Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

A regio- and stereoselective entry to (Z)- β -halo alkenyl sulfides and their applications to the access of stereodefined trisubstituted alkenes

Ge Liu,† Lichun Kong,† Ji Shen, and Gangguo Zhu*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A mild and efficient preparation of (Z)- β -halo alkenyl sulfides via the K₂CO₃-promoted hydrothiolation of haloalkynes has been realized, producing (Z)- β -bromo and (Z)- β -chloro vinylic sulfides in high yields with excellent regio- and stereoselectivity. This approach covers a variety of substrates, including both aryl and alkyl haloalkynes. Meaningfully, it allows a facile access to stereodefined (Z)- or (E)-

 $_{10}$ trisubstituted olefins featuring the iterative cross-coupling of carbon–halide and carbon–sulfur bonds of β -halo alkenyl sulfides.

Introduction

Alkenyl sulfides are key components in the synthesis of important building blocks, biologically active compounds, as

- ¹⁵ well as novel materials.¹ Hydrothiolation of alkynes² proves to be a straightforward and atom-economic method toward vinylic sulfides. Up to date, a number of methods have been developed, including the base-mediated,³ radical⁴ and metal-catalyzed⁵ approaches. Most of these developments focus on the addition of
- ²⁰ S—H bond to terminal alkynes, while less attention has been paid to the hydrothiolation of nonterminal acetylenes, presumably due to the challenge of controlling regio- and stereoselectivity in these cases. As such, to expand the scope and synthetic utility of this reaction, further exploration of hydrothiolation of internal ²⁵ alkynes is worthwhile.
- A promising result came from Kataoka and co-workers,⁶ where the regio- and stereoselective hydrothiolation of alkynylselenonium was achieved with catalytic amount of triethylamine. In 2007, Yorimitsu and Oshima reported an
- ³⁰ elegant Pd-catalyzed hydrothiolation of alkynylphosphines, leading to (*Z*)-1-phosphino-2-thio-1-alkenes in good yields.^{7a} Later, the same group described the synthesis of (*Z*)- β -amino vinylic sulfides via a regio- and stereoselective radical addition of thiols to ynamides.^{7b} Recently, Chen and Dou reported a very
- ³⁵ effective entry to (*Z*)-β-bromo alkenyl sulfides via a TBAFmediated reaction between thiols and 1,1-dibromoalkenes,⁸ which was proposed to proceed via the bromoalkyne intermediates generated in situ. Indeed, it represents the first example on the regio- and stereoselective hydrothiolation of haloalkynes. Despite
- ⁴⁰ the obvious success, there are some limitations in this protocol: (1) the reaction is not applicable for aryl 1,1-dibromoalkenes because alkynyl sulfides rather than alkenyl sulfides were obtained in this context,⁹ (2) (*Z*)- β -chloro vinylic sulfides can neither be synthesized by this method; (3) the utilization of
- ⁴⁵ excessive TBAF results in poor functional-group compatibility. Therefore, the development of mild and general protocol for the

This journal is © The Royal Society of Chemistry [year]

access of (Z)- β -halo alkenyl sulfides remains to be explored.

On the other hand, trisubstituted alkenes are ubiquitous structural motifs in organic chemistry, and consequently, it is 50 highly desirable to develop new and expeditious approaches to these compounds.¹⁰ Along this line, transition-metal-catalyzed iterative cross-coupling strategy¹¹ has emerged as a powerful tool for constructing polysubstituted alkenes. However, the stepwise cross-coupling of 1,2-dihaloalkenes¹² has only met limited 55 success, mainly because of the following facts: (1) only limited methods^{13,14} are available for assembling stereocontrolled 1,2dihaloalkenes A, especially thermodynamically unfavorable (Z)isomers or mixed 1,2-dihaloalkenes (X \neq X'); (2) problems are encountered in the selective mono-coupling of C-X bond. As a 60 result, the desired product **B** is often messed with the doublesubstituted sideproduct C, regioisomer D, or elimination^{12d,14e} byproduct E (Scheme 1). These undesired products can not only dramatically lower the reaction yield but also hamper the

Scheme 1 The summary of this work.

To tackle these challenges, we reasoned that replacement of a carbon-halide bond of **A** with carbon-sulfur bond, the less reactive and more stable one towards transition-metal-catalyzed ⁷⁰ reactions, might be able to realize the selective mono-coupling of

[journal], [year], [vol], 00-00 | 1

A' as well as inhibition of the elimination side reaction. As such, continuing on our interest in the functionalization of heteroatom-substituted alkynes,^{14,15} we describe here an operationally simple and efficient method for the synthesis of (Z)- β -halo alkenyl β sulfides via the regio- and stereoselective hydrothiolation of haloalkynes, ultimately resulting in a new entry to stereodefined

(Z)- or (E)-trisubstituted alkenes featuring the iterative crosscoupling of C-X and C-S bonds of β -halo vinylic sulfides.

Results and discussion

- ¹⁰ To explore a mild and general access to (Z)- β -halo alkenyl sulfides, we decided to employ the silyl-substituted bromoalkyne **1a** as a model substrate for screening the reaction conditions. To our delight, promoted by 1.3 equiv of K₂CO₃, the hydrothiolation of **1a** with **2a** occurred smoothly in DMF to afford β -bromo
- ¹⁵ alkenyl sulfide **3aa** in good yield with excellent regio- and stereoselectivity, while no α -regioisomer was observed (Table 1, entry 1). We believed that the induce effect of bromine atom may be responsible for the regioselective β -addition of thiols. Of the solvent, environmentally friendly EtOH worked the best and
- ²⁰ nonpolar solvents such as toluene and Et₂O only resulted in trace of **3aa** (Table 1, entries 1–10). Screening of the base revealed that the readily available K₂CO₃ was the most effective, and deprotection of the TBS group was not detected (Table 1, entries

5, 11 and 12). As such, the optimized reaction conditions for ²⁵ hydrothiolation of haloalkynes consisted of 1.3 equiv of K₂CO₃, EtOH as the solvent, and room temperature for 10 h, which provided **3aa** in 82% isolated yield (Table 1, entry 5).

Table 1 Optimization of the reaction conditions for hydrothiolation of haloalkynes^{*a*}

	β_α	Br +	base	PyS Br
TBSO		N N	SH solvent, rt	Н
0	1a	2a		TBSO 3aa
Entry	Base	Solvent	Yield $(\%)^b$	Z/E^{c}
1	K ₂ CO ₃	DMF	73	95/5
2	K_2CO_3	DMSO	83	96/4
3	K_2CO_3	NMP	68	97/3
4	K_2CO_3	CH ₃ CN	75	98/2
5	K_2CO_3	EtOH	82	>98/2
6	K_2CO_3	MeOH	80	>98/2
7	K_2CO_3	<i>i</i> -PrOH	61	>98/2
8	K_2CO_3	THF	52	>98/2
9	K_2CO_3	toluene	trace	/
10	K_2CO_3	Et_2O	trace	/
11	K_3PO_4	EtOH	68	>98/2
12	Cs_2CO_3	EtOH	59	>98/2
13	/	EtOH	trace	/

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), base (0.65 mmol), rt, 10 h. ^{*b*} Combined isolated yield. ^{*c*} Determined by GC.

³⁵ ^{*a*} Reaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), K₂CO₃ (0.65 mmol), EtOH, rt, 10 h. Unless otherwise noted, **3** were obtained with >98% Z-stereoselectivity. ^{*b*} Run at 50 °C. ^{*c*} Determined by GC.

Once the optimal reaction conditions were established, the

scope and limitations of this reaction were then investigated. As

2 | Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

illustrated in Table 2, the hydrothiolation reaction was found to be quite effective over a wide range of alkynyl halides. Good yields were obtained with substrates possessing a number of conventional protecting groups, such as *tert*-butyldimethylsilyl

- ⁵ (TBS), benzoyl (Bz), benzyl (Bn), and *tert*-butyldiphenylsilyl (TBDPS). For example, bromoalkyne **1f** led to the formation of **3fa** in 83% yield with excellent regio- and stereoselectivity (Table 2, **3fa**). The sterically demanding substrate **3g** also served as a viable substrate, although a high temperature of 50 °C was
- ¹⁰ need for full conversion (Table 2, **3ga**). Moreover, functional groups such as halides, unprotected alcohols, alkenes, alkynes, aryl and heteroaryl groups were well tolerated (Table 2, **3ia–ma**). For instance, **2a** added to **1j** and **1k** in a highly regio- and stereoselective manner and furnished **3ja** and **3ka** in satisfactory
- ¹⁵ yields (Table 2, **3ja** and **3ka**). Remarkably, the reaction of **1n** underwent smoothly to produce the double hydrothiolation product **3na** in an excellent yield (Table 2, **3na**).

Pleasingly, the reaction between alkynyl chloride 10 and 2a occurred uneventfully forming (Z)- β -chloro olefinic sulfide 30a

²⁰ in 79% yield, albeit at elevated reaction temperature (50 °C) (Table 2, **30a**). Likewise, chloroalkynes **1p–r**, possessing ether, alkene, or alkyne substituents, all led to the desired products in good yields and excellent stereoselectivity (Table 2, **3pa–ra**). Of note, this protocol represents a mild and effective protocol for the ²⁵ regio- and stereoselective synthesis of (*Z*)-β-chloro vinyl

sulfides.¹⁶ Then, we turned our attention to extend this reaction to aryl

bromoacetylenes, although it^{8,9} was reported that acetylenic sulfides could be obtained by the treatment of aryl bromoalkynes 30 with thiols. We envisioned that using soft thiol nucleophiles

Table 3 The selective mono-coupling of 3^a

might favor the addition rather than substitution of ethynyl bromides. As such, 2-mercaptopyrimidine (2b) was employed as a thiol reagent, and as expected, the hydrothiolation product 3sb was isolated in 83% yield by treating phenylethynyl bromide (1s) 35 with **2b**, albeit in a somewhat lower stereoselectivity (Z/E)90:10) as compared to that of alkyl counterparts. Furthermore, the reaction was applicable for other aryl bromoacetylenes, providing (Z)- β -bromo vinylic sulfides in good yields and high stereoselectivity (Table 2, 3sb-wb). In particular, 4-fluorophenyl 40 ethynylbromide (1t) coupled with 2b to give 81% of 3tb as a 93:7 mixture of Z/E isomers, while the reaction of 4methoxyphenyl and 3,4-dimethoxyphenyl substrates 1v and 1w produced the desired (Z)- β -bromo vinylic sulfides **3vb** and **3wb** in similar stereoselectivity (Z/E = 97:3), indicating that the 45 electronic effect of bromoalkynes has little influence on this reaction. Unfortunately, the hydrothiolation of aryl chloroalkynes only gave the corresponding products in synthetic useless stereoselectivity even after a number of efforts.

The scope of this reaction with respect to thiol nucleophiles ⁵⁰ proved to be satisfactory. Under the standard reaction conditions, not only **2b** but also the bulky thiol **2c** added to **1f** regio- and stereoselectively, providing **3fb** and **3fc** in good yields (Table 2, **3fb** and **3fc**). Other thiols bearing additional functionality underwent the hydrothiolation reaction smoothly to generate the ⁵⁵ expected products in good yields with excellent stereoselectivity

(Table 2, **3fd-fg**). For example, the stereospecific addition of *p*-toluenethiol (**2e**) to **3f** furnished **3fe**⁸ in 80% yield (Table 2, **3fe**). The regio- and stereochemistry of this reaction was determined by the NOE measurements, and further confirmed by comparison ⁶⁰ of the data of products **3fa** and **3fe-g** with the literature.⁸

