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Rapid techniques for virus identification are more relevant today than ever. The conventional virus detection and identification

strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of

single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows

a characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in

combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus
(PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual

discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic

quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model,

through which also a successful discrimination of the two viral species based on TERS spectra of single virus particles was

realised with a classification accuracy of 91%.

1 Introduction

A quick virus identification, surveillance and diagnostics

plays an increasingly important role in clinical medicine and

public health, considering the growing globalization of travel

and trade, bushmeat trafficking, climate change, as well as

other factors that enhance the emergence and re-emergence

of pathogenic viruses1. The annually recurring worldwide flu

seasons caused by the influenza viruses or the geographically

limited, nevertheless devastating outbreak of the Ebola virus

disease in West Africa in 2014 clearly exemplify the impor-

tance of a global-scale virus diagnosis and surveillance2,3. In

order to optimally counteract viral infections by means of fast

clinical actions in infection control, prophylaxis and tailored

antiviral treatments, the diagnosis of viruses should be per-

formed as fast as possible.

Time-consuming and labour-intensive culture-based meth-

ods for virus isolation once were the mainstay in clinical vi-
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rology, but are nowadays complemented by serological and

genomic approaches like oligonucleotide microarrays, multi-

plex PCR and sequencing1,4. Especially the advent of real-

time monitoring of amplified PCR products can deliver rapid

results, even within one hour5. Additionally, virus isolation is

still required to adapts primers and probes on a regular basis

to highly variable viruses, e.g., in case of influenza surveil-

lance6. Reagents may not be available for all viruses; when

they grow poorly or not at all at in vitro systems, the gener-

ation of sufficient material to produce commercial test kits is

complicated7. Also, molecular or antigen-based testing would

probably miss one of the agents in cases of dual infection8.

Conversely, organism-specific reagents for the recognition

of the pathogenic agents are not needed for direct methods like

electron microscopy (EM). However, EM is often not able to

identify a virus beyond the family level and requires lengthy

and complex procedures for fixation and staining of the sam-

ples8,9. Often, a complete dehydration is necessary. Another

direct microscopy method applied for the analysis of viruses is

atomic force microscopy (AFM)10. The advantages of AFM

compared to EM are the simple sample preparation and the di-

rect access to three-dimensional information without approxi-

mations via reconstruction11. When combined with enhanced

Raman spectroscopy, i.e., tip-enhanced Raman spectroscopy

(TERS), not only topographic but also spectroscopic informa-

tion of the virus at nanometre resolution can be obtained12,13.

Contrary to super-resolution microscopic methods like stim-

ulated emission depletion (STED) microscopy or photoacti-
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vation localisation microscopy (PALM), TERS requires no

target-specific fluorophores.14 A further advantage of TERS

(especially in view of samples with low viral particle concen-

tration) is the intrinsically high lateral resolution of the AFM,

which allows a single-virus particle investigation15,16.

In this work, the possibility for a fast virus detection and

identification of single virus particles by means of TERS is

presented. The Varicella-zoster virus (VZV), causing vari-

cella and shingles in humans, and the Porcine teschovirus
(PTV) were selected as model viruses. The discrimination of

the virus on the basis of TERS spectra takes place by means

of chemometric methods. In the first part, this study illus-

trates the possibility to visually discriminate the two exam-

ined species based on the spectral signal content. Therefore,

chemometric methods were used to emphasize the significant

differences for a fast visual decision. In the second part, the

developed method for extracting the crucial signal content is

adjusted and used for an automatic quality rating of the spec-

tra. Furthermore, the positively rated spectra were used to de-

velop a classification model using multivariate data analysis.

Both strategies allow a fast and successful species discrimina-

tion. To our knowledge, this is the first study coping with the

discrimination of virus species that is solely based on TERS

spectra combined with multivariate data analysis.

