174.0, MS (ES⁺): m/z (%): 328/330 (M+H⁺, 100). HRMS (ES) calcd for C₁₃H₂₆ClNO₄S: 328.1338 MH⁺; found: 328.1348/330.1319.

Synthesis of *N*-deprotected $(2R,3R)-\gamma$ -chloro- α -hydroxy- β -amino esters (2R,3R)-9. The synthesis of (2R,3R)-benzyl 3-amino-2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methylpentanoate hydrochloride **9aa** is representative. To a solution of $(R_s, 2R, 3R)$ -benzyl 2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methyl-3-(*tert*-butanesulfinylamino)pentanoate **5aa** (1.0 equiv, 0.69 g, 1.45 mmol) in

dioxane (60 mL) was added a saturated solution of HCl in dioxane (15 mL) at room temperature. The reaction mixture was stirred for one hour at room temperature and subsequently the solvent was evaporated *in vacuo*. Precipitation in dry Et₂O afforded 0.47 g (1.15 mmol, 79%) of pure (2R,3R)-benzyl 3-amino-2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methylpentanoate hydrochloride **9aa**.

(2R,3R)-Benzyl3-amino-2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methylpentanoatehydrochloride 9aa.Yellow solid, 79% (0.47 g). $[\alpha]_D$ +5.3 (c 0.4, CHCl₃). Mp 150.9-151.7 °C. IR(cm⁻¹): 3232, 1752, 1728. ¹H NMR (300 MHz, CDCl₃): δ 1.34 (9H, s), 1.86 (6H, s), 4.48 (1H, s(br)), 5.25 (1H, d, J = 12.1 Hz), 5.33 (1H, d, J = 12.1 Hz), 5.76 (1H, s (br)), 7.20-7.37 (5H, m), 8.92(3H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 27.6 (3C), 29.9, 31.1, 59.4, 68.1, 68.9, 70.7, 84.3, 128.4,128.5 (2C), 128.6 (2C), 135.0, 151.8, 167.5. MS (ES⁺): m/z (%): 372/374 (M+H⁺ - HCl, 100). Anal.Calcd for C₁₈H₂₇Cl₂NO₅: C 52.95; H 6.67; N 3.43. Found: C 53.12; H 6.93; N 3.52.

(2*R*,3*R*)-Methyl 3-amino-2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methylpentanoate hydrochloride 9ab. White solid, 93% (0.44 g). $[\alpha]_D$ -13.0 (*c* 2.2, CHCl₃). Mp 147.2-151.2 °C. IR (cm⁻¹): 2980, 1752, 1727. ¹H NMR (300 MHz, CDCl₃): δ 1.50 (9H, s), 1.87 (6H, s (br)), 3.89 (3H, s), 4.26 (1H, s (br)), 5.73 (1H, s (br)), 9.01 (3H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 27.8 (3C), 30.4, 31.3, 54.2, 59.8, 67.8, 70.8, 84.3, 151.8, 167.7. MS (ES⁺): *m/z* (%): 296/298 (M+H⁺ - HCl, 100). HRMS (ES) calcd for C₁₂H₂₂CINO₅: 296.1259 MH⁺ - HCl; found: 296.1259/298.1229.

(2R,3R)-Ethyl3-amino-2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methylpentanoatehydrochloride 9ac. White solid, 92% (0.43 g). $[\alpha]_D$ +14.0 (c 0.3, CHCl₃). Mp 140.0-142.0 °C. IR(cm⁻¹): 3198, 1751, 1729. ¹H NMR (300 MHz, CDCl₃): δ 1.32 (3H, t, J = 6.9 Hz), 1.50 (9H, s), 1.83(3H, s), 1.89 (3H, s), 4.25 (1H, s (br)), 4.34 (2H, q, J = 6.9 Hz), 5.67 (1H, s (br)), 8.94 (3H, s (br)).¹³C NMR (75 MHz, CDCl₃): δ 13.9, 27.7 (3C), 29.8, 31.2, 59.4, 63.2, 67.9, 70.7, 84.1, 151.7, 167.1.

MS (ES⁺): *m*/*z* (%): 310/312 (M+H⁺ - HCl, 100). Anal. Calcd for C₁₃H₂₅Cl₂NO₅: C 45.10; H 7.28; N 4.05. Found: C 45.12; H 7.19; N 3.99.