			$\mathbb{R}^{2}S$ Br $\mathbb{P}dL_{n}$, $\mathbb{R}^{3}M$	$(4) \qquad R^2S \qquad R^3$	
			R ¹ H		
			3	5	
Entry	3	\mathbb{R}^1	R^2	R ³ M/4	Yield $(\%)^b$
1	3aa	TBSO(CH ₂) ₂	2-pyridyl	PhB(OH) ₂ /4a	90/5a
2	3da	PhOCH ₂	2-pyridyl	PhB(OH) ₂ /4a	70/ 5b
3	3fa	$n-C_8H_{17}$	2-pyridyl	PhB(OH) ₂ /4a	83/ 5 c
4	3ga	n-C ₄ H ₉ (CH)Et	2-pyridyl	PhB(OH) ₂ /4a	79/ 5d
5	3ha	$Ph(CH_2)_2$	2-pyridyl	PhB(OH) ₂ /4a	76/ 5 e
6	3ia	$Cl(CH_2)_3$	2-pyridyl	PhB(OH) ₂ /4a	67/ 5f
8	3la	2-cyclohexenyl	2-pyridyl	PhB(OH) ₂ /4a	72/ 5 g
9	3ma	$PhC \equiv CCH_2OCH_2$	2-pyridyl	PhB(OH) ₂ /4a	75/ 5h
10	3ub	$4-Me-C_6H_4$	2-pyrimidyl	PhB(OH) ₂ /4a	76/ 5i ^c
11	3vb	4-MeO-C ₆ H ₄	2-pyrimidyl	PhB(OH) ₂ /4a	70/ 5j ^d
12	3wb	$3,4-(OMe)_2-C_6H_3$	2-pyrimidyl	PhB(OH) ₂ /4a	75/ 5 k
13	3aa	$TBSO(CH_2)_2$	2-pyridyl	$4-Me-C_6H_4B(OH)_2/4b$	85/ 5 1
14	3fa	$n-C_8H_{17}$	2-pyridyl	4-Me-C ₆ H ₄ B(OH) ₂ /4b	80/ 5m
15	3fa	$n-C_8H_{17}$	2-pyridyl	$3-Me-C_{6}H_{4}B(OH)_{2}/4c$	75/ 5n
16	3fa	$n-C_8H_{17}$	2-pyridyl	$2-Me-C_6H_4B(OH)_2/4d$	84/ 5 0
17	3fa	$n-C_8H_{17}$	2-pyridyl	$4-MeO-C_6H_4B(OH)_2/4e$	79/ 5 p
18	3fa	$n-C_8H_{17}$	2-pyridyl	4-F-C ₆ H ₄ B(OH) ₂ /4f	82/ 5 q
19	3fa	$n-C_8H_{17}$	2-pyridyl	$4-CF_{3}-C_{6}H_{4}B(OH)_{2}/4g$	85/ 5 r
20	3fa	$n-C_8H_{17}$	2-pyridyl	2-naphthylB(OH) ₂ /4h	68/ 5s
21	3fa	$n-C_8H_{17}$	2-pyridyl	2-thienylB(OH) ₂ /4i	75/ 5 t
22	3fa	$n-C_8H_{17}$	2-pyridyl	(E)-styrylB(OH) ₂ /4j	76/ 5u
23	3fa	$n-C_8H_{17}$	2-pyridyl	$MeB(OH)_2/4k$	trace
24	3fa	$n-C_8H_{17}$	2-pyridyl	MeMgCl/4l	84/ 5 v ^e
25	3fa	$n-C_8H_{17}$	2-pyridyl	MeZnCl/4m	$80/5\mathbf{v}^e$

^{*a*} Reaction conditions for the Suzuki coupling: **3** (0.5 mmol), **4** (0.65 mmol), Pd(dba)₂ (0.025 mmol), XPhos (0.05 mmol), K₂CO₃ (0.75 mmol), toluene, 50 °C, 10 h. ^{*b*} Isolated yield. ^{*c*} Z/E = 93:7. ^{*d*} Z/E = 95:5. ^{*e*} The reaction was run with 5 mol% of Pd(PPh₃)₄ in THF at rt for 8 h.

Cite this: DOI: 10.1039/coxxooooox

www.rsc.org/xxxxx

Next, the stepwise cross-coupling of (Z)- β -bromo alkenyl sulfides was investigated. Treatment of **3aa** with 5 mol% Pd(dba)₂, 10 mol% of PPh₃, 1.5 equiv of K₂CO₃, and 1.3 equiv of PhB(OH)₂ in THF at 80 °C for 10 h furnished the Suzuki¹⁷

- ⁵ coupling product **5a** in 62% yield, and the C–S bond was completely intact under the reaction conditions. Utilizing toluene instead of THF as the solvent resulted in a better yield (80%). Finally, the evaluation of ligands revealed that Xphos¹⁸ was the most effective ligand for this reaction, leading to **5a** in 90% yield
- ¹⁰ (Table 3, entry 1). Therefore, running the reaction with 5 mol% of Pd(dba)₂, 10 mol% of Xphos, 1.5 equiv of K₂CO₃, and 1.3 equiv of PhB(OH)₂ in toluene at 80 °C appeared to the optimized reaction conditions for the Suzuki coupling of **3**.
- As demonstrated in Table 3, in general, the Suzuki coupling of (Z)- β -bromo alkenyl sulfides **3** proceeded smoothly and provided olefinic sulfides **5** in high yields. Various functional groups like OTBS, OPh, F, Cl, Me, OMe, C–C double and triple bonds were well tolerated under the reaction conditions. (*Z*)- β -Bromo vinylic sulfide **3fa** gave rise to **5c** in 83% yield, while the reaction of **3ga** ²⁰ produced **5d** in 79% yield (Table 3, entries 3 and 4), implying the

ARTICLE TYPE

steric hindrance of **3** has no significant correlation with the yield. On the other hand, the scope of this reaction with regard to boronic acids was investigated. In this respect, 4-, 3-, and 2tolylboronic acids 4b-d reacted with 3fa to give the desired 25 products in respective yields of 80%, 75%, and 84%, which indicated that the Suzuki coupling of 3 is not sensitive to steric hindrance of boronic acids (Table 3, entries 14-16). Introducing either electron-donating or electron-withdrawing groups into the benzene ring of 4 did not significantly affect the reaction yield, as $_{30}$ demonstrated by the coupling of boronic acids 4e-g (Table 3, entries 17–19). The reaction of heteroarvl boronic acid 4i took place as well, forming the expected product 5t in 75% yield (Table 3, entry 21). Additionally, the attempts to install a methyl group into 5 with the use of MeB(OH)₂ (4k) failed; fortunately, 35 the utilization of Kumada coupling¹⁹ with MeMgCl (41) or Negishi coupling²⁰ with MeZnCl (4m) came to rescue, providing the methylation product 5v in high yields (Table 3, entries 22-25). The stereochemistry of alkenyl sulfides 5 was identified by NOE measurements, and further confirmed by an X-ray diffraction

Table 4 Synthesis of trisubstituted alkenes via the Ni-catalyzed C-S bond coupling^a

$R^{2}S$ R^{3} $R^{4}M(4)$ R^{4} R^{3}									
				R ¹ H					
Entry	5	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴ M/4	Yield $(\%)^b$			
1	5a	TBSO(CH ₂) ₂	2-pyridyl	Ph	MeMgCl/4l	80/ 6a			
2	5c	$n-C_8H_{17}$	2-pyridyl	Ph	MeMgCl/4l	88/ 6b			
3	5d	n-C ₄ H ₉ (CH)Et	2-pyridyl	Ph	MeMgCl/41	trace			
4	5e	$Ph(CH_2)_2$	2-pyridyl	Ph	MeMgCl/4l	72/ 6c			
5	5g	2-cyclohexenyl	2-pyridyl	Ph	MeMgCl/41	79/ 6d			
6	5i	$4-Me-C_6H_4$	2-pyrimidyl	Ph	MeMgCl/4l	85/ 6e ^c			
7	5j	$4-MeO-C_6H_4$	2-pyrimidyl	Ph	MeMgCl/4l	81/ 6f			
8	51	$TBSO(CH_2)_2$	2-pyridyl	4-Me-C ₆ H ₄	MeMgCl/4l	78/ 6g			
9	5m	$n-C_8H_{17}$	2-pyridyl	4-Me-C ₆ H ₄	MeMgCl/4l	76/ 6h			
10	5n	$n-C_8H_{17}$	2-pyridyl	3-Me-C ₆ H ₄	MeMgCl/4l	72/6i			
11	50	$n-C_8H_{17}$	2-pyridyl	2-Me-C ₆ H ₄	MeMgCl/4l	77/ 6 j			
12	5p	$n-C_8H_{17}$	2-pyridyl	4-MeO-C ₆ H ₄	MeMgCl/41	77/ 6k			
13	5q	$n-C_8H_{17}$	2-pyridyl	$4-F-C_6H_4$	MeMgCl/41	86/ 61 °			
14	5r	$n-C_8H_{17}$	2-pyridyl	4-CF ₃ -C ₆ H ₄	MeMgCl/41	68/ 6m			
15	5s	$n-C_8H_{17}$	2-pyridyl	2-naphthyl	MeMgCl/4l	81/ 6n			
16	5t	$n-C_8H_{17}$	2-pyridyl	2-thienyl	MeMgCl/41	66/ 60 ^d			
17	5u	$n-C_8H_{17}$	2-pyridyl	(E)-styryl	MeMgCl/4l	80/ 6p			
18	5c	$n-C_8H_{17}$	2-pyridyl	Ph	EtMgCl/4n	trace			
19	5c	$n-C_8H_{17}$	2-pyridyl	Ph	PhMgCl/40	69/ 6q ^e			
20	5c	$n-C_8H_{17}$	2-pyridyl	Ph	4-Me-C ₆ H ₄ MgCl/4p	75/6r ^f			
21	5c	$n-C_8H_{17}$	2-pyridyl	Ph	4-MeO-C ₆ H ₄ MgCl/4q	67/ 6s			
22	5c	$n-C_8H_{17}$	2-pyridyl	Ph	$CH_2=CHCH_2MgBr/4r$	67/ 6t			
^{<i>a</i>} Reaction conditions: 5 (0.25 mmol), 4 (0.50 mmol), Ni(PPh ₃) ₂ Cl ₂ (0.025 mmol), THF, rt, 10 h. ^{<i>b</i>} Isolated yield. ^{<i>c</i>} <i>E</i> / <i>Z</i> = 93:7. ^{<i>d</i>} <i>E</i> / <i>Z</i> = 95:5. ^{<i>e</i>} <i>Z</i> / <i>E</i> = 97:3									

40 analysis of 5i (see ESI^{*}).

Z/E = 91:9

Finally, the elaboration of stereodefined trisubstituted alkenes was achieved by the Ni-catalyzed coupling of C–S bond²¹ with Grignard reagents. In the presence of 10 mol% of Ni(PPh₃)₂Cl₂, **5a** underwent the coupling with **4l** to generate the (*E*)trisubstituted alkene **6a** in 80% yield (Table 4, entry 1). We ⁵⁰ found that the steric hindrance of R¹ group has a significant effect on the reaction. For example, the reaction of **5c** resulted in **6b**^{11e} in 88% yield, while the bulky substrate **5d** was almost unreactive (Table 4, entries 2 and 3). In contrast, **5m–o** were converted into the corresponding products in comparable yields, which

This journal is © The Royal Society of Chemistry [year]

[journal], [year], [vol], 00-00 | 4

demonstrated the steric hindrance of R³ has little influence on the coupling reaction (Table 4, entries 9–11). Gratifyingly, the stereodefined 1,3-diene products could be assembled by this protocol, as shown by the production of **6d** and **6p** (Table 4, s entries 5 and 17). It should be noted that **5b** and **5h** were not

amenable to this reaction, owing to the cleavage of allylic or propagylic C–O bond under the reaction conditions.

Furthermore, the Grignard reagents were varied with 5c acting as the coupling partner. As a result, the utilization of EtMgCl (4n)

- ¹⁰ instead of **41** only produced trace of the desired product because of the occurrence of β -H elimination process (Table 4, entry 18). On the contrary, aryl Grignard reagents were found to be effective coupling partners, for instance, the reaction of **5c** with PhMgCl (**40**) provided (*Z*)-trisubstituted alkene **6q** in good yield
- ¹⁵ with excellent stereoselectivity (Table 4, entry 19). In addition, CH₂=CHCH₂MgBr (**4r**) also resulted in a reasonable yield of **6t** under the standard conditions (Table 4, entry 22).

Conclusions

In conclusion, we have developed an operationally simple and ²⁰ efficient protocol for the synthesis of (*Z*)- β -halo alkenyl sulfides via the K₂CO₃-promoted hydrothiolation of acetylenic halides under the mild reaction conditions, providing (*Z*)- β -bromo and (*Z*)- β -chloro alkenyl sulfides in high yields with good to excellent stereoselectivity. Both aryl and alkyl haloalkynes are effective ²⁵ substrates for this reaction. It constitutes a new advance in the development of regiocontrolled hydrothiolation of nonterminal alkynes. Notably, a new effective entry to stereodefined (*Z*)- or (*E*)-trisubstituted olefins featuring the iterative cross-coupling the C–X and C–S bonds of β -halo alkenyl sulfides has also been ³⁰ realized in this report.

Experimental section

General

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. ¹H and ¹³C ³⁵ NMR spectra were measured on a 400 or 600 MHz NMR spectrometers using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard. Chemical shifts were given in δ relative to TMS, and the coupling constants were given in Hz. Column chromatography was performed using silica gel (300–

⁴⁰ 400 mesh). High-resolution mass spectra (HRMS) analyses were carried out using a TOF MS instrument with EI or ESI source.

