Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Cooperative N -heterocyclic carbene (NHC)/Lewis acid-mediated regioselective umpolung formal [3+2] annulations of alkynyl aldehydes with isatins

Yu Zhang, Yingyan Lu, Weifang Tang, Tao Lu* and Ding Du*

State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China. Email: lut163@163.com (T. Lu) and ddmn9999@.cpu.edu.cn (D.Du)

A novel and regioselective umpolung synthesis of spirooxindoles has been developed by cooperative NHC/Lewis acid-mediated formal [3+2] annulations of alkynyl aldehydes with isatins. In most cases, the reactions proceeded via $a^{3}-d^{3}$ umpolung of alkynyl aldehydes resulting in spirooxindole butenolides. In few cases, spirooxindole furan- $3(2 H)$-ones were formed as major products via $\mathrm{a}^{1}-\mathrm{d}^{1}$ umpolung process by controlling the reaction temperature. These newly formed spirooxindoles could provide promising candidates for chemical biology and drug lead discovery.

N-Heterocyclic carbenes (NHCs) are efficient organocatalysts which can promote a large number of umpolung transformations of different types of aldehydes. ${ }^{[1]}$ The most-investigated NHC-catalyzed umpolung reactions are involved in $\mathrm{a}^{1}-\mathrm{d}^{1}$ umpolung of aldehydes (such as Benzoin condensation ${ }^{[2]}$ and Stetter reaction ${ }^{[3]}$) and $a^{3}-d^{3}$ umpolung of enals ${ }^{[4]}$ which have offered unconventional access to a variety of organic molecules with diverse skeletons. In recent years, alkynyl aldehydes $\mathbf{1}$ have emerged as novel substrates applied in NHC-catalyzed reactions (Scheme 1). Following the pioneering work of redox esterification of alkynyl aldehydes $\mathbf{1},{ }^{[5]}$ much emphasis has been laid on the application of α, β-unsaturated acyl azoliums generated from the sequential $\mathrm{a}^{3}-\mathrm{d}^{3}$ umpolung of Breslow intermediate ${ }^{[6]}$ and β-protonation of allenonate equivalent (eq. 1, Scheme 1). ${ }^{[7]}$ In contrast, few attention has been paid to NHC-catalyzed β-nucleophilic additions of allenonate intermediate which could be potentially employed as formal 1,3-dipoles to undergo formal [3+m] annulations (eq.

2, Scheme 2). Until recently, She ${ }^{[8]}$ and Snyder ${ }^{[9]}$ reported $\mathrm{a}^{3}-\mathrm{d}^{3}$ umpolung annulations of alkynyl aldehydes with ketones ${ }^{[8 a, 9]}$ and nitrosobenzenes ${ }^{[8 b]}$ respectively by a cooperative NHC/Lewis acid catalysis strategy ${ }^{[10]}$ which has proved critical for some transformations. However, it is still in demand to further explore novel $a^{3}-d^{3}$ umpolung annulations of alkynyl aldehydes.

Scheme 1 Two reaction modes of alkynyl aldehydes with NHC catalysis.
Spirooxindoles ${ }^{[11]}$ represent interesting and attractive frameworks for synthesis owing to their biological activities and applications for drug lead discovery. Most spirooxindoles are characterized by a spiro fusion at the 3-position of oxindole ring with diverse heterocycle motifs (Scheme 2). Furan-2-(5H)-one is a privileged heterocyclic structure existing in various natural products with a broad range of biological activities. ${ }^{[12]}$ Thus, fusion of oxindole core with furan-2-(5H)-one motif could give rise to spirooxindole butenolides which may provide promising candidates for chemical biology and drug lead discovery. However, the synthesis of spirooxindoles butenolides is still a challenge and only a few protocols have been documented. ${ }^{[13]}$ Since isatins ${ }^{[13 d, 14]}$ are usually used as privileged molecules in design and synthesis of spiro-fused cyclic compounds due to the highly reactive C-3 carbonyl group, we envisioned that the cooperative NHC/Lewis acid-catalyzed umpolung annulations of alkynyl aldehydes $\mathbf{1}$ with isatins 2 might afford spirooxindoles butenolides. Actually, two regioisomers $\mathbf{3}$ and $\mathbf{4}$ via two different umpolung processes $\left(a^{3}-d^{3}\right.$ and $\left.a^{1}-d^{1}\right)$ were observed (Scheme 2). Nevertheless, regioselective $a^{3}-d^{3}$ umpolung of alkynyl aldehydes could be achieved in most cases by controlling the
reaction conditions and N-substituents of isatins 2 . In few cases, $a^{1}-d^{1}$ umpolung products could also be obtained as major products by lowering the reaction temperature. As a continuation of our exploration of NHC-catalyzed chemistry of alkynyl aldehydes to synthesize diverse heterocycles, ${ }^{[7 \mathrm{~d}, 7 \mathrm{hb}]}$ we herein wish to report the regioselective umpolung formal [3+2] annulations of alkynyl aldehydes $\mathbf{1}$ with isatins 2 for the synthesis of spirooxindoles $\mathbf{3}$ and 4.