Synthesis of *N*,*O*-deprotected (2*R*,3*R*)-γ-chloro-α-hydroxy-β-amino ester trifluoroacetic acid salts (2*R*,3*R*)-10. The synthesis of (2*R*,3*R*)-benzyl 3-amino-4-chloro-2-hydroxy-4methylpentanoate trifluoroacetate **10aa** is representative. To a solution of (2*R*,3*R*)-benzyl 3-amino-2-(*tert*-butoxycarbonyloxy)-4-chloro-4-methylpentanoate hydrochloride **9aa** (0.35 g, 0.86 mmol) in CH₂Cl₂ (6 mL) was added trifluoroacetic acid (2.7 mL) at room temperature. The reaction mixture was stirred for one hour at room temperature and subsequently evaporated *in vacuo*, affording 0.32 g of pure (2*R*,3*R*)-benzyl 3-amino-4-chloro-2-hydroxy-4-methylpentanoate trifluoroacetate **10aa** (0.83 mmol, 97%).

(2*R*,3*R*)-Benzyl 3-amino-4-chloro-2-hydroxy-4-methylpentanoate trifluoroacetate 10aa. Yellow oil, 97% (0.32 g). $[\alpha]_D$ -4.5 (*c* 1.3, CHCl₃). IR (cm⁻¹): 3038, 1739, 1665, 1142. ¹H NMR (300 MHz, CDCl₃): δ 1.70 (3H, s), 1.76 (3H, s), 3.95 (1H, s), 4.65 (1H, s), 5.12 (1H, d, *J* = 12.1 Hz), 5.29 (1H, d, *J* = 12.1 Hz), 7.26-7.35 (5H, m), 8.21 (4H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 28.1, 29.9, 61.9, 67.1, 68.9, 69.2, 128.7 (2C), 128.9 (2C), 129.1, 134.1, 171.6. MS (ES⁺): *m/z* (%): 272/274 (M+H⁺ - TFA, 100). HRMS (ES) calcd for C₁₃H₁₈ClNO₃: 272.1048 MH⁺ - TFA; found: 272.1058/274.1029.

(2*R*,3*R*)-Methyl 3-amino-4-chloro-2-hydroxy-4-methylpentanoate trifluoroacetate 10ab. Yellow oil, 84% (0.37 g). $[\alpha]_D$ -18.4 (*c* 2.0, CHCl₃). IR (cm⁻¹): 2961, 1669, 1183, 1135, ¹H NMR (300 MHz, CDCl₃): δ 1.72 (3H, s), 1.78 (3H, s), 3.79 (3H, s), 3.91 (1H, s), 4.66 (1H, s), 7.60 (4H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 28.2, 29.7, 53.6, 61.8, 67.0, 69.0, 172.4. MS (ES⁺): *m/z* (%): 196/198 (M+H⁺ - TFA, 100). HRMS (ES) calcd for $C_7H_{14}CINO_3$: 196.0735 MH⁺ - TFA; found: 196.0740/198.0707.

(2*R*,3*R*)-Ethyl 3-amino-4-chloro-2-hydroxy-4-methylpentanoate trifluoroacetate 10ac. Yellow oil, 96% (0.27 g). $[\alpha]_D$ -14.7 (*c* 1.0, CHCl₃). IR (cm⁻¹): 2987, 1734, 1668, 1184, 1135, ¹H NMR (300 MHz, CDCl₃): δ 1.30 (3H, t, *J* = 7.2 Hz), 1.73 (3H, s), 1.80 (3H, s), 3.90 (1H, s (br)), 4.16-4.36 (2H, m), 4.62 (1H, s (br)), 6.96 (4H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 13.8, 28.1, 29.9, 61.9, 63.5, 67.0, 69.2, 171.9. MS (ES⁺): *m*/*z* (%): 210/212 (M+H⁺ - TFA, 100). HRMS (ES) calcd for C₈H₁₆ClNO₃: 210.0891 MH⁺ - TFA; found: 210.0896/212.0866.

Synthesis of (4R,5R)-alkyl 4-(2-chloro-2-propyl)oxazolidin-2-one-5-carboxylates (4R,5R)-11. The synthesis of (4R,5R)-benzyl 4-(2-chloro-2-propyl)oxazolidin-2-one-5-carboxylate (4R,5R)-11aa is representative. To a solution of (2R,3R)-benzyl 3-amino-4-chloro-2-hydroxy-4methylpentanoate trifluoroacetate 10aa (0.09 g, 0.23 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise DIPEA (4.0 equiv, 0.12 g, 0.92 mmol) at 0 °C. The reaction mixture was stirred for 15 minutes at 0 °C, and subsequently triphosgene (1.2 equiv, 0.08 g, 0.28 mmol) dissolved in dry CH₂Cl₂ was added dropwise. The reaction was allowed to warm up to room temperature and after one hour, the reaction mixture was poured out in brine (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL) and the combined organic phases were dried (MgSO₄), filtered and evaporated *in vacuo*. The crude product was purified by crystallization in diethyl ether to yield 0.06 g (0.19 mmol, 82%) of pure (4R,5R)-benzyl 4-(2-chloro-2-propyl)oxazolidin-2-one-5-carboxylate (4R,5R)-11aa.