General procedure for K_2CO_3 -promoted hydrothiolation of haloalkynes

To a mixture of 2-mercaptopyridine (2a) (66.6 mg, 0.6 mmol) ⁴⁵ and K₂CO₃ (89.7 mg, 0.65 mmol) in 2 mL of EtOH was added bromoalkyne **1a** (186.6 mg, 0.5 mmol). After stirring at room temperature for 10 h, the reaction mixture was quenched with water, extracted with EtOAc, dried over Na₂SO₄ and concentrated. Column chromatography on silica gel (petroleum ⁵⁰ ether/EtOAc = 20:1) gave **3aa** as a yellow oil (152.9 mg, 82% yield); ¹H NMR (CDCl₃, 400 MHz): δ 0.00 (s, 6H), 0.85 (s, 9H), 2.63 (t, *J* = 6.0 Hz, 2H), 3.72 (t, *J* = 6.1 Hz, 2H), 6.73 (s, 1H), 7.04–7.11 (m, 1H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.56 (td, *J* = 7.8, 1.8 Hz, 1H), 8.47 (dd, *J* = 4.7, 0.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 **Compound 3ba.** 134.3 mg, 74% yield, colorless oil; ¹H NMR ⁶⁰ (CDCl₃, 600 MHz): δ 2.94 (t, J = 6.2 Hz, 2H), 4.48 (t, J = 6.2 Hz, 2H), 6.82 (s, 1H), 7.08–7.15 (m, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.58 (qd, J = 7.7, 1.3 Hz, 2H), 8.02 (d, J= 8.2 Hz, 2 H), 8.51 (d, J = 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 36.7, 62.3, 113.6, 120.9, 123.7, 128.4, 129.5, 130.0, 65 133.0, 135.7, 136.8, 150.2, 156.3, 166.3; HRMS (ESI) calcd for

 $_{55}$ 133.0, 135.7, 136.8, 150.2, 156.3, 166.3; HRMS (ESI) calcd to $C_{16}H_{15}BrNO_2S$ (M+H)⁺ 364.0007, found 364.0006.

Compound 3ca. 135.7 mg, 81% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 4.24 (s, 2H), 4.52 (s, 2H), 7.03–7.10 (m, 2H), 7.24–7.37 (m, 6H), 7.54 (td, J = 7.8, 1.7 Hz, 1H), 8.45 (d, J ⁷⁰ = 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 72.0, 72.3, 114.7,

120.8, 123.3, 127.6, 127.7, 128.3, 135.7, 136.7, 137.5, 149.9, 156.3; HRMS (ESI) calcd for $C_{15}H_{15}BrNOS (M+H)^+$ 336.0058, found 336.0065.

Compound 3da. 147.7 mg, 92% yield, yellow oil; ¹H NMR ⁷⁵ (CDCl₃, 600 MHz): δ 4.80 (d, J = 1.5 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 7.00 (t, J = 7.4 Hz, 1H), 7.06–7.12 (m, 1H), 7.17 (t, J =1.4 Hz, 1H), 7.30 (t, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.54–7.60 (m, 1H), 8.49 (d, J = 4.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 70.1, 114.7, 115.5, 120.8, 121.3, 123.1, 129.4, 133.9, ⁸⁰ 136.8, 149.8, 155.9, 157.7; HRMS (ESI) calcd for C₁₄H₁₃BrNOS

 $(M+H)^+$ 321.9901, found 321.9907.

Compound 3ea. 181.1 mg, 75% yield, white solid, mp 89–91 °C; ¹H NMR (CDCl₃, 400 MHz): δ 1.08 (s, 9H), 4.37 (d, J = 1.6 Hz, 2H), 6.98–7.08 (m, 2H), 7.27 (t, J = 1.5 Hz, 1H), 7.34–7.50

- ⁸⁵ (m, 7H), 7.65 (dd, J = 6.5, 1.3 Hz, 4H), 8.37 (d, J = 3.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 19.2, 26.7, 66.8, 115.0, 120.4, 122.0, 127.7, 129.8, 132.7, 134.8, 135.4, 136.7, 149.8, 156.7; HRMS (ESI) calcd for C₂₄H₂₇BrNOSSi (M+H)⁺ 484.0766, found 484.0767.
- Compound 3fa.⁸ 135.7 mg, 83% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (t, J = 6.9 Hz, 3H), 1.16–1.28 (m, 10H), 1.43–1.53 (m, 2H), 2.41 (t, J = 7.4 Hz, 2H), 6.63 (s, 1H), 7.03–7.10 (m, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.55 (td, J = 7.9, 1.8 Hz, 1H), 8.47 (dd, J = 4.8, 0.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 95 MHz): δ 14.0, 22.6, 28.1, 28.7, 29.1, 29.1, 31.7, 37.4, 110.7, 120.7, 123.8, 136.7, 139.9, 150.0, 156.8.

Compound 3ga. 117.4 mg, 75% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.81–0.94 (m, 6H), 1.18–1.29 (m, 4H), 1.42–1.58 (m, 4H), 2.31–2.38 (m, 1H), 6.80 (s, 1H), 7.00–7.06 (m, 1H), 7.20 (d, J = 8.1 Hz, 1H), 7.53 (td, J = 8.0, 1.6 Hz, 1H), 8.43 (d, J = 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 11.6, 13.9, 22.5, 26.0, 29.3, 32.5, 50.7, 114.6, 120.0, 122.3, 136.4, 142.3, 149.5, 157.4; MS (EI, m/z): 315 (4), 313 (M⁺, 5), 234 (M⁺–⁷⁹Br, 53), 177 (5); HRMS (EI) calcd for C₁₄H₂₀BrNS (M⁺) 105 313.0500, found 313.0502.

Compound 3ha. 140.4 mg, 88% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 2.71–2.79 (m, 2H), 2,80–2.87 (m, 2H), 6.58 (s, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.09–7.14 (m, 1H), 7.15–7.21 (m, 1H), 7.21–7.28 (m, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.59 ¹¹⁰ (td, J = 7.8, 1.6 Hz, 1H), 8.52 (d, J = 4.1 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 34.6, 39.2, 111.4, 120.9, 124.1, 126.1, 128.3, 136.8, 138.8, 140.5, 150.0, 156.4; MS (EI, *m/z*): 321 (6),

Organic & Biomolecular Chemistry Accepted Manuscri

⁵⁵ MHz): δ –5.4, 18.2, 25.8, 40.7, 60.6, 113.4, 120.6, 123.5, 135.9, 136.9, 149.9, 156.9; MS (EI, *m/z*): 375 (2), 373 (M⁺, 3), 294 (M⁺–⁷⁹Br, 38), 163 (13); HRMS (EI) calcd for C₁₅H₂₄BrNOSSi (M⁺) 373.0531, found 373.0535.

319 (M^+ , 6), 241 (11), 240 ($M^{+}-^{79}Br$, 59), 162 (3); HRMS (EI) calcd for C₁₅H₁₄BrNS (M^+) 319.0030, found 319.0038.

Compound 3ia. 88.8 mg, 61% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 1.82–1.90 (m, 2H), 2.54 (t, J = 7.1 Hz,

(CDCl₃, 600 MHz). δ 1.62–1.90 (III, 211), 2.54 (t, J = 7.1 Hz, 5 2H), 3.40 (t, J = 6.3 Hz, 2H), 6.63 (s, 1H), 6.98–7.04 (m, 1H), 7.19 (d, J = 7.4 Hz, 1H), 7.49 (td, J = 7.8, 1.8 Hz, 1H), 8.39 (d, J = 4.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 30.4, 34.0, 43.6, 111.9, 120.9, 124.0, 136.9, 138.0, 150.0, 156.0; MS (EI, m/z): 293 (6), 291 (M⁺, 7), 214 (37), 212 (M⁺–⁷⁹Br, 100), 148 (20); ¹⁰ HRMS (EI) calcd for C₁₀H₁₁BrClNS (M⁺) 290.9484, found 290.9479.

Compound 3ja. 120.5 mg, 77% yield, white solid, mp 114– 116 °C; ¹H NMR (CDCl₃, 400 MHz): δ 1.18–1.30 (m, 1H), 1.46– 1.61 (m, 3H), 1.62–1.78 (m, 4H), 1.79–1.88 (m, 2H), 5.29 (br,

- ¹⁵ 1H), 6.97–7.05 (m, 1H), 7.26–7.33 (m, 2H), 7.52 (td, J = 7.8, 1.7 Hz, 1H), 8.31 (d, J = 4.5 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 22.0, 25.4, 36.9, 74.9, 120.3, 120.8, 122.4, 136.8, 144.9, 149.1, 158.2; HRMS (ESI) calcd for C₁₃H₁₇BrNOS (M+H)⁺ 314.0214, found 314.0204.
- ²⁰ **Compound 3ka.** 94.5 mg, 73% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 2.63 (t, J = 4.9 Hz, 2H), 3.78–3.86 (m, 2H), 4.50 (br, 1H), 6.93 (s, 1H), 7.03–7.09 (m, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.57 (td, J = 8.0, 1.8 Hz, 1H), 8.34 (d, J = 4.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 42.9, 58.6, 117.8, 120.7, 124.0,
- ²⁵ 135.6, 137.0, 149.6, 157.6; MS (EI, m/z): 261 (3), 259 (M⁺, 4), 180 (M⁺-⁷⁹Br, 100), 163 (20); HRMS (EI) calcd for C₉H₁₀BrNOS (M⁺) 258.9666, found 258.9670.

Compound 3la. 103.3 mg, 70% yield, yellow oil; ¹H NMR (CDCl₁, 600 MHz): δ 1.46–1.55 (m, 2H), 1.56–1.64 (m, 2H).

(2DCl₃, 606 MH2): 6 1.16 1.05 (iii, 2H), 1.06 1.07 (iii, 2H), $30\ 2.00-2.07$ (iii, 2H), 2.18–2.26 (iii, 2H), 6.39 (i, J = 4.0 Hz, 1H), 6.93 (s, 1H), 6.99–7.08 (iii, 2H), 7.51 (id, J = 7.9, 1.8 Hz, 1H), 8.43 (d, J = 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 21.7, 22.5, 25.8, 27.0, 113.1, 120.0, 122.1, 130.9, 134.8, 136.5, 140.8, 149.4, 158.4; MS (EI, m/z): 297 (5), 295 (M⁺, 7), 217 (18), 216

 $_{35}$ (M⁺– $^{79}Br,$ 100), 214 (5); HRMS (EI) calcd for $C_{13}H_{14}BrNS$ (M⁺) 295.0030, found 295.0031.

Compound 3ma. 125.7 mg, 70% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 4.38 (s, 2H), 4.41 (s, 2H), 7.03–7.09 (m, 1H), 7.12 (s, 1H), 7.26–7.38 (m, 4H), 7.41 (d, J = 6.5 Hz, 2H),

- ⁴⁰ 7.54 (td, J = 7.8, 1.3 Hz, 1H), 8.46 (d, J = 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 58.1, 71.3, 84.3, 86.7, 115.3, 120.7, 122.2, 123.4, 128.2, 128.5, 131.6, 135.2, 136.8, 149.9, 156.1; HRMS (ESI) calcd for C₁₇H₁₅BrNOS (M+H)⁺ 360.0058, found 360.0058. **Compound 3na.** 220.2 mg, 91% yield, white solid, mp 124–
- ⁴⁵ 126 °C; ¹H NMR (CDCl₃, 600 MHz): δ 1.38–1.46 (m, 4H), 2.37 (t, J = 6.1 Hz, 4H), 6.58 (s, 2H), 7.03–7.12 (m, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.56 (td, J = 7.8, 1.8 Hz, 2H), 8.46 (d, J = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 27.1, 36.8, 110.9, 120.7, 123.8, 136.7, 139.3, 149.9, 156.4; HRMS (ESI) calcd for ⁵⁰ C₁₈H₁₀Br₂N₂S₂ (M+H)⁺ 484.9356, found 484.9354.

Compound 30a. 111.8 mg, 79% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.86 (t, J = 7.0 Hz, 3H), 1.16–1.30 (m, 10H), 1.43–1.57 (m, 2H), 2,40 (t, J = 5.8 Hz, 2H), 6.43–6.50 (m, 1H), 7.01–7.13 (m, 1H), 7.23 (d, J = 7.9 Hz, 1H), 7.51–7.60 (m,

⁵⁵ 1H), 8.47 (d, J = 4.6 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.0, 22.5, 28.0, 28.7, 29.0, 29.1, 31.7, 36.1, 120.5, 121.5, 123.4, 136.3, 136.6, 149.9, 156.8; HRMS (ESI) calcd for C₁₅H₂₃ClNS (M+H)⁺ 284.1240, found 284.1242.

Compound 3pa. 116.4 mg, 80% yield, yellow oil; ¹H NMR 60 (CDCl₃, 400 MHz): δ 4.26 (d, J = 1.3 Hz, 2H), 4.53 (s, 2H), 6.87 (t, J = 1.3 Hz, 1H), 7.04–7.10 (m, 1H), 7.23–7.40 (m, 6H), 7.55 (td, J = 7.8, 1.9 Hz, 1H), 8.45 (d, J = 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 71.2, 72.3, 120.7, 123.2, 125.4, 127.7, 127.7, 128.4, 132.2, 136.7, 137.5, 149.9, 156.4; HRMS (ESI) 65 calcd for C₁₅H₁₅ClNOS (M+H)⁺ 292.0563, found 292.0560.