2 Experimental

2.1 Sample preparation

Varicella-zoster virus (VZV) strain vOka (family Herpesviri-
dae) was amplified in human embryonic lung fibroblasts

(HELF). HELFs were cultured in Eagle minimal essential

medium (EMEM) complemented with 25 mM HEPES, 1 %

non-essential amino acids, 2 mM L-glutamin, 1 mg/100 ml

Ciprofloxacin and 10 % fetal bovine serum at 37 ◦C and 1 %

CO2. Supernatants of infected cells showing complete lysis

were centrifuged for 15 min at 4000 rpm (3774×g; Variofuge

3.0R) to remove cell detritus and were inactivated by UV-

irradiation (20 minutes). The inactivated viruses were diluted

serially in twofold steps with phosphate-buffered saline and

stored at -70 ◦C.

The Porcine teschovirus (PTV) type 1 strain Talfan (family

Picornaviridae) was amplified in porcine kidney cells PK-15

cultured in EMEM. For PTV preparation, PK-15 monolayers

in T75 Roux flasks were infected and incubated for approxi-

mately 48 hrs until complete lysis. Then, supernatant was cen-

trifuged at 4000 rpm (3774×g; Variofuge 3.0R) to remove de-

tritus and further ultracentrifuged for 90 minutes at 100000×g

(30000 rpm, rotor SW60Ti) to pellet PTV. The virus pellet was

resuspended in 100 μl PBS and inactivated by UV-irradiation

(20 minutes). Two-fold serial dilutions with PBS were stored

at -70 ◦C.

The resulting virus solutions of VZV and PTV were diluted

with sterile filtered, deionized water in a ratio of 1:10 and

1:100, respectively. A 18 × 18 mm glass cover slip, which

was cleaned with a mixture of concentrated nitric acid and

hydrogen peroxide (both from Roth) and stored under argon

atmosphere served as substrate. On these glass slides, 10 μl

of virus solution were dropped and dried under ambient condi-

tions. To remove residues of the companion matrix, the sam-

ples were washed with 100 μl deionized, sterile filtered water.

After a further drying step, the virus particles adsorbed on the

glass substrates and were ready for TERS measurement.

2.2 TERS setup

All TERS measurements were carried out with a transmis-

sion setup using a 180◦ back-scattering geometry. The TERS

setup consisted of a Raman spectroscope (HR LabRam, Jobin

Yvon Horiba) coupled to an AFM (Nano Wizard, JPK In-

strument AG). The glass slide with the adsorbed virions

was fixed in the sample holder and illuminated from be-

low. An oil immersion objective with a magnification of 60×
(PlanApo, Olympus, NA 1.45) was used to focus the exci-

tation laser on the sample and the AFM tip. As TERS tips,

conventional AFM probes (NT-MDT, type: NSG10, average

ωResonance: 270 kHz, rTip: 6-10 nm), suitable for non-contact

and intermittent mode, were coated with 25 nm silver and

stored under argon atmosphere until usage. A krypton ion

laser (Innova 300c, U.S.A.) with a wavelength of 530.9 nm

and a power of 1 mW on the sample was used as excitation

and coupled to the inverse microscope (IX70, Olympus).

Sample scanning was done by a closed-loop XY piezo scan-

ning stage (P-734, Physik Instrumente, Germany). To com-

pensate for the z-tip movements the microscope objective was

synchronized via a z-pezo stage (PIFOC, Physik Instrumente,

Germany) with the tip vertical movement. The setup allows

to position the AFM tip with an accuracy of 0.5 nm. After

the scanning of the virion’s surface, distinct points in form of

a grid with a pre-defined dimension were selected. Then, tip

and sample were irradiated by the laser and from each point of

the grid, a TERS spectrum was recorded with an acquisition

time of 10 s.

2.3 Chemometric analysis

All data used in this study underwent an adequate preprocess-

ing that was implemented using the free software environment

R17. First, the measured spectra were interpolated and at the

same time truncated to a wavenumber region from 2000 to

400 cm−1. After that, the data was normalised using the Sili-

con band at 520 cm−1. This signal originates from the used tip

and is treated as internal standard. Therefore, it allows scaling

of the recorded TERS spectra. In a third step, the background
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for each spectrum was estimated and then removed applying

the sensitive non-linear iterative peak-clipping (SNIP) algo-

rithm18. All spectra were exposed to the same treatment.