(4*R*,5*R*)-Benzyl 4-(2-chloro-2-propyl)oxazolidin-2-one-5-carboxylate 11aa. White solid, 82% (0.06 g). [α]_D -16.1 (*c* 0.8, CHCl₃). Mp. 66.0-70.0 °C. IR (cm⁻¹): 3262, 1761, 1209, 1096. ¹H NMR

(300 MHz, CDCl₃): δ 1.57 (6H, s), 3.93 (1H, d, *J* = 3.3 Hz), 4.91 (1H, d, *J* = 3.3 Hz), 5.26 (1H, d, *J* = 12.1 Hz), 5.28 (1H, d, *J* = 12.1 Hz), 7.02 (1H, s (br)), 7.28-7.47 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 27.6, 27.8, 65.1, 68.1, 69.2, 75.0, 128.5 (2C), 128.9 (3C), 134.6, 158.3, 168.4. MS (ES⁺): *m*/*z* (%): 315/317 (M+NH₄⁺, 100). HRMS (ES) calcd for C₁₄H₁₆ClNO₄: 298.0841 MH⁺; found: 298.0844/300.0815.

(4*R*,5*R*)-Methyl 4-(2-chloro-2-propyl)oxazolidin-2-one-5-carboxylate 11ab. White solid, 76% (0.08 g). [α]_D -23.1 (*c* 0.9, CHCl₃). Mp. 125.4-129.4 °C. IR (cm⁻¹): 3297, 1746, 1720, 1240, 1116. ¹H NMR (300 MHz, CDCl₃): δ 1.60 (6H, s), 3.86 (3H, s), 3.97 (1H, d x d, J = 3.3, 1.1 Hz), 4.89 (1H, d, J = 3.3 Hz), 6.89 (1H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 27.6, 27.7, 53.4, 65.1, 69.2, 74.9, 158.1, 169.1. MS (ES⁺): m/z (%): 239/241 (M+NH₄⁺, 100). HRMS (ES) calcd for C₈H₁₂ClNO₄: 222.0528 MH⁺; found: 222.0530/224.0502.

(4*R*,5*R*)-Ethyl 4-(2-chloro-2-propyl)oxazolidin-2-one-5-carboxylate 11ac. White solid, 64% (0.06 g). [α]_D -23.0 (*c* 0.5, CHCl₃). Mp 140.1-144.1 °C. IR (cm⁻¹): 3251, 1754, 1728, 1238, 1110. ¹H NMR (300 MHz, CDCl₃): δ 1.34 (3H, t, *J* = 7.2 Hz), 1.60 (6H, s), 3.96 (1H, d, *J* = 3.3 Hz), 4.31 (2H, q, *J* = 7.2 Hz), 4.86 (1H, d, *J* = 3.3 Hz), 6.95 (1H, s (br)). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 27.6, 27.7, 62.7, 65.2, 69.3, 75.0, 158.2, 168.6. MS (ES⁺): *m*/*z* (%): 253/255 (M+NH₄⁺, 100). HRMS (ES) calcd for C₉H₁₄ClNO₄: 236.0684 MH⁺; found: 236.0685/238.0658.

Acknowledgment. The authors are indebted to the Research Foundation – Flanders (FWO – Vlaanderen), Institute for Promotion of Innovation through Science and Technology – Flanders (IWT-Vlaanderen), Ghent University (BOF) and COST action CM0803 (STSM to M. N.) for financial support.