Compound 3qa. 127.6 mg, 81% yield, yellow oil, Z/E = 97:3; ¹H NMR (CDCl₃, 600 MHz): δ 4.41 (s, 2H), 4.42 (s, 2H), 6.93 (s, 1H), 7.03–7.09 (m, 1H), 7.29–7.38 (m, 4H), 7.42 (dd, J = 7.8, 1.6 Hz, 2H), 7.55 (td, J = 7.8, 1.8 Hz, 1H), 8.47 (d, J = 4.5 Hz, 1H);

 $_{70}$ ^{13}C NMR (CDCl₃, 150 MHz): δ 58.1, 70.6, 84.3, 86.8, 120.7, 122.3, 123.3, 125.9, 128.2, 128.5, 131.7, 131.8, 136.8, 150.0, 156.3; HRMS (ESI) calcd for $C_{17}H_{15}\text{CINOS} (\text{M+H})^+$ 316.0563, found 316.0564.

Compound 3ra. 102.9 mg, 82% yield, yellow oil, Z/E = 95:5; ⁷⁵ ¹H NMR (CDCl₃, 400 MHz): δ 1.45–1.54 (m, 2H), 1.55–1.65 (m, 2H), 2.00–2.09 (m, 2H), 2.15–2.24 (m, 2H), 6.36 (t, J = 4.1 Hz, 1H), 6.71 (s, 1H), 6.95–7.04 (m, 2H), 7.48 (td, J = 7.9, 1.9 Hz, 1H), 8.39 (dd, J = 4.8, 0.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 21.7, 22.4, 25.8, 26.8, 119.9, 121.7, 123.0, 130.6, 133.7, 136.4, ⁸⁰ 137.4, 149.4, 158.5; MS (EI, m/z): 255 (1), 253 (4), 251 (M⁺, 6),

 $216 (M^+)^{35}$ Cl, 100), 173 (19); HRMS (EI) calcd for C₁₃H₁₄ClNS (M⁺) 251.0535, found 251.0538.

Compound 3sb. 121.2 mg, 83% yield, yellow oil, Z/E = 90:10; ¹H NMR (CDCl₃, 600 MHz): δ 6.93 (t, J = 4.8 Hz, 1H), 7.15 (s, ⁸⁵ 1H), 7.27–7.31 (m, 3H), 7.58–7.63 (m, 2H), 8.42 (d, J = 4.8 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 115.6, 117.2, 127.3, 128.3,

128.4, 138.4, 138.9, 157.4, 170.0; MS (EI, m/z): 294 (11), 292 (M⁺, 13), 215 (16), 213 (100), 212 (2); HRMS (EI) calcd for C₁₂H₉BrN₂S (M⁺) 291.9670, found 291.9673.

⁹⁰ Compound 3tb. 127.1 mg, 82% yield, yellow oil, Z/E = 93:7, mp 64–66 °C; ¹H NMR (CDCl₃, 400 MHz): δ 6.90–6.99 (m, 3H), 7.06 (s, 1H), 7.52–7.58 (m, 2H), 8.40 (d, J = 4.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 115.2 (d, J = 21.5 Hz), 117.2, 129.1 (d, J = 8.2 Hz), 135.1 (d, J = 3.1 Hz), 137.4, 144.6, 157.5, 162.6

⁹⁵ (d, J = 247 Hz), 169.8; MS (EI, m/z): 311 (8), 310 (M⁺, 9), 233 (15), 231 (100), 199 (2); HRMS (EI) calcd for C₁₂H₈BrFN₂S (M⁺) 309.9576, found 309.9581.

Compound 3ub. 123.9 mg, 81% yield, yellow oil, Z/E = 93:7, mp 79–81 °C; ¹H NMR (CDCl₃, 400 MHz): δ 2.30 (s, 3H), 6.91 ¹⁰⁰ (t, J = 4.9 Hz, 1H), 7.08 (s, 1H), 7.10 (s, 2H), 7.49 (d, J = 8.2 Hz, 2H), 8.41 (d, J = 4.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 21.1, 114.9, 117.1, 127.2, 129.0, 136.1, 138.2, 138.4, 157.4, 170.2; MS (EI, m/z): 308 (4), 306 (M⁺, 4), 227 (69), 226 (3), 147 (21); HRMS (EI) calcd for C₁₃H₁₁BrN₂S (M⁺) 305.9826, found ¹⁰⁵ 305.9828.

Compound 3vb. 128.8 mg, 80% yield, yellow oil, Z/E = 97.3, mp 90–92 °C; ¹H NMR (CDCl₃, 400 MHz): δ 3.75 (s, 3H), 6.74–6.81 (m, 2H), 6.90 (t, J = 4.8 Hz, 1H), 7.02 (s, 1H), 7.46–7.53 (m, 2H), 8.39 (d, J = 4.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ

¹¹⁰ 55.1, 113.6, 113.8, 117.1, 128.6, 131.3, 137.7, 157.4, 159.7, 170.1; MS (EI, *m/z*): 323 (11), 322 (M^+ , 10), 243 (100), 242 (8), 212 (9); HRMS (EI) calcd for $C_{13}H_{11}BrN_2OS$ (M^+) 321.9775, found 321.9769.

Compound 3wb. 160.2 mg, 91% yield, yellow oil, Z/E = 97:3, ¹¹⁵ mp 104–106 °C; ¹H NMR (CDCl₃, 400 MHz): δ 3.79 (d, J = 2.6 Hz, 6H), 6.71 (d, J = 8.4 Hz, 1H), 6.88 (t, J = 4.8 Hz, 1H), 7.00

6 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

(s, 1H), 7.07 (d, J = 2.1 Hz, 1H), 7.13 (dd, J = 8.4, 2.1 Hz, 1H), 8.37 (d, J = 4.9 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 55.6, 55.7, 110.3, 110.5, 113.6, 117.1, 120.1, 131.6, 138.0, 148.4, 149.1, 157.3, 170.0; HRMS (ESI) calcd for C14H14BrN2O2S ⁵ (M+H)⁺ 352.9959, found 352.9955.

Compound 3fb. 131.2 mg, 80% yield, yellow solid, mp 40-41 °C; ¹H NMR (CDCl₃, 400 MHz): δ 0.84 (t, J = 6.8 Hz, 3H), 1.19–1.28 (m, 10H), 1.49–1.58 (m, 2H), 2.57 (t, J = 7.5 Hz, 2H), 6.73 (s, 1H), 6.99 (t, J = 4.8 Hz, 1H), 8.51 (d, J = 4.9 Hz, 2H); 10 ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 22.5, 28.0, 28.8, 29.0, 29.1,

31.7, 37.8, 113.5, 117.0, 138.5, 157.5, 170.7; MS (EI, m/z): 329 (3), 328 (M⁺, 3), 249 (M⁺-⁷⁹Br, 100), 150 (33), 149 (6); HRMS (EI) calcd for $C_{14}H_{21}BrN_2S$ (M⁺) 328.0609, found 328.0608.

Compound 3fc. 138.8 mg, 78% yield, yellow oil; ¹H NMR 15 (CDCl₃, 400 MHz): δ 0.84 (t, J = 6.9 Hz, 3H), 1.19–1.29 (m, 10H), 1.47–1.56 (m, 2H), 2.37 (s, 6H), 2.61 (t, J = 7.5 Hz, 2H), 6.61 (s, 1H), 6.71 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 22.5, 23.8, 28.1, 28.8, 29.1, 29.2, 31.7, 37.4, 111.6, 116.2, 139.1, 167.3, 169.3; HRMS (ESI) calcd for C₁₆H₂₆BrN₂S (M+H)⁺ 20 357.1000, found 357.1004.

Compound 3fd. 140.3 mg, 85% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.83 (t, J = 7.2 Hz, 3H), 1.08–1.26 (m, 10H), 1.33-1.39 (m, 2H), 1.93 (t, J = 7.6 Hz, 2H), 3.66 (s, 3H), 6.19 (s, 1H), 7.05 (s, 1H), 7.10 (s, 1H); ¹³C NMR (CDCl₃, 150

25 MHz): δ 14.0, 22.4, 27.6, 28.5, 28.9, 28.9, 31.6, 33.8, 36.0, 102.3, 123.7, 129.9, 136.1, 141.1; MS (EI, *m/z*): 331 (1), 330 (M⁺, 1), 249 (2), 151 (3), 114 (100); HRMS (EI) calcd for C₁₄H₂₃BrN₂S (M⁺) 330.0765, found 330.0767.

Compound 3fe.⁸ 136.0 mg, 80% yield, yellow oil; ¹H NMR ³⁰ (CDCl₃, 600 MHz): δ 0.91 (t, J = 7.2 Hz, 3H), 1.13–1.34 (m, 10H), 1.36–1.44 (m, 2H), 2.11 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H), 6.24 (s, 1H), 7.17 (d, J = 7.9 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz): *δ* 14.1, 21.1, 22.6, 28.1, 28.6, 29.0, 29.1, 31.7, 35.8, 102.2, 128.0, 129.7, 133.7, 138.2, 142.9.

Compound 3ff.⁸ 145.5 mg, 76% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.86 (t, J = 6.9 Hz, 3H), 1.19–1.29 (m, 10H), 1.51-1.59 (m, 2H), 2.54 (t, J = 7.5 Hz, 2H), 6.74 (s, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.78 (d, J = 8.0Hz,1H), 7.96 (d, J = 8.1 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz):

 $_{40} \delta$ 14.0, 22.5, 28.1, 28.6, 29.0, 29.1, 31.7, 37.7, 112.9, 120.9, 122.3, 124.9, 126.2, 136.1, 139.2, 153.5, 163.0.

Compound 3fg.⁸ 111.0 mg, 70% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.85 (t, J = 5.6 Hz, 3H), 1.14–1.28 (m, 10H), 1.42–1.52 (m, 2H), 2.23 (t, J = 6.5 Hz, 2H), 6.36 (s, 1H), ⁴⁵ 8.44 (s, 1H), 12.42 (br, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.0,

22.5, 27.8, 28.6, 29.0, 29.1, 31.7, 36.6, 106.0, 139.3, 146.4, 153.5.

General procedure for the Suzuki coupling of 3

To a mixture of PhB(OH)₂ (97.3 mg 0.65 mmol), Pd(dba)₂ (14.3 mg, 0.025 mmol), XPhos (23.8 mg, 0.05 mmol), and K₂CO₃ 50 (103.5 mg, 0.75 mmol) in 2 mL of toluene was added 3aa (186.5 mg, 0.5 mmol) under nitrogen atmosphere. The resulting mixture was stirred at 80 °C overnight (around 10 h), then quenched with water, extracted with EtOAc, dried over Na₂SO₄ and concentrated. Column chromatography on silica gel (petroleum 55 ether/EtOAc = 15:1) gave 5a as a colorless oil (167.0 mg, 90% yield); ¹H NMR (CDCl₃, 400 MHz): δ 0.05 (s, 6H), 0.90 (s, 9H), 2.71 (t, J = 6.2 Hz, 2H), 3.88 (t, J = 6.3 Hz, 2H), 6.96–7.03 (m,

1H), 7.08 (s, 1H), 7.19–7.33 (m, 4H), 7.49 (td, J = 7.9, 1.8 Hz,

1H), 7.56 (d, J = 7.5 Hz, 2H), 8.45 (d, J = 4.3 Hz, 1H); ¹³C NMR 60 (CDCl₃, 100 MHz): δ -5.4, 18.2, 25.8, 42.7, 61.5, 120.0, 122.6, 127.5, 127.9, 129.0, 129.1, 136.2, 136.5, 138.2, 149.7, 158.8; MS (EI, *m/z*): 371 (M⁺, 6), 256 (3), 240 (2), 226 (60); HRMS (EI) calcd for C₂₁H₂₉NOSSi (M⁺) 371.1739, found 371.1742.

Compound 5b. 111.7 mg, 70% yield, yellow oil, mp 113-115 65 °C; ¹H NMR (CDCl₃, 600 MHz): δ 4.87 (d, J = 1.5 Hz, 2H), 6.98-7.03 (m, 1H), 7.04-7.09 (m, 3H), 7.28-7.37 (m, 6H), 7.47 (s, 1H), 7.55 (td, J = 7.8, 1.9 Hz, 1H), 7.65 (d, J = 7.4 Hz, 2H),

8.55 (ddd, J = 4.9, 1.8, 0.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 71.4, 115.0, 120.3, 121.1, 122.3, 126.6, 128.0, 128.2, 70 129.4, 129.4, 135.4, 136.8, 137.2, 149.9, 158.2, 158.3; HRMS

(ESI) calcd for $C_{20}H_{18}NOS (M+H)^+$ 320.1109, found 320.1110.

Compound 5c. 134.9 mg, 83% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.88 (t, J = 6.6 Hz, 3H), 1,15–1.27 (m, 10H), 1.56–1.70 (m, 2H), 2.49 (t, J = 7.5 Hz, 2H), 6.96–7.04 (m,

75 2H), 7.17–7.25 (m, 2H), 7.29 (dd, J = 13.9, 6.3 Hz, 2H), 7.50 (td, J = 7.8, 1.7 Hz, 1H), 7.55 (d, J = 7.5 Hz, 2H), 8.46 (d, J = 4.7 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 22.6, 28.8, 28.9, 29.2, 29.3, 31.8, 39.5, 120.0, 122.7, 127.4, 127.9, 129.2, 133.3, 135.8, 136.4, 136.4, 149.9, 158.9; MS (EI, *m/z*): 325 (M⁺, 2), 248 (8), so 226 (67), 212 (33), ; HRMS (EI) calcd for $C_{21}H_{27}NS$ (M⁺) 325.1864, found 325.1854.