After the preprocessing, the data is further evaluated in two

different ways: For the visual virus discrimination, the data

set was reduced by the low quality spectra based on a manual

rating. For the automated discrimination based on multivari-

ate data analysis, all spectra underwent an automatic quality

rating explained below. After the rating, the automatically

recognised low quality spectra were discarded and removed

from the data set.

2.3.1 Manual quality rating The manually quality rated

and reduced data set was then used to create the so called

component maps for the visual discrimination of the examined

virus particles. Details about the structure of these maps are

given in the next section. In the maps, the presence or absence

of characteristic signals (given in Tab. 1) is represented. To

determine whether a certain spectrum showed a given signal,

a peak was fitted around the expected wavenumber position in

a spectrum. A criterion, the peak decision value x, was set to

decide, whether a peak counted as peak, or not.

x(a,b) = m(a,b)∗1.5 (1)

if I > x(a,b)→ Peak

if I ≤ x(a,b)→ no Peak

Equation 1 shows, how the decision value x for a subsection

of a spectrum from wavenumber a to wavenumber b was de-

termined. Thereby, m(a,b) denotes the arithmetic mean of the

intensity values of a subsection of a spectrum from a to b in-

verse centimetres. A peak was recognized as valid signal if its

intensity I exceeded x. Fig. 1 illustrates this decision process.

For every signal given in Tab. 1, an attempt was made to fit a

peak in the range [a,b] around the expected wavenumber posi-

tion. The peak was not only fitted at its expected position but

also in an individual allowed range to compensate for possible

wavenumber shifts. In Tab. 1, the first column gives the ex-

pected wavenumber position for a peak as well as the allowed

deviation. The range [a,b] is derived from this deviation, i.e.,

a = expected wavenumber position

+allowed deviation

b = expected wavenumber position

−allowed deviation

If a peak was successfully fitted, its intensity value had to be

higher than the decision value x for the considered range [a,b].
If the intensity value was higher than 1.5 times the mean in-

tensity value over the examined wavenumber range, i.e., the

decision value x, the peak was considered as present.

For each spectrum that is part of the analysis, the number of

x

a b

I

Fig. 1 Illustration of the peak decision. x denotes the decision value

as computed in Equation 1, I is the intensity value of the fitted peak,

a and b represent the borders of the considered wavenumber range.

present signals was counted. Thereby, protein and lipid sig-

nals were counted separately to create a lipid and a protein

map for each measured virus particle. This set of component

maps was then used for a fast visual discrimination of the virus

particles.

2.3.2 Automatic quality rating The above presented

method determining the presence or absence of characteris-

tic signals in a spectrum was adapted for an automatic quality

rating of all measured spectra. For each spectrum, the number

of present signals was determined without a distinction be-

tween lipid and protein signals. If a spectrum shows at least

one of the expected protein and lipid signals, it was considered

for further analysis. The method allows an objective and fast

quality rating for the measured data.

2.3.3 Classification The automatically rated and sorted

data set was used to train a classification model that is based

on a Linear Discriminant Analysis (LDA). For this task, the

R17 package “MASS”19 was used. The LDA is the method

of choice for this study as it is fast and its power and suit-

ability was proven in other experiments20,21. The different

sizes of the two virus classes was dealt with accordingly dur-

ing the training process. Furtheron, a Leave-one-out cross-

validation (LOOCV) was conducted to determine the quality

of the trained model. The same analysis was performed for

the same data undergoing a manual quality rating to compare

both approaches and evaluate the advantages of an automatic

quality rating.
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Table 1 Band assignment of chosen signals

Wavenumber assigned to ref.