Electronic Supplementary Information (ESI) available: General experimental conditions and copies of ¹H NMR and ¹³C NMR spectra for ethyl (*tert*-butoxycarbonyloxy)acetate **3c**, γ -chloro- α hydroxy- β -amino esters ($R_S, 2R, 3R$)-5 and ($S_S, 2S, 3S$)-5, N-tert-butanesulfinyl- β, γ -aziridino- α hydroxy esters $(R_s, 2R, 2'S)$ -6, N-p-toluenesulfinyl- β, γ -aziridino- α -hydroxy esters $(S_s, 2S, 2'R)$ -6, Odeprotected $(R_S, 2R, 3R)$ - γ -chloro- α -hydroxy- β -amino ester $(R_S, 2R, 3R)$ -7, N-deprotected esters (2R,3R)-9, O,N-deprotected esters (2R,3R)-10 and oxazolidinones (4R,5R)-11. Crystallographic data were collected at 123 K with a Nonius-Kappa CCD area detector diffractometer, using graphitemonochromatized Mo-K_a radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods by use of the SHELXS-97 program and the full-matrix, least-squares refinements on F^2 were also performed using the SHELXL-97 program.²⁶ The hydrogen atoms were included at fixed distances with the fixed displacement parameters from their host atoms. More details are presented in the Crystallographic Information Format (CIF) files for the X-ray crystal structure of compounds $(S_s, 2S, 3S)$ -5db, $(R_s, 2R, 2'S)$ -6cc and $(R_s, 2R, 3R)$ -7ac, which have been deposited with the Cambridge Crystallographic Data Centre under the deposition numbers CCDC 977960, 977961 and 977962, respectively. These can be downloaded free of charge via the http://www.ccdc.cam.ac.uk webpage.

References

* To whom correspondence should be addressed. Tel: +32 (0)9 264 59 51. Fax: +32 (0)9 264 62 21.
* Aspirant of the "Institute for Promotion of Innovation through Science and Technology – Flanders (IWT-Vlaanderen)".

[§] Postdoctoral Fellow of the Research Foundation – Vlaanderen (FWO).

^b Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of the Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary.

^c Department of Chemistry, University of Jyväskylä, Fin-40351 Jyväskylä, Finland.

Organic & Biomolecular Chemistry

^d Department of Chemistry, University of Bergen, Allégt. 41, N-5007 Bergen, Norway.

¹ (a) Fülöp, F. Chem. Rev. 2001, 101, 2181-2204; (b) Fülöp, F.; Martinek, T. A.; Tóth, G. K. Chem. Soc. Rev. 2006, 35, 323-334; (c) Gelman, M. A.; Gellman, S. H., Using constrained β-amino acid residues to control β-peptide shape and function. In Enantioselective Synthesis of β-Amino Acids (2nd Edition), Juaristi, E.; Soloshonok, V. A., Eds.; John Wiley & Sons, Inc.: 2005, pp 527-591; (d) Gnad, F.; Reiser, O. Chem. Rev. 2003, 103, 1603-1623; (e) Kuhl, A.; Hahn, M. G.; Dumic, M.; Mittendorf, J. Amino Acids 2005, 29, 89-100; (f) Miller, J. A.; Nguyen, S. T. Mini-Rev. Org. Chem. 2005, 2, 39-45; (g) North, M. J. Pept. Sci. 2000, 6, 301-313; (h) Ortuño, R. M., Enantioselective Synthesis of Conformationally Constrained β -Amino Acids. In *Enantioselective Synthesis of* β -Amino Acids (2nd Edition), Juaristi, E.; Soloshonok, V. A., Eds.; John Wiley & Sons, Inc.: 2005, pp 117-138; (i) Lelais, G.; Seebach, D. Biopolymers 2004, 76, 206-243; (j) Seebach, D.; Beck, A. K.; Capone, S.; Deniau, G.; Groselj, U.; Zass, E. Synthesis 2009, 1-32; (k) Seebach, D.; Gardiner, J. Acc. Chem. Res. 2008, 41, 1366-1375. (1) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 25, 117. ² (a) Cardillo, G.; Tolomelli, A.; Tomasini, C. Eur. J. Org. Chem. 1999, 155-161. (b) Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2005, 46, 2839-2843. (c) Dziedzic, P.; Vesely, J.; Córdova, A. Tetrahedron Lett. 2008, 49, 6631-6634. (d) Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4365-4368. (e) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338-339.

³ Zefirova, O. N.; Nurieva, E. V.; Ryzhov, A. N.; Zyk, N. V.; Zefirov, N. S. *Russ. J. Org. Chem.* **2005**, *41*, 315-351.