Compound 5d. 122.8 mg, 79% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.90 (t, J = 7.0 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H), 1.28-1.37 (m, 4H), 1.54-1.72 (m, 4H), 2.32-2.40 (m, 1H), 85 6.92-6.97 (m, 1H), 6.99 (s, 1H), 7.14-7.20 (m, 2H), 7.24 (t, J = 7.5 Hz, 2H), 7.37–7.41 (m, 1H), 7.62 (d, J = 7.6 Hz, 2H), 8.40 (ddd, J = 4.9, 1.8, 0.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 11.7, 14.0, 22.8, 26.4, 29.5, 32.9, 51.6, 119.6, 122.0, 127.4, 127.9, 129.1, 135.9, 136.0, 136.2, 136.3, 149.2, 159.2; MS (EI, m/z):

90 311 (M⁺, 4), 282 (48), 234 (24), 112 (100); HRMS (EI) calcd for C₂₀H₂₅NS (M⁺) 311.1708, found 311.1706.

Organic & Biomolecular Chemistry Accepted Manuscrip

Compound 5e. 120.5 mg, 76% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 2.85 (t, J = 8.0 Hz, 2H), 3.02 (t, J = 7.0 Hz, 2H), 6.95 (s, 1H), 7.04-7.10 (m, 1H), 7.17-7.25 (m, 3H), 7.26-

95 7.36 (m, 6H), 7.50–7.60 (m, 3H), 8.53 (dd, J = 4.9, 0.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 35.1, 41.3, 120.1, 122.9, 125.9, 127.5, 127.9, 128.2, 128.5, 129.1, 131.9, 136.2, 136.6, 136.7, 141.2, 149.8, 158.6; MS (EI, *m/z*): 317 (M⁺, 3), 240 (3), 226 (100), 149 (5); HRMS (EI) calcd for $C_{21}H_{19}NS$ (M⁺) 317.1238, 100 found 317.1242.

Compound 5f. 96.8 mg, 67% yield, yellow oil; ¹H NMR $(CDCl_3, 600 \text{ MHz})$: $\delta 2.08-2.17 \text{ (m, 2H)}, 2,71 \text{ (t, } J = 7.2 \text{ Hz}, 2\text{H}),$ 3.59 (t, J = 6.4 Hz, 2H), 7.04–7.09 (m, 1H), 7.10 (s, 1H), 7.23– 7.30 (m, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.52–7.60 (m, 3H), 8.49

- ¹⁰⁵ (dd, J = 4.9, 1.0 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 31.1, 36.2, 44.0, 120.3, 123.0, 127.7, 128.0, 129.2, 131.0, 135.9, 136.8, 137.2, 149.7, 158.1; MS (EI, *m/z*): 291 (1), 289 (M⁺, 2), 254 (1), 226 (23), 212 (12); HRMS (EI) calcd for $C_{16}H_{16}CINS$ (M⁺) 289.0692, found 289.0697.
- Compound 5g. 105.5 mg, 72% yield, yellow oil; ¹H NMR 110 (CDCl₃, 600 MHz): δ 1.55–1.63 (m, 2H), 1.68–1.76 (m, 2H), 2.11–2.17 (m, 2H), 2.40–2.47 (m, 2H), 6.56 (t, J = 3.8 Hz, 1H), 6.95-7.01 (m, 1H), 7.08 (d, J = 8.1 Hz, 1H), 7.18-7.26 (m, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.42–7.49 (m, 1H), 7.62 (d, J = 7.6 Hz,
- 115 2H), 8.42 (d, J = 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 22.0, 22.9, 26.0, 27.3, 119.5, 121.4, 127.5, 127.9, 128.3, 128.9,

Journal Name, [year], [vol], 00-00 | 7

This journal is © The Royal Society of Chemistry [year]

Organic & Biomolecular Chemistry Accepted Manuscript

129.6, 129.9, 133.8, 136.4, 136.6, 149.2, 160.6; MS (EI, m/z): 293 (M⁺, 8), 260 (25), 216 (82), 112 (100); HRMS (EI) calcd for C₁₉H₁₉NS (M⁺) 293.1238, found 293.1236.

- **Compound 5h.** 133.9 mg, 75% yield, yellow oil; ¹H NMR ⁵ (CDCl₃, 600 MHz): δ 4.48 (d, J = 1.3 Hz, 2H), 4.51 (s, 2H), 7.02 (ddd, J = 7.4, 4.9, 0.9 Hz, 1H), 7.28–7.37 (m, 7H), 7.41–7.46 (m, 3H), 7.50 (td, J = 7.8, 1.9 Hz, 1H), 7.66 (d, J = 7.3 Hz, 2H), 8.47 (ddd, J = 4.8, 1.8, 0.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 58.1, 73.1, 84.8, 86.5, 120.2, 122.5, 127.8, 128.0, 128.1, 128.2, 10 128.4, 129.4, 131.7, 135.5, 136.6, 137.3, 149.9, 158.2; HRMS
- ¹⁰ 120.4, 129.4, 151.7, 155.5, 150.6, 157.3, 149.9, 158.2; HRMS (ESI) calcd for $C_{23}H_{20}NOS$ (M+H)⁺ 358.1266, found 358.1263.
- **Compound 5i.** 115.5 mg, 76% yield, white solid, Z/E = 93:7, mp 136–138 °C; ¹H NMR (CDCl₃, 400 MHz): δ 2.35 (s, 3H), 6.87 (t, J = 4.8 Hz, 1H), 7.14 (d, J = 8.1 Hz, 2H), 7.23–7.29 (m,
- ¹⁵ 1H), 7.30–7.40 (m, 3H), 7.64–7.72 (m, 4H), 8.40 (d, J = 4.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 21.1, 116.9, 127.2, 127.9, 128.0, 128.9, 129.5, 131.1, 136.6, 137.1, 137.7, 138.8, 157.4, 171.6; MS (EI, *m/z*): 304 (M⁺, 8), 225 (3), 213 (14), 193 (18); HRMS (EI) calcd for C₁₉H₁₆N₂S (M⁺) 304.1034, found 304.1033.
- ²⁰ Crystal data for **5i** (C₁₉H₁₆N₂S, 304.66): triclinic, space group P1, a = 11.0704(14) Å, b = 22.732(3) Å, c = 17.8836(17) Å, U = 13.0490(17) Å³, Z = 1, T = 296(2) K, absorption coefficient 0.201 mm⁻¹, reflections collected 27224, independent reflections 13018 [R(int) = 0.0826], refinement by full-matrix least-squares on F^2 ,
- ²⁵ data/restraints/parameters 13018/1/793, goodness-of-fit on $F^2 = 0.913$, final *R* indices $[I>2\sigma(I)]$ $R_1 = 0.0785$, $wR_2 = 0.1706$, *R* indices (all data) $R_1 = 0.2186$, $wR_2 = 0.2387$, largest diff peak and hole 0.806 and -0.282 e.Å⁻³. Crystallographic data for the structure **5i** have been deposited with the Cambridge ³⁰ Crystallographic Data Centre as supplementary publication no.
- CCDC 981003.

Compound 5j. 112.0 mg, 70% yield, yellow solid, Z/E = 95:5, mp 107–109 °C; ¹H NMR (CDCl₃, 400 MHz): δ 3.80 (s, 3H), 6.82–6.90 (m, 3H), 7.22–7.28 (m, 1H), 7.29–7.36 (m, 3H), 7.66

³⁵ (d, J = 7.6 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 8.40 (d, J = 4.9 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 55.2, 113.5, 116.9, 127.7, 128.0, 128.6, 129.4, 130.7, 134.1, 136.2, 136.7, 157.4, 159.4, 171.6; MS (EI, *m*/*z*): 321 (3), 320 (M⁺, 2), 289 (8), 241 (18), 240 (100); HRMS (EI) calcd for C₁₉H₁₆N₂OS (M⁺) 320.0983, found ⁴⁰ 320.0989.

Compound 5k. 131.3 mg, 75% yield, yellow solid, mp 141– 143 °C; ¹H NMR (CDCl₃, 400 MHz): δ 3.86 (d, J = 6.5 Hz, 6H), 6.81 (d, J = 8.4 Hz, 1H), 6.87 (t, J = 4.8 Hz, 1H), 7.20–7.27 (m, 1H), 7.28–7.35 (m, 4H), 7.37 (dd, J = 8.4, 2.1 Hz, 1H), 7.66 (d, J

- $_{45} = 7.5$ Hz, 2H), 8.39 (d, J = 4.8 Hz, 2H); 13 C NMR (CDCl₃, 100 MHz): δ 55.7, 55.8, 110.4, 110.6, 116.9, 120.0, 127.7, 128.0, 129.3, 131.0, 134.3, 136.1, 136.6, 148.4, 148.8, 157.3, 171.4; HRMS (ESI) calcd for C₂₀H₁₉N₂O₂S (M+H)⁺ 351.1167, found 351.1170.
- ⁵⁰ **Compound 5I.** 163.6 mg, 85% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.03 (s, 6H), 0.88 (s, 9H), 2.32 (s, 3H), 2.69 (t, J = 6.3 Hz, 2H), 3.86 (t, J = 6.3 Hz, 2H), 7.00–7.07 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.23–7.29 (m, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.52 (td, J = 7.9, 1.7 Hz, 1H), 8.46 (d, J = 4.2 Hz, 1H);
- ⁵⁵ ¹³C NMR (CDCl₃, 100 MHz): δ –5.3, 18.3, 21.2, 25.9, 42.9, 61.5, 120.0, 122.6, 127.7, 128.7, 129.1, 133.3, 136.9, 137.6, 138.7, 149.4, 159.0; MS (EI, *m*/z): 385 (M⁺, 1), 254 (7), 240 (89), 148 (3); HRMS (EI) calcd for C₂₂H₃₁NOSSi (M⁺) 385.1896, found

385.1892.

- ⁶⁰ **Compound 5m.** 135.6 mg, 80% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.89 (t, J = 6.9 Hz, 3H), 1.22–1.34 (m, 10H), 1.59–1.69 (m, 2H), 2.32 (s, 3H), 2.50 (t, J = 7.3 Hz, 2H), 6.97–7.05 (m, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 1H), 7.44–7.54 (m, 3H), 8.47 (dd, J = 4.9, 1.0 Hz, 1H); ¹³C NMR
- ⁶⁵ (CDCl₃, 100 MHz): δ 14.0, 21.2, 22.6, 28.8, 28.9, 29.1, 29.3, 31.8, 39.5, 119.8, 122.5, 128.6, 129.1, 132.1, 133.5, 136.0, 136.4, 137.3, 149.7, 159.1; MS (EI, *m/z*): 339 (M⁺, 3), 248 (10), 240 (85), 226 (30); HRMS (EI) calcd for $C_{22}H_{29}NS$ (M⁺) 339.2021, found 339.2028.
- ⁷⁰ **Compound 5n.** 127.1 mg, 75% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.90 (t, J = 6.6 Hz, 3H), 1.23–1.34 (m, 10H), 1.61–1.67 (m, 2H), 2.32 (s, 3H), 2.50 (t, J = 7.5 Hz, 2H), 6.94–7.10 (m, 3H), 7.15–7.25 (m, 2H), 7.35 (s, 1H), 7.40 (d, J = 7.7 Hz, 1H), 7.49 (td, J = 7.8, 1.7 Hz, 1H), 8.46 (d, J = 4.2 Hz,
- ⁷⁵ 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 21.3, 22.6, 28.8, 28.9, 29.1, 29.3, 31.8, 39.4, 119.9, 122.7, 126.1, 127.8, 128.2, 129.9, 133.0, 135.8, 136.2, 136.4, 137.3, 149.7, 158.9; MS (EI, *m/z*): 339 (M⁺, 3), 248 (22), 226 (43), 111 (100); HRMS (EI) calcd for $C_{22}H_{29}NS$ (M⁺) 339.2021, found 339.2019.
- ⁸⁰ **Compound 50.** 142.4 mg, 84% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.89 (t, J = 6.6 Hz, 3H), 1.20–1.34 (m, 10H), 1.60–1.70 (m, 2H), 2.31 (s, 3H), 2.54 (t, J = 7.3 Hz, 2H), 6.98–7.04 (m, 2H), 7.08–7.18 (m, 3H), 7.20 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.50 (td, J = 7.8, 1.9 Hz, 1H), 8.47 (dd,
- ⁸⁵ J = 4.9, 1.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 20.0, 22.6, 28.6, 28.9, 29.2, 29.3, 31.8, 38.3, 119.8, 123.0, 125.2, 127.5, 129.1, 129.5, 134.6, 134.9, 136.1, 136.1, 136.2, 149.8, 159.2; MS (EI, *m/z*): 339 (M⁺, 4), 248 (23), 240 (100), 226 (38); HRMS (EI) calcd for C₂₂H₂₉NS (M⁺) 339.2021, found 339.2023.
- ⁹⁰ Compound **5p.** 140.2 mg, 79% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.88 (t, J = 6.8 Hz, 3H), 1.22–1.30 (m, 10H), 1.57–1.67 (m, 2H), 2.47 (t, J = 7.3 Hz, 2H), 3.78 (s, 3H), 6.78–6.88 (m, 2H), 6.95 (s, 1H), 7.00 (ddd, J = 7.4, 4.9, 0.9 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.49 (td, J = 7.8, 1.9 Hz, 1H), 7.55
- ⁹⁵ (d, J = 8.7 Hz, 2H), 8.43–8.48 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 22.6, 28.8, 28.9, 29.1, 29.3, 31.8, 39.7, 55.1, 113.3, 119.8, 122.3, 128.9, 130.5, 130.7, 135.8, 136.5, 149.7, 158.9, 159.2; MS (EI, *m/z*): 355 (M⁺, 2), 256 (30), 248 (2), 160 (100); HRMS (EI) calcd for C₂₂H₂₉NOS (M⁺) 355.1970, found ¹⁰⁰ 355.1971.