Scheme 2 The cooperative NHC/Lewis acid-catalyzed umpolung annulations of alkynyl aldehydes $\mathbf{1}$ with isatins 2

Our explorations began with examining the efficiency of several carbene precursors A-H for the reaction of 3-phenylpropioaldehyde $\mathbf{1 a}$ with N -Bn substituted isatin 2a (Table 1). The reaction did not work at all in the presence of NHCs derived from precursors A-G even if LiCl was used as a Lewis acid (entry 1). Fortunately, a mixture of $a^{3}-d^{3}$ umpolung product $\mathbf{3 a}$ and $a^{1}-d^{1}$ umpolung product $\mathbf{4 a}$ was obtained in lower combined yield when carbene precursor \mathbf{H} was employed in the presence of LiCl (entry 3). Subsequent screening of various bases showed that DIPEA was the optimal one resulting in 43\% yield and high regioselectivity (entries 4-8). However, further examination of a variety of Lewis acids and solvents failed to improve the yield and regioselectivity (entries 9-14). At this point, we assumed that N-substituents of isatins 2 might have certain impact on the yield and regioselectivity. We then tried other three different N-substituted isatins $2 \mathbf{2 b - d}$ (entries 15-18). Surprisingly, the
reaction of N-Me substituted isatin 2d with 1a in 1,4-dioxane at $40^{\circ} \mathrm{C}$ exclusively afforded $\mathrm{a}^{3}-\mathrm{d}^{3}$ umpolung product 3d in 75% yield which was finally established as our optimal reaction conditions for following substrate scope exploration (entry18). The structure of the products was established by spectroscopic analysis and further confirmed by X-ray crystallography of 3d (Figure 1). ${ }^{[15]}$

Table 1 Optimization of the reaction conditions and evaluation of N -substituents of isatins $\mathbf{2}^{a}$

${ }^{[a]}$ All reactions were performed on a 0.3 mmol scale with 2.5 equiv. of 1a, 1.0 equiv. of $\mathbf{2}, 20$ $\mathrm{mol} \%$ of a carbene precursor, 1.0 equiv. of a base, 1.1 equiv. of an additive and 200 mg of $4 \AA$ MS in 0.1 M in a solvent under N_{2}. ${ }^{\text {[b] }}$ Isolated yield based on 2 . DBU = 1,8-diazabicyclo[5.4.0]-undec-7-ene; Mes $=2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} ;$ DIPEA $=$ N, N-diisopropylethylamine.

Figure 1 X-ray crystal structure of 3d.

After establishing the optimized conditions, we focused on expansion of the reaction scope (Table 2). Firstly, the variation of isatins 2 was evaluated. A wide range of isatins $\mathbf{2}$ except $\mathbf{2 m}$ were found suitable for the $a^{3}-d^{3}$ umpolung [$3+2$] annulations to get spirooxindole butenolides $3 \mathbf{e}-\mathrm{I}$ in $30-90 \%$ yield at $40^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$ (entries 2-10). In few cases, spirooxindoles $\mathbf{4 f} \mathbf{- h}$ and $\mathbf{4 j}$ formed via $\mathrm{a}^{1}-\mathrm{d}^{1}$ umpolung pathway were obtained as major products by lowering the reaction temperature to $10^{\circ} \mathrm{C}$ (entries 3-5 and entry 7). Subsequently, a variety of alkynyl aldehydes $\mathbf{1}$ were tested to evaluate the generality of this protocol. Alkynyl aldehydes $\mathbf{1 b} \mathbf{- g}$ with substituents at 3 - or 4-positions of phenyl rings were tolerant to the reaction, only affording $a^{3}-d^{3}$ umpolung products in 41-83\% yield (entries 11-16). The reaction of 3-(2-chlorophenyl)propiolaldehyde $\mathbf{1 h}$ did not work perhaps owing to the steric effect of hindered 2-Cl group (entry 17). Surprisingly, 3-heteroaromatic-substituted alkynyl
aldehyde $\mathbf{1 i}$ and 3 -aliphatic-substituted alkynyl aldehyde $\mathbf{1} \mathbf{j}$ were also subject to $\mathrm{a}^{3}-\mathrm{d}^{3}$ umpolung process in moderate yield (entries 18-19).