[cm−1]

720±5
Phosphatidyl-

cholinea

22–24

870±5 23,25

950±5 23,26

1735±15 Lipid ester 25,27,28

830±10
Phospholipid
(lipid head group)

22,25,27

1085±10 22,25,27

1085±10 22,25,27

1656±24 Amide I 29

1315±15 Amide III 29

655±5
Cysteine 30–33

675±5

690±5 Cysteine/

Methionine

32,34

1180±5

Histidineb 311330±5

1500±5

1004±5

Phenylalanine

31,33–36

1033±5 33–35

1210±5 31,33–36

902±5 Proline 32

1015±5

Tryptophan

31,33,36

1043±5 36

1340±5
31,33,36

1355±5

824±5
Tyrosine 31,33,36

854±5

a A combination of at least two of these three bands has to be

present
b All three bands have to be present in the spectrum

3 Results and discussion

For the investigation of virions based on tip-enhanced Ra-

man spectroscopy (TERS), two virus species were chosen:

the Porcine teschovirus (PTV) and the Varicella-zoster virus
(VZV). Initially, AFM topography images of both virus sam-

ples was measured to find viral particles. In Fig. 2, example

AFM topographic images of VZV (A) and PTV (B) are shown.

After topographic imaging of the virions, the subsequent spec-

troscopic investigations were carried out. The combination of

AFM with enhanced Raman spectroscopy, allowed to record

Raman spectra of the surface of virions. After imaging the to-

pography of the virus surface, distinct points in form of a grid

were selected. The dimension of three grids per virus species

can be found in the supporting information (SI-Tab. S1). At

each grid point of a TERS spectrum was recorded. In Fig. 2,

two spectra of each virus species are shown as examples. The

band at 520 cm−1 is assigned to silicon37 from the TERS

tip. The two spectra in the lower panel were recorded by

spectroscopically mapping the PTV virions. To protect their

genome, the approximately 30-nm PTV virions have an icosa-

hedral capsid, which consists of protein capsomeres. The

TERS spectra of PTVs thus exhibit protein-specific signals.

As an example, the amide I and III bands (protein markers)

are highlighted in green in the spectra. In the spectra of the

200-nm-sized VZV virion, protein-specific signals are visi-

ble as well. VZV virions also possess a capsid to protect the

genome, which is further surrounded by a proteinaceous tegu-

ment and a lipid layer. Thus, VZV is an enveloped virus. In

the lipid layer, proteins are tightly embedded, so that both cat-

egories of biomolecules can be detected in the TERS spectra.

Some bands in the TERS spectra of VZV virions are there-

fore characteristic for lipids. In Fig. 2, these bands are marked

in bluish colours. As can be clearly seen, the lipid bands are

recognisable only in the TERS spectra of VZV virions, not in

the PTV spectra. In addition to the labelled bands in Fig. 2,

more characteristic TERS signals were used for the data eval-

uation and are listed in Tab. 1. For the evaluation of the TERS

spectra, the signals were divided into two categories, protein

and lipid. Tab. 1 does not present a complete assignment of

lipids as well as proteins and TERS spectra contain many more

signals. For example, bands of CH2 modes are present in both

compounds and thus, are not specific to one of the two cate-

gories. In order to ensure an unambiguous assignment very

specific marker bands of lipid and protein/amino acids were

used for the data analysis. For instance, phenylalanine has an

individual peak at 1004 ± 5 cm−1 (assigned to the ring breath-

ing vibration31,33–36), which is considered as protein signal. In

addition to individual peaks, band combinations were used to

attain an unambiguous assignment. An example for a band

combination are the two peaks at 1033 ± 5 cm−1 33–35 and

1210 ± 5 cm−1 31,33–36 . These two peaks are also regarded

as protein signal for phenylalanine, whereas both peaks have

to be present in the TERS spectra in order to count as a valid

signal. The simultaneous detection of certain bands was in

some cases a premise to unambiguously categorize a spec-

trum. In particular this was valid for marker bands with close

band positions like for instance phenylalanine and tryptophan.