Compound 5q. 140.6 mg, 82% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.90 (t, J = 7.1 Hz, 3H), 1.22–1.36 (m, 10H), 1.60–1.67 (m, 2H), 2.50 (t, J = 7.4 Hz, 2H), 6.94–7.03 (m, 3H), 7.04 (ddd, J = 7.3, 4.9, 0.8 Hz, 1H), 7.23 (d, J = 8.0 Hz,

- ¹⁰⁵ 1H), 7.52 (td, J = 7.8, 1.9 Hz, 1H), 7.52–7.58 (m, 2H), 8.45–8.50 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.0, 22.6, 28.7, 28.9, 29.1, 29.3, 31.8, 39.5, 114.8 (d, J = 21.5 Hz), 120.0, 122.7, 130.8 (d, J = 8.2 Hz), 132.4 (d, J = 3.2 Hz), 133.2, 134.5, 136.4, 149.9, 158.6, 161.9 (d, J = 246.1 Hz); MS (EI, m/z): 343 (M⁺, 2), 244
- ¹¹⁰ (13), 230 (5), 152 (4); HRMS (EI) calcd for $C_{21}H_{26}$ FNS (M⁺) 343.1770, found 343.1769.

Compound 5r. 167.0 mg, 85% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.90 (t, J = 7.0 Hz, 3H), 1.24–1.35 (m, 10H), 1.62–1.70 (m, 2H), 2.54 (t, J = 7.4 Hz, 2H), 7.00 (s, 1H),

¹¹⁵ 7.04–7.09 (m, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.51–7.58 (m, 3H), 7.65 (d, J = 8.2 Hz, 2H), 8.50 (dd, J = 4.8, 0.9 Hz, 1H); ¹³C

8 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

NMR (CDCl₃, 150 MHz): δ 14.1, 22.6, 28.7, 28.9, 29.2, 29.3, 31.8, 39.4, 120.4, 123.3, 124.2(q, J = 270.3 Hz), 124.9 (q, J = 3.7 Hz), 129.1, 129.4, 133.7, 136.6, 140.1, 150.1, 158.1; MS (EI, m/z): 393 (M⁺, 1), 294 (11), 280 (8), 248 (8); HRMS (EI) calcd ς for C₂₂H₂₆F₃NS (M⁺) 393.1738, found 393.1738.

Compound 5s. 127.5 mg, 68% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.78 (t, J = 7.1 Hz, 3H), 1.13–1.25 (m, 10H), 1.53–1.61 (m, 2H), 2.44 (t, J = 7.3 Hz, 2H), 6.88 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 7.04 (s, 1H), 7.14 (d, J = 8.0 Hz, 1H),

¹⁰ 7.28–7.34 (m, 2H), 7.35–7.40 (m, 1H), 7.60–7.70 (m, 4H), 7.86 (s, 1H), 8.36 (ddd, J = 4.9, 1.8, 0.7 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.0, 22.6, 28.8, 28.9, 29.2, 29.3, 31.8, 39.6, 120.0, 122.9, 125.9, 126.0, 127.0, 127.3, 127.4, 128.1, 128.5, 132.6, 133.0, 133.7, 133.9, 135.7, 136.5, 149.7, 158.8; MS (EI, *m/z*):

```
<sup>15</sup> 375 (M<sup>+</sup>, 5), 276 (13), 262 (3), 181 (100); HRMS (EI) calcd for C_{25}H_{29}NS (M<sup>+</sup>) 375.2021, found 375.2017.
```

Compound 5t. 124.1 mg, 75% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.90 (t, J = 7.0 Hz, 3H), 1.23–1.34 (m, 10H), 1.59–1.70 (m, 2H), 2.49 (t, J = 7.4 Hz, 2H), 6.96–7.00 (m,

- ²⁰ 1H), 7.00–7.05 (m, 1H), 7.16–7.27 (m, 4H), 7.51 (td, J = 7.8, 1.8 Hz, 1H), 8.48 (d, J = 4.7 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.0, 22.6, 28.8, 29.0, 29.2, 29.3, 31.8, 39.7, 120.0, 121.7, 125.9, 127.2, 129.7, 129.9, 130.9, 136.6, 139.5, 149.9, 158.8; HRMS (ESI) calcd for C₁₉H₂₆NS₂ (M+H)⁺ 332.1507, found ²⁵ 332.1512.
- **Compound 5u.** 133.4 mg, 76% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.89 (t, J = 6.8 Hz, 3H), 1.24–1.34 (m, 10H), 1.55–1.63 (m, 2H), 2.46 (t, J = 7.5 Hz, 2H), 6.69 (d, J = 15.7 Hz, 1H), 6.77 (d, J = 10.5 Hz, 1H), 6.98–7.05 (m, 1H),
- ³⁰ 7.16–7.45 (m, 7H), 7.51 (td, J = 7.9, 1.8 Hz, 1H), 8.47 (dd, J = 4.8, 0.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 22.6, 28.7, 29.0, 29.1, 29.3, 31.8, 38.8, 119.8, 121.9, 125.9, 126.6, 127.8, 128.5, 134.1, 134.4, 136.5, 137.1, 137.2, 149.8, 159.5; HRMS (ESI) calcd for C₂₃H₃₀NS (M+H)⁺ 352.2099, found 352.2091.
- Compound 5v. It was prepared from 3fa and 1.3 equiv of MeMgCl with 5 mol% of Pd(PPh₃)₄ in THF at rt for 8 h, 110.5 mg, 84% yield, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.86 (t, J = 6.8 Hz, 3H), 1.18–1.29 (m, 10H), 1.44–1.57 (m, 2H), 1.86 (d, J = 6.7 Hz, 3H), 2.31 (t, J = 7.5 Hz, 2H), 6.14 (q, J = 6.6 Hz,
- ⁴⁰ 1H), 6.95–7.01 (m, 1H), 7.12 (d, J = 8.0 Hz, 1H), 7.49 (td, J = 7.7, 1.8 Hz, 1H), 8.43 (d, J = 3.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 15.8, 22.6, 28.5, 28.9, 29.2, 29.3, 31.8, 38.7, 119.4, 121.3, 132.4, 133.8, 136.3, 149.7, 159.7; MS (EI, *m/z*): 263 (M⁺, 1), 248 (68), 150 (62), 137 (2); HRMS (EI) calcd for ⁴⁵ C₁₆H₂₅NS (M⁺) 263.1708, found 263.1703.

General procedure for the Ni-catalyzed coupling of 5

To a mixture of Ni(PPh₃)₂Cl₂ (16.4 mg, 0.025 mmol) and **5a** (92.3 mg, 0.25 mmol) in 1 mL of THF was added 3.0 M MeMgCl solution in THF (0.17 mL, 0.5 mmol) under nitrogen ⁵⁰ atmosphere. After stirring at room temperature for 10 h, the reaction mixture was quenched with water, extracted with EtOAc, dried over Na₂SO₄ and concentrated. Column chromatography on silica gel (petroleum ether) gave **6a** as a colorless oil (55.2 mg, 80% yield); ¹H NMR (CDCl₃, 400 MHz): δ 0.13 (s, 6H), 0.96 (s, ⁵⁵ 9H), 1.93 (d, *J* = 1.2 Hz, 3H), 2.44 (t, *J* = 6.8 Hz, 2H), 3.84 (t, *J* = 6.9 Hz, 2H), 6.36 (s, 1H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.28 (t, *J* = 7.1 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ -5.3, 1.0, 18.2, 25.9, 44.0, 62.2, 125.9, 126.7, 128.0,

128.8, 136.0, 138.4; MS (EI, *m/z*): 276 (M⁺, 3), 219 (100), 161 60 (3), 145 (27); HRMS (EI) calcd for C₁₇H₂₈OSi (M⁺) 276.1909, found 276.1915.

Compound 6b.^{11e} 50.6 mg, 88% yield, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.91 (t, J = 6.6 Hz, 3H), 1.25–1.35 (m, 10H), 1.49–1.58 (m, 2H), 1.87 (d, J = 1.0 Hz, 3H), 2.18 (t, J = 7.5 H, 2H), (20 (c, 1H), 7.20 (c) J = 7.2 H, 2H), 7.26 (c) J = 7.5 H, 7.26 (c

⁶⁵ 7.5 Hz, 2H), 6.29 (s, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.26 (d, J = 7.3 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 17.7, 22.7, 28.0, 29.3, 29.3, 29.5, 31.9, 40.8, 124.6, 125.7, 128.0, 128.8, 138.7, 139.4.

Compound 6c.²² 40.0 mg, 72% yield, colorless oil; ¹H NMR ⁷⁰ (CDCl₃, 600 MHz): δ 1.99 (d, J = 1.1 Hz, 3H), 2.56 (t, J = 9.0 Hz, 2H), 2.92 (t, J = 7.9 Hz, 2H), 6.35 (s, 1H), 7.23–7.33 (m, 6H), 7.34–7.42 (m, 4H); ¹³C NMR (CDCl₃, 150 MHz): δ 17.9, 34.7, 42.6, 125.4, 125.8, 125.9, 128.0, 128.3, 128.4, 128.8, 138.2, 138.5, 142.0.

⁷⁵ **Compound 6d.**²³ 39.1 mg, 79% yield, yellow solid, mp 44–46°C; ¹H NMR (CDCl₃, 600 MHz): δ 1.64–1.71 (m, 2H), 1.75–1.82 (m, 2H), 2.04 (s, 3H), 2.23–2.29 (m, 2H), 2.35–2.42 (m, 2H), 6.07 (t, J = 4.1 Hz, 1H), 6.62 (s, 1H), 7.24 (t, J = 7.3 Hz, 1H), 7.30 (d, J = 7.3 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H); ¹³C NMR ⁸⁰ (CDCl₃, 150 MHz): δ 15.1, 22.3, 23.1, 26.0, 26.2, 123.8, 125.2, 125.9, 127.9, 129.3, 137.9, 137.9, 139.0.

Compound 6e.^{11*n*} 44.2 mg, 85% yield, white solid, E/Z = 93:7, mp 76–78 °C; ¹H NMR (CDCl₃, 600 MHz): δ 2.32 (d, J = 1.2 Hz, 3H), 2.42 (s, 3H), 6.87 (s, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.26– ⁸⁵ 7.29 (m, 1H), 7.39–7.45 (m, 4H), 7.48 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 17.4, 21.1, 125.8, 126.3, 126.9, 128.1, 129.0, 129.1, 136.9, 137.2, 138.5, 141.0.

Compound **6f.**¹¹ⁿ 45.4 mg, 81% yield, white solid, E/Z = 98:2, mp 103–105 °C; ¹H NMR (CDCl₃, 600 MHz): δ 2.26 (d, J = 1.1⁹⁰ Hz, 3H), 3.84 (s, 3H), 6.79 (s, 1H), 6.89–6.94 (m, 2H), 7.21–7.25 (m, 1H), 7.34–7.40 (m, 4H), 7.46–7.51 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 17.4, 55.3, 113.7, 126.2, 126.2, 127.0, 128.1, 129.1, 136.4, 136.8, 138.5, 158.9.

Compound 6g. 56.6 mg, 78% yield, yellow oil; ¹H NMR ⁹⁵ (CDCl₃, 400 MHz): δ 0.12 (s, 6H), 0.94 (s, 9H), 1.91 (d, J = 1.3Hz, 3H), 2.37 (s, 3H), 2.41 (t, J = 6.9 Hz, 2H), 3.82 (t, J = 6.9 Hz, 2H), 6.30 (s, 1H), 7.16 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): $\delta -$ 5.3, 1.0, 18.2, 21.1, 25.9, 44.0, 62.3, 126.5, 128.7, 135.3, 135.4, 135.6; MS (EI, *m/z*): 290 (M⁺, 8), 233 (100), 203 (18), 175 (3); WHMS (EI) colled for C. H. OSi (M⁺, 200 2066, found 200 2067.