Table 2 Scope of the reaction ${ }^{a}$

Entry	$\mathrm{R}^{1}, 1$	$\mathrm{R}^{3}, 2$	T $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield of $\text { 3, } 4(\%)^{b, c}$
1	Ph, \mathbf{a}	H, d	40	24	d, 75,0
2	Ph, a	$4-\mathrm{Cl}, \mathrm{e}$	65	48	e, 90, 0
3	Ph, a	5-F, f	65	10	f, 67, $0(<10,45)$
4	Ph, a	5-Cl, g	65	12	g, 53, $15(<5,47)$
5	Ph, a	5-Br, \mathbf{h}	40	7	h, 30, $33(0,42$)
6	Ph, a	5-Me, i	65	24	i, $47^{d}, 0$
7	Ph, a	$6-\mathrm{Cl}, \mathrm{j}$	65	10	j, 63, 0 (<10, 46)
8	Ph, \mathbf{a}	7-Me, k	65	72	k, 37, 0
9	Ph, a	$7-\mathrm{Cl}, \mathrm{l}$	65	2	l, 40, 14
10	Ph, a	4,6-Me ${ }^{\text {, m }}$	65	20	m, trace, 0
11	(4-Me)Ph, b	H, d	65	20	n, 71, 0
12	(4-OMe)Ph, c	H, d	10	72	o, 42, 0
13	(4-F)Ph, d	H, d	65	20	p, 33, 0
14	(4-Cl)Ph, e	H, d	40	48	q, 63, 0
15	(3-Me)Ph, f	H, d	65	30	r, 83, 0
16	(3-Cl)Ph, g	H, d	65	72	s, $41{ }^{e}, 0$
17	(2-Cl)Ph, \mathbf{h}	H, d	40	24	t,trace, 0
18	2-furyl, i	H, \mathbf{d}	10	26	u, 56, 0
19	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$, \mathbf{j}	H, d	10	48	v, 58, 0

${ }^{[a]}$ All reactions were performed on a 0.3 mmol scale with 2.5 equiv. of $\mathbf{1}, 1.0$ equiv. of 2,20 $\mathrm{mol} \%$ of $\mathbf{H}, 1.0$ equiv. of DIPEA, 1.1 equiv. of LiCl and 200 mg of $4 \AA \mathrm{MS}$ in 0.1 M in 1,4-dioxane, under $\mathrm{N}_{2}{ }^{[b]}$ Isolated yield based on 2. ${ }^{[c]}$ Isolated yield in the parentheses was obtained under $10^{\circ} \mathrm{C} .{ }^{[\mathrm{d]}} 70 \%$ conversion, ${ }^{\text {[e] }} 61 \%$ conversion.

Preliminary enantioselective studies of the formal [3+2] annulation between alkynyl 1a and isatin 2d has also been undertaken using I as the chiral carbene precursors, and $a^{3}-d^{3}$ umpolung product $3 \mathbf{d}$ was obtained as the single regioisomer in 78% yield with a promising 73\% e.e. value (Scheme 3).

Scheme 3 Preliminary enantioselective studies of the annulation of alkynyl 1a and isatin 2d.

A plausible mechanism for the regioselective umpolung annulations is proposed based on the model reaction of alkynyl aldehyde 1a with isatin 2f. Initially, NHC 4 was generated upon deprotonation of carbene precursor \mathbf{H} with DIPEA followed by addition to alkynyl 1a to produce Breslow intermediate 5. Coordination of LiCl with isatin $2 f$ enhanced the electrophility of 3-carbonyl of $\mathbf{2 f}$ by lowering LUMO energy. This alkali metal salt effect has been observed to promote new C-C bond formation in many NHC-catalyzed reactions. ${ }^{[8 a,}{ }^{10 b]}$ For $a^{3}-d^{3}$ umpolung process (path a), concurrent coordination of LiCl to isatin $\mathbf{2 f}$ and Breslow intermediate facilitated the nucleophilic addition of β-carbon anion of allenolate equivalent to the activated carbonyl as shown in 6. Subsequent intramolecular cyclization afforded the formal [3+2] adduct 3 accompanied with release of NHC $\mathbf{4}$ for next catalytic cycle. For $\mathrm{a}^{1}-\mathrm{d}^{1}$ umpolung process (path b), the annulation occurred via Benzoin-type addition of Breslow intermediate to the carbonyl of 2f, followed by intramolecular Michael addition and release of NHC $\mathbf{4}$ to give product $\mathbf{4 f}$.

Scheme 4 Proposed mechanism for the regioselective umpolung annulation of alkynyl aldehyde 1a and isatin 2f.

In summary, we have described regioselective umpolung formal [3+2] annulations of alkynyl aldehydes $\mathbf{1}$ with isatins $\mathbf{2}$ to give spirooxindole butenolides $\mathbf{3}$ in moderate to high yields via $\mathrm{a}^{3}-\mathrm{d}^{3}$ umpolung process. In few cases, $\mathrm{a}^{1}-\mathrm{d}^{1}$ umpolung spirooxindoles 4 could be obtained as major products in moderate yields by controlling the reaction temperature. Further investigation on an enantioselective synthesis of this protocol and exploration of new chemistry of alkynyl aldehydes are currently underway.

Experimental section

General Methods. All reactions were carried out under an atmosphere of nitrogen in dry glassware, and were monitored by analytical thin-layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200~300
mesh). All NMR spectra were recorded with a spectrometer at 300 MHz or 500 MHz (${ }^{1} \mathrm{H}$ NMR) in CDCl_{3} : chemical shifts (δ) are given in ppm, coupling constants (J) in Hz , the solvent signals were used as references (residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26$ $\left.\mathrm{ppm}, \delta_{\mathrm{c}}=77.0 \mathrm{ppm}\right)$. The e.e. value was determined by chiral HPLC.