Here, the presence of a band at 1033 ± 5 cm−1 was not suffi-

cient to identify phenylalanine but required a concurrent band
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Fig. 2 Left: AFM topography images (height profile) of a A: Varicella-zoster virus and of a B: Porcine teschovirus are visualised. The

illustrated height profile was levelled by subtraction of the mean level and the scan lines were corrected by matching the height medians using

the Gwyddion software (version 2.36). The AFM images were measured in intermittent mode and in air by using a silicon nitride AFM tip. C:

Two exemplary untreated TERS spectra of each virus: Varicella-zoster virus (VZV) and Porcine teschovirus (PTV) are shown. The amide

bands (protein markers) are marked in green colours. The lipid bands that only occur in the TERS spectra of VZV are labelled in blue colours.
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at 1210 ± 5 cm−1. A further example for band combinations

is phosphatidylcholine. At least two of three bands assigned

to this molecule group have to be present in a TERS spectrum

to be interpreted as lipid signal. The signals in unseparated

rows in Tab. 1 must be simultaneously present in order to be

recognised as signal.

3.1 Data evaluation with manual quality rating

Based on the assignment of specific Raman bands to the two

categories, namely protein and lipid, component maps can be

created. A grid-based TERS measurement of the virus surface

was performed so that at each point of the grid a spectrum was

recorded. A component map represents such a grid. Thereby,

each square in the map represents the according measuring

point on the grid and therefore a spectrum recorded at this lo-

cation. Hence, in the maps, a value for both categories can

be specified for each point. The grid dimensions are given in

SI-Tab. S1. The resulting component maps are illustrated in

Fig. 3. Thus, each point corresponds to a TERS spectrum and

the colour reflects the number of bands and band combinations

found for the respective category. For a better comparison

of all measured TERS spectra, an intensity normalisation was

carried out using the silicon peak. Before the bands of interest

were fitted and accepted as peak using Equation 1, all spec-

tra of the grid underwent a manual quality rating, i.e., spectra

with insufficient quality (too low signal-to-noise ratio caused

by, for example, poor feedback of the tip during the measure-

ment) were sorted out. The corresponding pixels are illus-

trated in grey in the component map. If a point was coloured

black, then a satisfying TERS spectrum was recorded at this

position. However, the present bands couldn’t be unambigu-

ously assigned to one of the two categories. For example, the

vibration assigned to the C-H molecule group can be found

in lipid as well as protein spectra. Thereby,this signal does

not provide additional information to successfully discrimi-

nate the virus species as presented in this study.

On the left in Fig. 3, the component maps based on the pro-

tein signals for VZV (above) and PTV (below) are presented.

In comparison, on the right, the component maps based on

the lipid signals are visualised. It is obvious that a high pro-

tein content is present on the surface of both viruses derived

from the detected protein signals in a large number of TERS

spectra. This is consistent with the morphology of the PTV,

whose outermost layer is constituted by the capsid’s proteins.

In the case of the VZV, also protein signals can be expected,

as proteins are embedded in a lipid envelope. Upon consid-

eration of the lipid component maps of VZV, lipid-specific

signals were found only in a few TERS spectra. This may

be due to the hardly accessible lipid layer of VZV. The pro-

teins incorporated there are packed very densely and thereby

impede the measurements of the lipid signals. The TERS mea-

surements were performed in the intermittent mode to reduce

the tip-induced deformations of the viral particle, so that the

TERS tip did not always reach the lipid layer of the VZV in

between the protein spikes. In comparison, in the lipid com-

ponent map of PTV virion no coloured points and therefore

no lipid indicators are present. In agreement with the lack of

lipid components in the PTV particle, no lipid-specific signal

in the TERS spectra of the according PTV virion was identi-

fied. Therefore, a discrimination of the two viruses is possible

based on the observation of protein and lipid contents.