¹⁰⁰ HRMS (EI) calcd for C₁₈H₃₀OSi (M⁺) 290.2066, found 290.2067. **Compound 6h.** 46.4 mg, 76% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.93 (t, J = 6.8 Hz, 3H), 1.28–1.38 (m, 10H), 1.50–1.56 (m, 2H), 1.88 (d, J = 1.2 Hz, 3H), 2.19 (t, J = 7.0 Hz, 2H), 2.37 (s, 3H), 6.27 (s, 1H), 7.11–7.21 (m, 4H); ¹³C

- ¹⁰⁵ NMR (CDCl₃, 100 MHz): δ 14.1, 17.7, 21.1, 22.7, 28.0, 29.3, 29.4, 29.6, 31.9, 40.8, 124.5, 128.7, 128.7, 135.2, 135.8, 138.7; MS (EI, *m/z*): 244 (M⁺, 16), 145 (100), 131 (20), 130 (14); HRMS (EI) calcd for C₁₈H₂₈ (M⁺) 244.2191, found 244.2187.
- **Compound 6i.** 43.9 mg, 72% yield, yellow oil; ¹H NMR ¹¹⁰ (CDCl₃, 400 MHz): δ 0.95 (t, J = 6.8 Hz, 3H), 1.30–1.42 (m, 10H), 1.50–1.59 (m, 2H), 1.90 (d, J = 1.2 Hz, 3H), 2.21 (t, J =7.0 Hz, 2H), 2.39 (s, 3H), 6.29 (s, 1H), 7.04 (d, J = 7.4 Hz, 1H), 7.08–7.14 (m, 2H), 7.21–7.29 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 17.7, 21.4, 22.7, 28.0, 29.3, 29.6, 31.9, 40.8, 124.7, ¹¹⁵ 125.9, 126.5, 127.9, 129.6, 137.4, 138.7, 139.2; MS (EI, *m/z*): 244 (M⁺, 16), 145 (100), 131 (48), 130 (20); HRMS (EI) calcd

Journal Name, [year], [vol], 00-00 | 9

for C₁₈H₂₈(M⁺) 244.2191, found 244.2193.

Compound 6j. 47.0 mg, 77% yield, yellow oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.90 (t, J = 7.0 Hz, 3H), 1.25–1.35 (m, 10H), 1.49–1.56 (m, 2H), 1.68 (d, J = 1.2 Hz, 3H), 2.19 (t, J = 7.5 Hz, 2H), 2.24 (z, 2H), (22 (z, 1H), 7.10, 7.20) (m, 4H); ¹³C

⁵ 7.5 Hz, 2H), 2.24 (s, 3H), 6.22 (s, 1H), 7.10–7.20 (m, 4H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.1, 17.4, 19.9, 22.7, 28.0, 29.3, 29.4, 29.5, 31.9, 39.9, 123.7, 125.2, 126.1, 129.4, 129.6, 136.3, 138.0, 138.9; MS (EI, *m/z*): 244 (M⁺, 6), 145 (100), 131 (59), 130 (42); HRMS (EI) calcd for C₁₈H₂₈ (M⁺) 244.2191, found ¹⁰ 244.2188.

Compound 6k. 50.1 mg, 77% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.90 (t, J = 6.9 Hz, 3H), 1.25–1.35 (m, 10H), 1.44–1.52 (m, 2H), 1.85 (d, J = 1.2 Hz, 3H), 2.15 (t, J = 7.2 Hz, 2H), 3.82 (s, 3H), 6.21 (s, 1H), 6.87 (d, J = 8.8 Hz, 2H),

- ¹⁵ 7.18 (d, J = 8.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 17.7, 22.7, 28.1, 29.3, 29.3, 29.5, 31.9, 40.8, 55.2, 113.4, 124.0, 129.9, 131.4, 137.9, 157.6; MS (EI, m/z): 260 (M⁺, 12), 161 (100), 147 (8), 146 (8); HRMS (EI) calcd for C₁₈H₂₈O (M⁺) 260.2140, found 260.2138.
- ²⁰ **Compound 6l.** 53.3 mg, 86% yield, yellow oil, E/Z = 93.7; ¹H NMR (CDCl₃, 400 MHz): δ 0.93 (t, J = 6.8 Hz, 3H), 1.28–1.38 (m, 10H), 1.50–1.58 (m, 2H), 1.85 (d, J = 1.0 Hz, 3H), 2.19 (t, J = 7.2 Hz, 2H), 6.25 (s, 1H), 6.98–7.07 (m, 2H), 7.17–7.25 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 17.6, 22.7, 28.0, 29.3,

²⁵ 29.4, 29.6, 31.9, 40.6, 114.8 (d, J = 21.0 Hz), 123.5, 130.2 (d, J = 7.6 Hz), 134.7 (d, J = 3.2 Hz), 139.3, 161.0 (d, J = 243.3 Hz); MS (EI, m/z): 248 (M⁺, 16), 149 (100), 135 (33); HRMS (EI) calcd for C₁₇H₂₅F (M⁺) 248.1940, found 248.1941.

- **Compound 6m.** 50.7 mg, 68% yield, yellow oil; ¹H NMR ³⁰ (CDCl₃, 600 MHz): δ 0.90 (t, J = 7.0 Hz, 3H), 1.24–1.36 (m, 10H), 1.49–1.58 (m, 2H), 1.86 (d, J = 1.2 Hz, 3H), 2.19 (t, J =7.4 Hz, 2H), 6.28 (s, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.56 (d, J =8.2 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.1, 17.8, 22.7, 27.9, 29.3, 29.3, 29.5, 31.9, 40.8, 123.6, 124.4 (q, J = 269.7 Hz),
- ³⁵ 124.9 (q, J = 3.8 Hz), 127.4 (q, J = 32.0 Hz), 129.0, 142.0, 142.3; MS (EI, m/z): 298 (M⁺, 13), 199 (97), 186 (100), 153 (3); HRMS (EI) calcd for C₁₈H₂₅F₃ (M⁺) 298.1908, found 298.1917.

Compound 6n. 56.7 mg, 81% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.99 (t, J = 6.7 Hz, 3H), 1.34–1.45 (m,

- ⁴⁰ 10H), 1.58–1.65 (m, 2H), 2.01 (d, J = 1.1 Hz, 3H), 2.29 (t, J = 7.5 Hz, 2H), 6.50 (s, 1H), 7.42–7.54 (m, 3H), 7.75 (s, 1H), 7.81–7.89 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 17.9, 22.7, 28.1, 29.3, 29.4, 29.6, 31.9, 40.8, 124.7, 125.3, 125.8, 127.1, 127.4, 127.5, 127.6, 127.7, 131.8, 133.4, 136.3, 140.0; MS (EI, ⁴⁵ *m/z*): 280 (M⁺, 26), 181 (100), 167 (26); HRMS (EI) calcd for
- $C_{21}H_{28}(M^+)$ 280.2191, found 280.2188.

Compound 60. 38.9 mg, 66% yield, yellow oil, E/Z = 95:5; ¹H NMR (CDCl₃, 600 MHz): δ 0.92 (t, J = 6.8 Hz, 3H), 1.26–1.36 (m, 10H), 1.48–1.55 (m, 2H), 2.00 (s, 3H), 2.20 (t, J = 7.6 Hz, so 2H), 6.43 (s, 1H), 6.94 (d, J = 3.2 Hz, 1H), 7.03 (t, J = 3.7 Hz.

14.1, 18.5, 22.7, 28.1, 29.3, 29.5, 29.7, 31.9, 41.0, 118.0, 123.7, 125.7, 126.7, 138.6, 141.8; MS (EI) calcd for $C_{15}H_{24}S$ (M⁺) 236.1599, 55 found 236.1606.

Compound 6p. 51.2 mg, 80% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.93 (t, J = 7.0 Hz, 3H), 1.21–1.39 (m, 10H), 1.46–1.56 (m, 2H), 1.88 (s, 3H), 2.15 (t, J = 7.4 Hz, 2H),

6.05 (d, J = 10.9 Hz, 1H), 6.49 (d, J = 15.6 Hz, 1H), 7.00–7.11 60 (m, 1H), 7.22 (t, J = 7.3 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 16.8, 22.7, 27.9, 29.3, 29.4, 29.5, 31.9, 40.1, 124.9, 125.7, 126.0, 126.8, 128.5, 129.7, 138.1, 140.6; MS (EI, m/z): 257 (10), 256 (M⁺, 25), 157 (62), 143 (74), 129 (100); HRMS (EI) calcd for C₁₉H₂₈ (M⁺) 65 256.2191, found 256.2197.

Compound 6q. 50.4 mg, 69% yield, colorless oil, Z/E = 97:3; ¹H NMR (CDCl₃, 600 MHz): δ 0.91 (t, J = 7.0 Hz, 3H), 1.27– 1.39 (m, 10H), 1.41–1.46 (m, 2H), 2.52 (t, J = 7.3 Hz, 2H), 6.47 (s, 1H), 6.95 (d, J = 7.1 Hz, 2H), 7.04–7.14 (m, 3H), 7.16–7.21

- ⁷⁰ (m, 2H), 7.26–7.31 (m, 1H), 7.33 (t, J = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 14.1, 22.7, 27.9, 29.2, 29.3, 29.4, 31.9, 40.7, 126.0, 126.0, 126.8, 127.8, 128.4, 128.5, 128.9, 137.5, 141.4, 143.6; MS (EI, m/z): 292 (M⁺, 8), 193 (87), 179 (88), 115 (100); HRMS (EI) calcd for C₂₂H₂₈ (M⁺) 292.2191, found 292.2188.
- ⁷⁵ **Compound 6r.** 57.4 mg, 75% yield, colorless oil, Z/E = 91:9; ¹H NMR (CDCl₃, 600 MHz): δ 0.87 (t, J = 6.8 Hz, 3H), 1.24– 1.31 (m, 10H), 1.35–1.40 (m, 2H), 2.34 (s, 3H), 2.46 (t, J = 7.1Hz, 2H), 6.40 (s, 1H), 6.93 (d, J = 7.3 Hz, 2H), 7.04 (t, J = 5.9Hz, 3H), 7.09 (t, J = 8.0 Hz, 4H); ¹³C NMR (CDCl₃, 150 MHz):
- $_{80}$ δ 14.1, 21.2, 22.6, 28.0, 29.2, 29.3, 29.4, 31.9, 40.8, 125.8, 125.9, 127.8, 128.4, 128.9, 129.1, 136.3, 137.8, 138.3, 143.6; HRMS (ESI) calcd for $C_{23}H_{31}$ (M+H)⁺ 307.2426, found 307.2425.

Compound 6s. 53.9 mg, 67% yield, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 0.91 (t, J = 6.7 Hz, 3H), 1.27–1.39 (m,

⁸⁵ 10H), 1.40–1.49 (m, 2H), 2.49 (t, J = 7.3 Hz, 2H), 3.82 (s, 3H),
6.43 (s, 1H), 6.84 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 6.9 Hz, 2H),
7.03–7.14 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 22.6,
28.1, 29.2, 29.3, 29.4, 31.9, 40.7, 55.2, 114.0, 125.9, 126.0, 127.8,
129.0, 129.7, 133.7, 138.0, 143.2, 158.7; MS (EI, *m/z*): 322 (M⁺,
90 (12), 178 (43), 133 (100). HRMS (EI) calcd for C₂₃H₃₀O

 90 2), 209 (12), 1/8 (43), 133 (100). HRMS (E1) calcd for C₂₃H₃₀O (M⁺) 322.2297, found 322.2295.

Compound 6t. 42.9 mg, 67% yield, colorless oil; ¹H NMR (CDCl₃, 600 MHz): δ 0.92 (t, J = 6.9 Hz, 3H), 1.26–1.36 (m, 10H), 1.50–1.56 (m, 2H), 2.19 (t, J = 7.5 Hz, 2H), 3.01 (d, J =

⁹⁵ 6.1 Hz, 2H), 5.10–5.16 (m, 2H), 5.86–5.95 (m, 1H), 6.41 (s, 1H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 22.7, 28.0, 29.3, 29.4, 29.5, 31.9, 35.4, 37.2, 115.9, 126.0, 126.0, 128.0, 128.5, 136.3, 138.2, 140.7; MS (EI, *m/z*): 257 (1), 256 (M⁺, 3), 199 (42), 100 179 (13), 158 (2). HRMS (EI) calcd for C₁₉H₂₈ (M⁺) 256.2191, found 256.2195.

Acknowledgements

We are grateful for the financial support from Natural Science Foundation of Zhejiang Province (LR12B02001), National ¹⁰⁵ Science Foundation of China (21172199), and Open Research

Fund of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials (ZJHX201310).

Notes and references

^a Department of Chemistry, Zhejiang Normal University, 688 Yingbin 110 Road, Jinhua 321004, China. E-mail: gangguo@zjnu.cn.