General experimental procedure

To an oven-dried 25 mL three-necked glassware was charged with alkynyl aldehyde $\mathbf{1}$ (0.75 mmol), isatin $\mathbf{2}$ (0.3 mmol), $\mathrm{LiCl}(14 \mathrm{mg}, 0.33 \mathrm{mmol}$), carbene precursor \mathbf{H} ($16 \mathrm{mg}, 0.06 \mathrm{mmol}$) and 200 mg of $4 \AA \mathrm{MS}$. Then THF (3 mL) was added followed by addition of DIPEA ($39 \mathrm{mg}, 0.3 \mathrm{mmol}$). The resulting mixture was stirred at certain temperature under nitrogen atmosphere for a period of time. After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature. The solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel to afford the products 3 and 4.

3a. White solid, MP: $140-141^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500M, CDCl_{3}): $\delta 6.88-7.33$ (m, 14H), 6.65 (s, 1H), 5.12 and $4.76(2 \times \mathrm{d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{M}, \mathrm{CDCl}_{3}\right): \delta 171.2$, 170.0, 163.1, 143.5, 134.7, 131.8, 131.4, 129.1, 128.9, 128.1, 127.6, 125.1, 123.9, 123.8, 116.9, 110.4, 86.5, 44.6. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 368.1281$, found 368.1283. IR (KBr): v 3089, 3062, 1768, 1733, 1610, 1489, 1359, 1298, 1240, 1186, $1026 \mathrm{~cm}^{-1}$.

4a. White solid, MP: $227-228^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53-7.67 (m, 3H), 7.04-7.39 (m, 8H), 6.79 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.07$ and $4.89(2 \times \mathrm{d}, J=15.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 196.8,187.9,169.1,144.3$, 134.7, 133.4, 131.1, 128.9, 128.1, 127.8, 127.6, 127.1, 123.9, 123.8, 123.4, 110.2, 100.4, 89.3, 44.3. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 368.1281$, found 368.1283. IR (KBr): v 3128, 2921, 1729, 1693, 1605, 1564, 1488, 1340, 1168, 1046 cm^{-1}.

3d. White solid, MP: $194-195{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}$,

1H), 7.24-7.29 (m, 2H), 7.08-7.20 (m, 4H), 6.99 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.31$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 171.2,169.9,162.9,144.4,131.9,131.5,129.2$, 128.9, 126.9, 125.0, 124.0, 123.8, 116.9, 109.5, 86.4, 27.1. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}:$292.0968, found 292.0967. IR (KBr): $v 3127$, 2932, 1775, 1727, 1611, 1574, 1493, 1470, 1448, 1422, 1368, 1348, 1303, 1235, 1200, 1136, 1099, 1058, $1006 \mathrm{~cm}^{-1}$.

3e. White solid, MP: $196-197^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 6.86-7.35$ (m, 8H), 6.66 (s, 1H), 3.27 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 170.9,169.3,162.0,145.9,133.0$, 132.9, 131.4, 129.2, 129.0, 126.5, 124.8, 120.5, 118.3, 107.7, 86.0, 27.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0583. IR (KBr): v 3188, 2874, $1767,1731,1609,1461,1335,1241,1199,1124,1011 \mathrm{~cm}^{-1}$.

3f. White solid, MP: $173-175^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 7.14-7.35$ (m, 8H), 6.66 (s, 1 H), 3.30 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 170.7,169.7,162.4,159.6$ (d, $J_{\mathrm{C}-\mathrm{F}}=$ $243.0 \mathrm{~Hz}, 1 \mathrm{C}), 140.3,131.6,129.3,128.6,126.8,118.3$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}, 1 \mathrm{C}\right), 116.9$, 113.1 (d, $J_{\mathrm{C}-\mathrm{F}}=25.0 \mathrm{~Hz}, 1 \mathrm{C}$), 110.3, 110.2, 85.9, 27.2. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 310.0874$, found 310.0876. IR (KBr): $v 3145,2987,1772,1735$, 1614, 1492, 1270, $1206 \mathrm{~cm}^{-1}$.

4f. White solid, MP: $159-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~s}$, 1 H), 3.19 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 196.2,187.9,168.5,159.3$ (d, $J_{\mathrm{C}-\mathrm{F}}=$ $241.0 \mathrm{~Hz}, 1 \mathrm{C}$), $141.2,133.5,128.9,127.8,127.5,124.9$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}, 1 \mathrm{C}\right), 117.5$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}, 1 \mathrm{C}\right), 112.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.5 \mathrm{~Hz}, 1 \mathrm{C}\right), 109.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}, 1 \mathrm{C}\right), 100.3$, 88.8, 26.9. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 310.0874$, found 310.0876. IR (KBr): v 2956, 2922, 2852, 1734, 1700, 1608, 1569, 1493, 1382, 1270, 1162, 1105, $1046 \mathrm{~cm}^{-1}$.

3g. White solid, MP: 197-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.31-7.39(\mathrm{~m}, 2 \mathrm{H})$, 7.20-7.24 (m, 2H), 7.06-7.11 (m, 3H), 6.86 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 170.7,169.6,162.3,142.9,131.9,131.6,129.5,129.4$, 128.6, 126.9, 125.4, 117.1, 110.5, 85.8, 27.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0583. IR (KBr): v 3182, 3050, 2841, 1779, 1732, 1610, 1488, 1338, 1229, 1104, 1007, $928 \mathrm{~cm}^{-1}$.