⁴ (a) Fu, Y.; Li, S.; Zu, Y.; Yang, G.; Yang, Z.; Luo, M.; Jiang, S.; Wink, M.; Efferth, T. *Curr. Med. Chem.* 2009, *16*, 3966-3985. (b) Wang, Y.-F.; Shi, Q.-W.; Dong, M.; Kiyota, H.; Gu, Y.-C.; Cong, B. *Chem. Rev.* 2011, *111*, 7652-7709. (c) Ni, Z.-Y.; Li, Y.; Wang, Y.-F.; Wang, S.-M.; Dong, M.;

- Shi, Q.-W. Curr. Org. Chem. 2012, 16, 2038-2052. (d) Ojima, J.; Lin, S.; Wang, T. Curr. Org. Chem. 1999, 6, 927-954.
- ⁵ (a) Hecker, S. J.; Werner, K. M. J. Org. Chem. **1993**, 58, 1762-1765. (b) Bauvois, B.; Dauzonne,
- D. Med. Res. Rev. 2006, 26, 88-130. (c) Aoyagi, T.; Yoshida, S.; Matsuda, N.; Ikeda, T.; Hamada,
 M.; Takeuchi, T. J. Antibiot. 1991, 44, 573-578.
- ⁶ (a) Rich, D. H. J. Med. Chem. **1985**, 28, 263-273. (b) Moore, M. L.; Dreyer, G. B. Perspect. Drug Dis. Design **1993**, 1, 85-108. (c) Ojima, I.; Park, Y. H.; Sun, C. M.; Brigaud, T.; Zhao, M. Tetrahedron Lett. **1992**, 33, 5737-5740.
- ⁷ (a) Abouabdellah, A.; Begué, J.-P.; Bonnet-Delpon, D. Synlett **1996**, 399-400. (b) Abouabdellah,
- A.; Begué, J.-P.; Bonnet-Delpon, D.; Nga, T. T. T. J. Org. Chem. 1997, 62, 8826-8833.
- ⁸ (a) Jefford, C. W.; McNulty, J.; Lu, Z.-H.; Wang, J. B. Helv. Chim. Acta 1996, 79, 1203-1216. (b)
- Jefford, C. W.; McNulty, J.; Lu, Z.-H. J. Chem. Soc., Chem. Commun. 1995, 123-124. (c) Jefford,
- C. W.; Wang, J. B.; Lu; Z.-H. Tetrahedron Lett. 1993, 34, 7557-7560.
- ⁹ Dejaegher, Y.; De Kimpe, N. J. Org. Chem. 2004, 69, 5974-5985.
- ¹⁰ Webb, H. K.; Matthews, R. G. J. Biol. Chem. **1995**, 270, 17204-17209.
- ¹¹ Yoshida, H.; Arai, N.; Sugoh, M.; Shiomi, K.; Shinose, M.; Tanaka, Y.; Omura, S. *J. Antibiot.* **1994**, *47*, 1165-1166.
- ¹² Blasiak, L. C.; Vaillancourt, F. H.; Walsh, C. T.; Drennan, C. L. Nature 2006, 440, 368-371.
- ¹³ Bitzer, J.; Streibel, M.; Langer, H.-J.; Grond, S. Org. Biomol. Chem. 2009, 7, 444-450.
- ¹⁴ Callebaut, G.; Mangelinckx, S.; Kiss, L.; Sillanpää, R.; Fülöp, F.; De Kimpe, N. Org. Biomol. Chem. **2012**, *10*, 2326-2338.
- ¹⁵ (a) Colpaert, F.; Mangelinckx, S.; De Kimpe, N. *Org. Lett.* **2010**, *12*, 1904-1907. (b) Colpaert, F.;
 Mangelinckx, S.; De Brabandere, S.; De Kimpe, N. *J. Org. Chem.* **2011**, *76*, 2204-2213.

Organic & Biomolecular Chemistry

¹⁶ (a) Senten, K.; Van der Veken, P.; Bal, G.; De Meester, I.; Lambeir, A.-M.; Scharpé, S.; Bauvois, B.; Haemers, A.; Augustyns, K. *Bioorg. Med. Chem. Lett.* 2002, *12*, 2825-2828; (b) Senten, K.; Van der Veken, P.; De Meester, I.; Lambeir, A.-M.; Scharpé, S.; Haemers, A.; Augustyns, K. *J. Med. Chem.* 2003, *46*, 5005-5014; (c) Senten, K.; Van der Veken, P.; De Meester, I.; Lambeir, A.-M.; Scharpé, S.; Haemers, A.; Augustyns, K. *J. Med. Chem.* 2004, *47*, 2906-2916.

¹⁷ Callebaut, G.; Mangelinckx, S.; Van der Veken, P.; Törnroos, K. W.; Augustyns, K.; De Kimpe, N. *Beilstein J. Org. Chem.* 2012, *8*, 2124-2131.