[†] These two authors contributed equally to this paper. [‡] Electronic Supplementary Information (ESI) available: [Experimental details, characterization of compounds **3**, **5**, **6**, and X-ray data of **5i**]. See DOI: 10.1039/b000000x/

75

110

115

- For a recent review, see: I. P. Beletskaya and V. P. Ananikov, *Chem. Rev.*, 2011, 111, 1596 and references therein.
- For reviews, see: (a) C. J. Weiss and T. J. Marks, *Dalton Trans.*, 2010, **39**, 6576; (b) F. Alonso, I. P. Beletskaya and M. Yus, *Chem. Rev.*, 2004, **104**, 3079; (c) R. Castarlenas, A. Di Giuseppe, J. J.
- Rev., 2004, 104, 3079; (c) K. Castarienas, A. Di Giuseppe, J. J.
 Pérez-Torrente and L. A. Oro, Angew. Chem., Int. Ed., 2013, 52, 211; (d) A. Ogawa, Top. Organomet. Chem., 2013, 43, 325.
- 3 (a) W. E. Truce, J. A. Simms and M. M. Boudakian, *J. Am. Chem. Soc.*, 1956, **78**, 695; (b) D. H. Wadsworth and M. R. Detty, *J. Org.*
- Chem., 1980, 45, 4611; (c) M. S. Waters, J. A. Cowen, J. C. McWilliams, P. E. Maligres and D. Askin, *Tetrahedron Lett.*, 2000, 41, 141; (d) A. Kondoh, K. Takami, H. Yorimitsu and K. Oshima, J. Org. Chem., 2005, 70, 6468; (e) V. X. Truong and A. P. Dove, Angew. Chem., Int. Ed., 2013, 52, 4132. For a reaction under DBU-based ionic liquid, see: (f) R. Singh, D. S. Raghuvanshi and K. N.
- Singh, Org. Lett., 2013, **15**, 4202. 4 (a) L. Benati, L. Capella, P. C. Montevecchi and P. Spagnolo, J.
- 4 (a) L. Benati, L. Capella, P. C. Montevecchi and P. Spagnolo, J. Chem. Soc. Perkin Trans. 1, 1995, 1035; (b) V. R. Pallela, M. R. Mallireddigari, S. C. Cosenza, B. Akula, D. R. C. V. Subbaiah, E. P.
- Reddy and M. V. R. Reddy, Org. Biomol. Chem., 2013, 11, 1964; (c) For a recent review, see: A. Massi and D. Nanni, Org. Biomol. Chem., 2012, 10, 3791 and references therein.
- 5 For the leading works, see: (a) A. Ogawa, T. Ikeda, K. Kimura and T. Hirao, J. Am. Chem. Soc., 1999, **121**, 5108; (b) V. P. Ananikov, D.
- A. Malyshev, I. P. Beletskaya, G. G. Aleksandrov and I. L. Eremenko, Adv. Synth. Catal., 2005, 347, 1993; (c) D. A. Malyshev, N. M. Scott, N. Marion, E. D. Stevens, V. P. Ananikov, I. P. Beletskaya and S. P. Nolan, Organometallics, 2006, 25, 4462; (d) C. Cao, L. R. Fraser and J. A. Love, J. Am. Chem. Soc., 2005, 127,
- 17614; (e) J. Yang, A. Sabarre, L. R. Fraser, B. O. Patrick and J. A. Love, J. Org. Chem., 2009, 74, 182; (f) C. J. Weiss, S. D. Wobser and T. J. Marks, J. Am. Chem. Soc., 2009, 131, 2062; (g) C. J. Weiss and T. J. Marks, J. Am. Chem. Soc., 2010, 132, 10533; (h) Y. Yang and R. M. Rioux, Chem. Commun., 2011, 47, 6557; (i) A. Di
- Giuseppe, R. Castarlenas, J. J. Pérez-Torrente, M. Crucianelli, V. Polo, R. Sancho, F. J. Lahoz and L. A. Oro, *J. Am. Chem. Soc.*, 2012, **134**, 8171; (*j*) R. Gerber and C. M. Frech, *Chem. Eur. J.*, 2012, **18**, 8901; (*k*) Z.-L. Wang, R.-Y. Tang, P.-S. Luo, C.-L. Deng, P. Zhong and J.-H. Li, *Tetrahedron*, 2008, **64**, 10670; (*l*) S. N.
- 40 Riduan, J. Y. Ying and Y. Zhang, *Org. Lett.*, 2012, **14**, 1780; (*m*) R. Sarma, N. Rajesh and D. Prajapati, *Chem. Commun.*, 2012, **48**, 4014.
- 6 S.-i. Watanabe, E. Mori, H. Nagai, T. Iwamura, T. Iwama and T. Kataoka, *J. Org. Chem.*, 2000, 65, 8893.
- 7 (a) A. Kondoh, H. Yorimitsu and K. Oshima, Org. Lett., 2007, 9,
- ⁴⁵ 1383; (*b*) A. Sato, H. Yorimitsu and K. Oshima, *Synlett*, 2009, 28.
- 8 H. Xu, S. Gu, W. Chen, D. Li and J. Dou, *J. Org. Chem.*, 2011, **76**, 2448.
- 9 Z. Ni, S. Wang, H. Mao and Y. Pan, *Tetrahedron Lett.*, 2012, 53, 3907.
- 50 10 For selected reviews on the synthesis of trisubstituted alkenes, see: (a) A. B. Flynn and W. W. Ogilvie, *Chem. Rev.*, 2007, **107**, 4698; (b) E. Negishi, Z. Huang, G. Wang, S. Mohan, C. Wang and H. Hattori, *Acc. Chem. Res.*, 2008, **41**, 1474 and references therein.
- For the synthesis of polysubstituted alkenes via iterative cross-coupling strategy, see: (a) A. Minato, K. Suzuki and K. Tamao, J. Am. Chem. Soc., 1987, 109, 1257; (b) W. R. Roush, K. Koyama, M. L. Martine and K. J. Moriarty, J. Am. Chem. Soc., 1996, 118, 7502; (c) X. Zeng, Q. Hu, M. Qian and E. Negishi, J. Am. Chem. Soc., 2003, 125, 13636; (d) X. Zeng, M. Qian, Q. Hu and E. Negishi,
- Angew. Chem., Int. Ed., 2004, 43, 2259; (e) Z. Tan and E. Negishi, Angew. Chem., Int. Ed., 2006, 45, 762; (f) M. Shimizu, C. Nakamaki, K. Shimono, M. Schelper, T. Kurahashi and T. Hiyama, J. Am. Chem. Soc., 2005, 127, 12506; (g) S. Bonazzi, S. Güttinger, I. Zemp, U. Kutay and K. Gademann, Angew. Chem., Int. Ed., 2007,
- 46, 8707; (h) J. Marjanovic and S. A. Kozmin, Angew. Chem., Int. Ed., 2007, 46, 8854; (i) E. Roulland, Angew. Chem., Int. Ed., 2008, 47, 3762; (j) M. Arthuis, A. Lecup and E. Roulland, Chem. Commun., 2010, 46, 7810; (k) G. Chelucci, Chem. Rev., 2012, 112, 1344; (l) S. J. Lee, K. C. Gray, J. S. Paek and M. D. Burke, J. Am.
- 70 Chem. Soc., 2008, **130**, 466; (m) S. Fujii, S. Y. Chang and M. D. Burke, Angew. Chem., Int. Ed., 2011, **50**, 7862; (n) Z. Yang, X.

This journal is © The Royal Society of Chemistry [year]

Chen, W. Kong, S. Xia, R. Zheng, F. Luo and G. Zhu, *Org. Biomol. Chem.*, 2013, **11**, 2175. For leading reports on the template synthesis of multisubstituted olefins, see: (*o*) K. Itami, T. Nokami, Y. Ishimura, K. Mitsudo, T. Kamei and J. Yoshida, *J. Am. Chem. Soc.* 2001, **123**, 11577. (*n*) K. Itami, T. Kamei and J. Yoshida, *J.*

- Soc., 2001, 123, 11577; (p) K. Itami, T. Kamei and J. Yoshida, J. Am. Chem. Soc., 2003, 125, 14670; (q) K. Itami, M. Mineno, N. Muraoka and J. Yoshida, J. Am. Chem. Soc., 2004, 126, 11778.
- (a) R. Rathore, M. I. Deselnicu and C. L. Burns, J. Am. Chem. Soc.,
 2002, 124, 14832; (b) J. Simard-Mercier, A. B. Flynn and W. W. Ogilvie, *Tetrahedron*, 2008, 64, 5472; (c) C.-G. Dong, T.-P. Liu and Q.-S. Hu, Synthesis, 2008, 2650; (d) T. Rajagopal, A. B. Flynn and W. W. Ogilvie, *Tetrahedron*, 2010, 66, 8739; (e) S. I. Ngi, K. Cherry, V. Héran, L. Commeiras, J.-L. Parrain, A. Duchêne, M. Abarbri and J. Thibonnet, *Chem. Eur. J.*, 2011, 17, 13692. For a recent review, see: (f) R. Rossi, F. Bellina, M. Lessi and C. Manzini,
 - Tetrahedron, 2013, 69, 7869 and references therein.
 (a) C. Chiappe, D. Capraro, V. Conte and D. Pieraccini, Org. Lett., 2001, 3, 1061; (b) F. Bellina, F. Colzi, L. Mannina, R. Rossi and S. Viel, J. Org. Chem., 2003, 68, 10175; (c) K. Schuh and F. Glorius,
- Viel, J. Org. Chem., 2005, 68, 10175, (c) K. Schull and F. Glofuls, Synthesis, 2007, 2297; (d) M. L. Ho, A. B. Flynn and W. W.
 Ogilvie, J. Org. Chem., 2007, 72, 977; (e) S. Hara, T. Kato, H.
 Shimizu and A. Suzuki, Tetrahedron Lett., 1985, 26, 1065; (f) N.
 Hénaff and A. Whiting, J. Chem. Soc., Perkin Trans. 1, 2000, 395.
- (g) Z. Chen, H. Jiang, Y. Li and C. Qi, *Chem. Commun.*, 2010, 46, 8049; (h) Y. Li, X. Liu, D. Ma, B. Liu and H. Jiang, *Adv. Synth. Catal.*, 2012, 354, 2683; (i) N. Zhou, Q. Wang, A. J. Lough and H. Yan, *Can. J. Chem.*, 2012, 90, 625; (j) R. Singha, S. Dhara and J. K. Ray, *RSC Adv.*, 2013, 3, 23989.
- 14 (a) X. Chen, W. Kong, H. Cai, L. Kong and G. Zhu, *Chem. Commun.*, 2011, 47, 2164; (b) D. Chen, Y. Cao, Z. Yuan, H. Cai, R. Zheng, L. Kong and G. Zhu, *J. Org. Chem.*, 2011, 76, 4071; (c) D. Chen, X. Chen, Z. Lu, H. Cai, J. Shen and G. Zhu, *Adv. Synth. Catal.*, 2011, 353, 1474; (d) G. Zhu, D. Chen, Y. Wang and R. Zheng, *Chem. Commun.*, 2012, 48, 5796; (e) L. Wang, H. Zhu, J. Che, Y. Yang and G. Zhu, *Tetrehedron Lett.*, 2014, 55, 1011.
 - (a) H. Cai, Z. Yuan, W. Zhu and G. Zhu, Chem. Commun., 2011, 47, 8682; (b) Z. Lu, W. Kong, Z. Yuan, X. Zhao and G. Zhu, J. Org. Chem., 2011, 76, 8524; (c) Y. Bai, J. Yin, W. Kong, M. Mao and G. Zhu, Chem. Commun., 2013, 49, 7650; (d) Y. Yang, L. Wang, J. Zhang, Y. Jin and G. Zhu, Chem. Commun., 2014, 50, DOI:10.1039/C3CC49069F.
 - 16 For the synthesis of (E)-β-chloro vinylic sulfides, see: (a) G. Capozzi, L. Gori and S. Menichetti, *Tetrahedron*, 1991, **47**, 7185; (b) G. Capozzi, L. Gori, S. Menichetti and C. Nativi, J. Chem. Soc. Perkin Trans. 1, 1992, 1923; (c) L. Zhong, P. R. Savoie, A. S. Filatov and J. T. Welch, Angew. Chem., Int. Ed., 2014, **53**, 526.
 - 17 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
- X. Huang, K. W. Anderson, D. Zim, L. Jiang, A. Klapars and S. L.
 Buchwald, J. Am. Chem. Soc., 2003, 125, 6653.
 - (a) K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 1972,
 94, 4374; (b) R. J. P. Corriu and J. P. Masse, J. Chem. Soc., Chem. Commun., 1972, 144.
- 20 (a) E. Negishi, A. O. King and N. Okukado, J. Org. Chem., 1977, 42,
 1821; (b) A. O. King, N. Okukado and E. Negishi, J. Chem. Soc.,
 Chem. Commun., 1977, 683.
 - 21 For a review on the Ni-catalyzed coupling of the C–S bond with Grignard reagents, see: S. R. Dubbaka and P. Vogel, *Angew. Chem.*, *Int. Ed.*, 2005, **44**, 7674 and references therein.
- 130 22 M. Ochiai, K. Sumi, Y. Takaoka, M. Kunishima, Y. Nagao, M. Shiro and E. Fujita, *Tetrahedron*, 1988, 44, 4095.
- 23 A. H. Davidson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1976, 639.