4g. White solid, MP: $186-187^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.88-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.61$ (m, 1H), 7.50-7.55 (m, 2H), 7.39 (dd, $J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, $\left.\mathrm{CDCl}_{3}\right): \delta 196.2$, 188.3, 168.2, 143.6, 133.8, 131.2, 129.1, 128.8, 128.0, 127.6, 125.2, 124.6, 110.2, 100.4, 88.6, 27.1. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0582. IR (KBr): v 3192, 3089, 2856, 1737, 1688, 1604, 1567, 1491, 1451, 1348, $1106 \mathrm{~cm}^{-1}$.

3h. White solid, MP: $207-208^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.52(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}$, 1H), 7.34 (m, 1H), 7.20-7.24 (m, 3H), 7.05-7.08 (m, 2H), 6.81 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ $(\mathrm{s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{M}, \mathrm{CDCl}_{3}\right): \delta 170.6,169.5,162.6,143.4,134.8$, 131.8, 129.3, 128.7, 128.2, 126.9, 125.8, 117.2, 116.6, 110.9, 85.9, 27.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 370.0073$, found 370.0079. IR (KBr): v 3156, 3088, $3892,1733,1688,1604,1565,1488,1374,1172,1103 \mathrm{~cm}^{-1}$.

4h. White solid, MP: 201-202 ${ }^{\circ}$. ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.55$ (m, 1H), 7.43-7.49 (m, 3H), 7.21 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.75 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}$, 1H), 3.18 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 196.2,188.0,168.4,144.3,134.1,133.6$, 129.1, 127.9, 127.6, 127.2, 125.5, 115.9, 110.6, 100.4, 88.6, 26.9. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrNO}_{3}$, found 370.0075. IR (KBr): v 3155, 2898, 1774, 1734, 1608, 1486, 1336, 1288, 1103, $1006 \mathrm{~cm}^{-1}$.

3i. White solid, MP: 194-195 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.13-7.36$ (m, 6H), 6.99 $(\mathrm{m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 171.2,169.9,162.9,141.9,133.9,132.2,131.4,129.2,128.9,127.0,125.7,123.8$, 116.8, 109.2, 86.5, 27.1, 20.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 306.1125$, found 306.1128. IR (KBr): v 3167, 2886, 1779, 1726, 1611, 1498, 1347, 1202, 1105, $1005 \mathrm{~cm}^{-1}$.

3j. White solid, MP: 197-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): δ 7.31-7.39 (m, 2H), 7.20-7.23 (m, 2H), 7.05-7.10 (m, 3H), 6.86 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.60 (s, 1H), 3.25 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 170.7,169.3,162.3,142.7,131.9,131.6,129.5,129.3$, 128.7, 126.9, 125.5, 117.1, 110.4, 85.7, 27.2. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0581. IR (KBr): v 3175, 2902, 1779, 1732, 1610, 1488, 1337, 1228, 1104, $1006 \mathrm{~cm}^{-1}$.

4j. White solid, MP: $184-185^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.88-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.62$ (m, 1H), 7.50-7.55 (m, 2H), 7.39 (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, $\left.\mathrm{CDCl}_{3}\right): \delta 196.2$, 188.0, 168.5, 143.9, 133.6, 131.2, 129.1, 128.8, 127.9, 127.6, 125.2, 124.5, 110.2, 100.3, 88.7, 27.0. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0582. IR (KBr): v 3088, 2875, 1736, 1685, 1607, 1567, 1489, 1346, 1173, 1104, $1047 \mathrm{~cm}^{-1}$.

3k. White solid, MP: $189-190^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 171.2,170.6,162.9,141.9,135.6,131.3,129.1,128.9$, 126.9, 124.2, 123.9, 122.8, 121.1, 116.8, 85.9, 30.4, 18.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 306.1125$, found 306.1129. IR (KBr): $v 3183,2856,1762,1716$, 1617, 1449, 1359, 1198, 1114, $1043 \mathrm{~cm}^{-1}$.
31. White solid, MP: $165-167^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.31-7.38(\mathrm{~m}, 4 \mathrm{H})$, 7.00-7.14 (m, 4H), $6.65(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.2$, $162.5,140.3,134.1,131.6,129.3,128.6,126.9,126.4,124.7,123.5,117.1,116.7,85.5$, 30.5. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0582. IR (KBr): v 3249, 2912, 1759, 1731, 1610, 1463, 1336, 1205, 1115, $1051 \mathrm{~cm}^{-1}$.

3n. White solid, MP: $181-182^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.09$ (m, 6H), 6.59 (s, 1H), 3.27 (s, 3H), 2.27 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 171.4,170.0,162.8,144.3,142.1,131.8,129.9,126.9$, 126.0, 124.9, 123.9, 115.8, 109.3, 86.2, 27.0, 21.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}: 306.1125$, found 306.1128. IR (KBr): v 3188, 2895, 1762, 1733, 1607, 1467, 1364, 1235, 1190, $1000 \mathrm{~cm}^{-1}$.