¹⁸ (a) Morton, D.; Stockman, R. A. *Tetrahedron* 2006, *62*, 8869-8905. (b) Ferreira, F.; Botuha, C.; Chemla, F.; Pérez-Luna, A. *Chem. Soc. Rev.* 2009, *38*, 1162-1186. (c) Davis, F. A. *J. Org. Chem.* 2006, *71*, 8993-9003. (d) Pablo, O.; Guijarro, D.; Yus, M. *J. Org. Chem.* 2013, *78*, 9181-9189. (e) Ellman, J. A.; Owens, T. D.; Tang, T. P. *Acc. Chem. Res.* 2002, *35*, 984-995. (f) Lin, G.-Q.; Xu, M.-H.; Zhong, Y.-W.; Sun, X.-W. *Acc. Chem. Res.* 2008, *41*, 831-840. (g) Robak, M. T.; Herbage, M. A.; Ellman, J. A. *Chem. Rev.* 2010, *110*, 3600-3740.

¹⁹ (a) Chen, Q.; Li, J.; Yuan, C. *Synthesis* 2008, 2986. (b) Denolf, B.; Mangelinckx, S.; Törnroos, K.
W.; De Kimpe, N. *Org. Lett.* 2007, *9*, 187. (c) Denolf, B.; Leemans, E.; De Kimpe, N. *J. Org. Chem.* 2007, *72*, 3211. (d) Denolf, B.; Leemans, E.; De Kimpe, N. *J. Org. Chem.* 2008, *73*, 5662.
(e) Leemans, E.; Mangelinckx, S.; De Kimpe, N. *Synlett* 2009, 1265. (f) Denolf, B.; Mangelinckx,
S.; Törnroos, K. W.; De Kimpe, N. *Org. Lett.* 2006, *8*, 3129. (g) Hodgson, D. M.; Kloesges, J.;
Evans, B. *Synthesis* 2009, 1923. (h) Hodgson, D. M.; Kloesges, J.; Evans, B. *Org. Lett.* 2008, *10*, 2781.

²⁰ (a) Davis, F. A.; Deng, J. Org. Lett. 2004, 6, 2789-2792. (b) Davis, F. A.; Prasad, K. R.; Nolt, M. B.; Wu, Y. Org. Lett. 2003, 5, 925-927. (c) Wang, Y.; He, Q.-F.; Wang, H.-W.; Zhou, X.; Huang, Z.-Y.; Qin, Y. J. Org. Chem. 2006, 71, 1588-1591. (d) Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819-7832. (e) Evans, J. W.; Ellman, J. A. J. Org. Chem. 2003, 68, 9948-9957.

²¹ (a) De Kimpe, N.; Verhé, R.; De Buyck, L.; Moens, L.; Schamp, N. Synthesis 1982, 43-46. (b)
De Kimpe, N.; Verhé, R. *The Chemistry of α-Halo ketones, α-Halo aldehydes, and α-Halo imines,*John Wiley and Sons: 1988, 496 pp. (c) De Kimpe, N.; Sulmon, P.; Verhé, R.; De Buyck, L.;
Schamp, N. *J. Org. Chem.* 1983, 48, 4320-4326. (d) De Kimpe, N.; Moens, L. *Tetrahedron* 1990,
46, 2965-2974. (e) D'hooghe, M.; Aelterman, W.; De Kimpe, N. *Org. Biomol. Chem.* 2009, 7, 135-

²² Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P. *Tetrahedron* **2012**, *68*, 10761-10768.

²³ Qin, Y.; Wang, Y.; Guo, P.; Gao, J.; Feng, X.; Luo, X.; Zhang, X. Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 1709864 (A), 2005.

²⁴ (a) Ireland, R. E.; Willard, A. K. *Tetrahedron Lett.* 1975, 3975-3978; (b) Ireland, R. E.; Wipf, P. *Tetrahedron Lett.* 1989, *30*, 919-922; (c) Narula, A. S. *Tetrahedron Lett.* 1981, *22*, 4119-4122; (d) Xie, L.; Isenberger, K. M.; Held, G.; Dahl, L. M. *J. Org. Chem.* 1997, *62*, 7516-7519.

²⁵ (a) Hjelmgaard, T.; Faure, S.; Lemoine, P.; Viossat, B.; Aitken, D. J. Org. Lett. 2008, 10, 841-844. (b) Stanton, G. R.; Norrby, P.-O.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2012, 134, 17599-17604.

²⁶ Sheldrick, G.M. Act. Cryst. 2008, A64, 112-122.