3o. White solid, MP: $200-201^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.45(\mathrm{~m}, 1 \mathrm{H}), ~ 6.98-7.17$ (m, 5H), 6.76 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 171.5,170.1,162.3,162.1,144.3,131.8,128.7,124.9,124.2,124.0$, 121.2, 114.6, 114.3, 109.4, 86.0, 55.3, 27.0. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 322.1074, found 322.1078. IR (KBr): v 3185, 2885, 1763, 1725, 1607, 1511, 1269, 1190, $1005 \mathrm{~cm}^{-1}$.

3p. White solid, MP: $190-191{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.18$ (m, 3H), 6.99-7.04 (m, 3H), 6.65 (s, 1H), 3.35 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 170.9,169.8,164.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=252.2 \mathrm{~Hz}, 1 \mathrm{C}\right), 161.6$, $144.3,132.1,129.2,129.1,124.9,124.1,123.5,116.8,116.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}, 1 \mathrm{C}\right)$, 109.5, 86.2, 27.0. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 310.0874$, found 310.0880. IR (KBr): v 3165, 2927, 1752, 1722, 1612, 1508, 1368, 1239, 1208, 1006 cm^{-1}.

3q. White solid, MP: $165-166^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.46(\mathrm{~m}, 1 \mathrm{H}), 6.97-7.25$ $(\mathrm{m}, 7 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, $\left.\mathrm{CDCl}_{3}\right): \delta 170.8,169.7,161.5$,
144.3, 137.7, 132.1, 129.5, 128.2, 127.3, 125.0, 124.1, 123.4, 117.4, 109.5, 86.2, 27.1. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0585. IR (KBr): v $3168,3087,2887,1757,1609,1468,1346,1234,1202,1098,1004 \mathrm{~cm}^{-1}$.

3r. White solid, MP: $165-166^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.45(\mathrm{~m}, 1 \mathrm{H}), 6.96-7.15$ (m, 6H), $6.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 171.3,169.9,163.1,144.3,138.9,132.2,131.9,129.0,127.8,124.9$, 124.0, 123.8, 116.6, 109.3, 86.3, 27.0, 21.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 306.1125, found 306.1128. IR (KBr): v 3136, 2895, 1771, 1727, 1610, 1470, 1356, 1193, $1006 \mathrm{~cm}^{-1}$.

3s. White solid, MP: $157-158^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.32$ (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.93-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, CDCl_{3}): $\delta 170.7,169.6,161.4,144.3,135.2,132.2,131.3,130.6,130.5,127.1$, 124.9, 124.8, 124.2, 123.2, 118.2, 109.5, 86.3, 27.1. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 326.0578$, found 326.0582. IR (KBr): v 3145, 3068, 2890, 1773, 1727, 1612, 1471, 1347, 1101, $1008 \mathrm{~cm}^{-1}$.

3u. White solid, MP: $174-175^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.33-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.21$ (m, 1H), $7.05(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~s}$, 1 H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}^{\mathrm{C}}$ NMR ($75 \mathrm{M}, \mathrm{CDCl}_{3}$): $\delta 171.5,156.9,144.6,143.4,139.8,130.5$, 125.7, 123.7, 123.1, 119.8, 117.5, 108.5, 83.9, 72.7, 70.1, 26.4. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 304.0580$, found 304.0587. IR (KBr): v 3258, 3146, 2879, 1726, 1616, 1493, 1371, 1293, 1216, 1140, $1009 \mathrm{~cm}^{-1}$.

3v. White solid, MP: $137-138^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3}): $\delta 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.26$ (m, 3H), 7.05-7.14 (m, 4H), 6.93 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H})$, 2.74-2.91 (m, 2H), $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75M, $\left.\mathrm{CDCl}_{3}\right): \delta 171.8$, 169.9, 167.7, 144.4, 139.4, 131.7, 128.6, 128.1, 126.5, 124.5, 123.8, 122.6, 117.3, 109.2, 87.7, 32.4, 28.4, 26.9. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 320.1281,
found 320.1288. IR (KBr): v3258, 3132, 3067, 2856, 1768, 1722, 1613, 1466, 1365, 1190, 1104, $1005 \mathrm{~cm}^{-1}$.

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21002124), Jiangsu Provincial Natural Science Foundation of China (No. BK20131305), Fundamental Research Funds for the Central Universities (No. JKZD2013002) and the Project Program of State Key Laboratory of Natural Medicines of China Pharmaceutical University (No. JKGQ201101) for financial support.

Notes and references

[1] For selected reviews: a) S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc. Rev. 2013, 42, 4906; b) S. De Sarkar, A. Biswas, R. C. Samanta, A. Studer, Chem.-Eur. J. 2013, 19, 4664; c) X.-Y. Chen, S. Ye, Org. Biomol. Chem. 2013, 11, 7991; d) J. Izquierdo, G. E. Hutson, D. T. Cohen, K. A. Scheidt, Angew. Chem. Int. Ed. 2012, 51, 11686; e) A. Grossmann, D. Enders, Angew. Chem. Int. Ed. 2012, 51, 314; f) X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511; g) J. Douglas, G. Churchill, A. D. Smith, Synthesis 2012, 44, 2295; h) S. Ryan, L. Candish, D. W. Lupton, Synlett 2011, 2011, 2275; i) A. T. Biju, N. Kuhl, F. Glorius, Acc. Chem. Res. 2011, 44, 1182; j) V. Nair, S. Vellalath, B. P. Babu, Chem. Soc. Rev. 2008, 37, 2691; k) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.
[2] For selected examples: a) K. Thai, S. M. Langdon, F. Bilodeau, M. Gravel, Org. Lett. 2013, 15, 2214; b) L.-H. Sun, Z.-Q. Liang, W.-Q. Jia, S. Ye, Angew. Chem. Int. Ed. 2013, 53, 5803; c) M.-Q. Jia, S.-L. You, ACS Catal. 2013, 622; d) Y. Liu, M. Nappi, E. C. Escudero-Adan, P. Melchiorre, Org. Lett. 2012, 14, 1310; e) C. A. Rose, S. Gundala, C.-L. Fagan, J. F. Franz, S. J. Connon, K. Zeitler, Chem. Sci. 2012, 3, 735; f) T. Soeta, Y. Tabatake, K. Inomata, Y. Ukaji, Tetrahedron 2012, 68, 894; g) T. Ema, K. Akihara, R. Obayashi, T. Sakai, Adv. Synth. Catal. 2012, 354, 3283; h) D. Du, Z. Hu, W. Tang, B. Wang, T. Lu, Tetrahedron Lett. 2011, 53, 453.
[3] For selected examples: a) J. Zhang, C. Xing, B. Tiwari, Y. R. Chi, J. Am. Chem. Soc. 2013, 135, 8113; b) N. E. Wurz, C. G. Daniliuc, F. Glorius, Chem.-Eur. J. 2012, 18, 16297; c) M.-Q. Jia, C. Liu, S.-L. You, J. Org. Chem. 2012, 77, 10996; d) D. A. DiRocco, E. L. Noey, K. N. Houk, T. Rovis, Angew. Chem. Int. Ed. 2012, 51, 2391; e) A. Bhunia, S. R. Yetra, S. S. Bhojgude, A. T. Biju, Org. Lett. 2012, 14, 2830; f) S. M. Kim, M. Y. Jin, M. J. Kim, Y. Cui, Y. S. Kim, L. Zhang, C. E. Song, D. H. Ryu, J. W. Yang, Org. Biomol. Chem. 2011, 9, 2069; g) S. Vedachalam, Q.-L. Wong, B. Maji, J. Zeng, J. Ma, X.-W. Liu, Adv. Synth. Catal. 2011, 353, 219; h) K. R. Law, C. S. P. McErlean, Chem.-Eur. J. 2013, 19, 15852; i) J. Labarre-Lainé, R. Beniazza, V. Desvergnes, Y. Landais, Org. Lett. 2013, 15, 4706.
[4] For selected examples: a) W.-Y. Xu, R. Iwaki, Y.-M. Jia, W. Zhang, A. Kato, C.-Y. Yu, Org. Biomol. Chem. 2013, 11, 4622; b) Z. Wang, F. Wang, X. Li, J.-P. Cheng, Org. Biomol. Chem. 2013, 11, 5634; c) H. Lv, W.-Q. Jia, L.-H. Sun, S. Ye, Angew. Chem. Int. Ed. 2013, 52, 8607; d) J. Izquierdo, A. Orue, K. A. Scheidt, J. Am. Chem. Soc. 2013, 135, 10634; e) A. Bhunia, A.

Patra, V. G. Puranik, A. T. Biju, Org. Lett. 2013, 15, 1756; f) B. Zhang, P. Feng, L.-H. Sun, Y. Cui, S. Ye, N. Jiao, Chem.-Eur. J. 2012, 18, 9198; g) S. Singh, L. D. S. Yadav, Org. Biomol. Chem. 2012, 10, 3932; h) A. K. Singh, R. Chawla, A. Rai, L. D. S. Yadav, Chem. Commun. 2012, 48, 3766; i) E. M. Phillips, T. E. Reynolds, K. A. Scheidt, J. Am. Chem. Soc. 2008, 130, 2416.
[5] a) K. Zeitler, Org. Lett. 2006, 8, 637; b) K. Zeitler, I. Mager, Adv. Synth. Catal. 2007, 349, 1851.
[6] R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719.
[7] For selected examples: a) J. Kaeobamrung, J. Mahatthananchai, P. Zheng, J. W. Bode, J. Am. Chem. Soc. 2010, 132, 8810; b) Z. Q. Zhu, J. C. Xiao, Adv. Synth. Catal. 2010, 352, 2455; c) J. Mahatthananchai, P. Zheng, J. W. Bode, Angew. Chem. Int. Ed. 2011, 50, 1673; d) D. Du, Z. Hu, J. Jin, Y. Lu, W. Tang, B. Wang, T. Lu, Org. Lett. 2012, 14, 1274; e) J. Mahatthananchai, J. Kaeobamrung, J. W. Bode, ACS Catal. 2012, 2, 494; f) F. Romanov-Michailidis, C. Besnard, A. Alexakis, Org. Lett. 2012, 14, 4906; g) B. Zhou, Z. Luo, Y. Li, Chem.-Eur. J. 2013, 19, 4428; h) Y. Lu, W. Tang, Y. Zhang, D. Du, T. Lu, Adv. Synth. Catal. 2013, 355, 321; i) Z.-Q. Zhu, X.-L. Zheng, N.-F. Jiang, X. Wan, J.-C. Xiao, Chem. Commun. 2011, 47, 8670.
[8] a) J. Qi, X. Xie, R. Han, D. Ma, J. Yang, X. She, Chem.-Eur. J. 2013, 19, 4146; b) R. Han, J. Qi, J. Gu, D. Ma, X. Xie, X. She, ACS Catal. 2013, 3, 2705.
[9] A. M. ElSohly, D. A. Wespe, T. J. Poore, S. A. Snyder, Angew. Chem. Int. Ed. 2013, 52, 5789.
[10] For selected examples: a) J. Mo, X. Chen, Y. R. Chi, J. Am. Chem. Soc. 2012, 134, 8810; b) J. Dugal-Tessier, E. A. O’Bryan, T. B. H. Schroeder, D. T. Cohen, K. A. Scheidt, Angew. Chem. Int. Ed. 2012, 51, 4963; c) D. T. Cohen, K. A. Scheidt, Chem. Sci. 2012, 3, 53; d) D. T. Cohen, B. Cardinal-David, K. A. Scheidt, Angew. Chem. Int. Ed. 2011, 50, 1678; e) D. T. Cohen, B. Cardinal-David, J. M. Roberts, A. A. Sarjeant, K. A. Scheidt, Org. Lett. 2011, 13, 1068; f) D. E. A. Raup, B. Cardinal-David, D. Holte, K. A. Scheidt, Nat. Chem. 2010, 2, 766; g) B. Cardinal-David, D. E. A. Raup, K. A. Scheidt, J. Am. Chem. Soc. 2010, 132, 5345; h) L. R. Domingo, R. J. Zaragoza, M. Arno, Org. Biomol. Chem. 2011, 9, 6616.
[11] For selected examples: a) A. K. Franz, N. V. Hanhan, N. R. Ball-Jones, ACS Catal. 2013, 3, 540; b) C. V. Galliford, K. A. Scheidt, Angew. Chem. Int. Ed. 2007, 46, 8748; c) B. M. Trost, M. K. Brennan, Synthesis 2009, 2009, 3003; d) N. R. Ball-Jones, J. J. Badillo, A. K. Franz, Org. Biomol. Chem. 2012, 10, 5165; e) L. Hong, R. Wang, Adv. Synth. Catal. 2013, 355, 1023.
[12] For selected examples: a) G. Nemecek, R. Thomas, H. Goesmann, C. Feldmann, J. Podlech, Eur. J. Org. Chem. 2013, 2013, 6420; b) B. Vaz, L. Otero, R. Álvarez, Á. R. de Lera, Chem.-Eur. J. 2013, 19, 13065; c) F. He, J. Bao, X.-Y. Zhang, Z.-C. Tu, Y.-M. Shi, S.-H. Qi, J. Nat. Prod. 2013, 76, 1182; d) A. N. Parker, M. J. Lock, J. M. Hutchison, Tetrahedron Lett. 2013, 54, 5322; e) J.-C. Han, L.-Z. Liu, Y.-Y. Chang, G.-Z. Yue, J. Guo, L.-Y. Zhou, C.-C. Li, Z. Yang, J. Org. Chem. 2013, 78, 5492; f) J. Zhang, X. Tang, J. Li, P. Li, N. J. de Voogd, X. Ni, X. Jin, X. Yao, P. Li, G. Li, J. Nat. Prod. 2013, 76, 600.
[13] For selected examples: a) A. A. Esmaili, A. Bodaghi, Tetrahedron 2003, 59, 1169; b) S. E. Kiruthika, R. Amritha, P. T. Perumal, Tetrahedron Lett. 2012, 53, 3268; c) M. A. Khalilzadeh, A. Hasannia, M. M. Baradarani, Z. Hossaini, Chin. Chem. Lett. 2011, 22, 49; d) J. Li, Y. Liu, C. Li, X. Jia, Chem.-Eur. J. 2011, 17, 7409; e) V. L. Gein, E. B. Levandovskaya, V. N. Vichegjanina, Chem. Heterocycl. Compd. 2010, 46, 931; f) J. Li, Y. Liu, C. Li, H. Jie, X. Jia, Green Chem. 2012, 14, 1314.
[14] For selected examples: a) G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104; b) Y. Liu, H. Wang, J. Wan, Asian J. Org. Chem. 2013, 2, 374; c) F. Shi, G.-J. Xing, R.-Y. Zhu, W. Tan, S. Tu, Org. Lett. 2012, 15, 128; d) Y. Murata, M. Takahashi, F. Yagishita, M. Sakamoto, T. Sengoku, H. Yoda, Org. Lett. 2013, 15, 6182; e) G.-W. Wang, A.-X. Zhou, J.-J. Wang, R.-B. Hu, S.-D. Yang, Org. Lett. 2013, 15, 5270.
[15] CCDC 987924 contains the supplementary crystallographic data for compound 3d. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. For details of the crystallographic data see Supporting Information.