The process described above is based on the manual de-

cision regarding the quality of the spectra. Such a decision

differs from person to person and is highly subjective. In ad-

dition, an automation of the quality rating process for a higher

amount of data, as it is necessary for model building algo-

rithms, is more than useful. A manual quality rating for more

than 200 spectra is very time consuming and unsatisfying. The

method for creating the protein and lipid maps was adopted

and adjusted accordingly to allow its application for an auto-

matic quality rating for all measured spectra. In the adjusted

method, the distinction in protein and lipid signals was dis-

carded and all found signals were counted for each spectrum.

If a spectrum showed at least one of the signals from Tab. 1, it

was regarded as high quality spectrum and considered for the

automatic classification; otherwise, it was discarded. Conse-

quently, it was possible to obtain an objective and fast quality

rating for TERS spectra.

3.2 Classification

For the creation of the manual maps, two grids with each 144

single raw spectra were recorded. After the manual quality

rating, 78 spectra for VZV and 128 spectra for PTV were

analysed for the expected protein and lipid signals given in

Tab. 1. To increase the robustness and the general character of

the classification model obtained through a LDA, the data set

was extended. For the analysis, six virus grids including 1507

raw spectra were measured (913 spectra of the VZV and 594

spectra of the PTV). For the sake of completeness, the protein

and lipid maps for the additional grids are given in SI-Fig. S1.

After a successful automatic quality rating for the six grids,

the cleared data set (then consisting of 1322 single spectra

(802 for VZV, 520 for PTV)) was used to train a classifica-

tion model based on a Linear Discriminant Analysis (LDA).

Thereby, each class included spectra measured on three differ-

ent particles of the according species. Furtheron, a leave-one-

out cross-validation (LOOCV) was conducted to evaluate the

classification model. The result of the LOOCV is presented

in Tab. 2. The numbers on the diagonal of the table show the

number of correctly assigned spectra to the according class.

A classification accuracy can be determined by dividing the

sum of the correctly assigned spectra by the number of spec-
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Fig. 3 Component maps for the protein (left) and lipid (right) category of VZV grid: A (above) and PTV grid: a (below). The number of

bands and band combinations found in the TERS spectra that are typical either for protein or lipids are visualised by the false colour scale.

Each quadratic point of the component maps represents a TERS spectrum.
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A prediction

reference PTV VZV

PTV 512 8

VZV 108 694

B prediction

reference PTV VZV

PTV 346 16

VZV 109 423

Table 2 Result of the LOOCV for the classification model based on

LDA (A) with automatically rated spectra and an accuracy of

approximately 91% and (B) with manually rated data and an

approximate accuracy of 86%.

tra used in the analysis (sum over the whole table). The anal-

ysis showed a classification accuracy of approximately 91%

for the two examined species based on the automatically rated

data set. For comparison, the same analysis was carried out for

the same data with a manual quality rating. In this part of the

analysis, 894 single spectra were taken into account. Thereby,

532 spectra represented the class of the Varicella-zoster virus
and 362 spectra the class of the Porcine teschovirus, respec-

tively. The accuracy for this analysis decreased to 86%.

The manual quality rating discarded approx. 41% of the

spectra whereas the automatic quality rating determined an un-

satisfying quality for approx. 12% of the spectra. Despite the

higher number of chosen spectra, the last mentioned method

led to an decreased in-group variance for the considered spec-

tra. Thus, the automatic quality rating, although being less

strict than a manual quality rating, delivers a data set free of

unusable spectra that behaves more stable in a classification

task and leads thereby to improved general results.

In both cases, misclassifications were mainly due to the

high variance in the spectra, this holds especially for the

Varicella-zoster virus. This group showed a high standard

deviation over all group spectra due to the highly variable

morphology, the rather amorphous structure of the VZV viri-

ons38 and the fact that lipid and protein signals can occur in

the spectra. In contrast, the PTV spectra showed a signifi-

cantly lower in-group variance because of their simple struc-

ture. The different magnitudes of variance are reflected in

booth of the LOOCV results: The number of misclassified

spectra of the PTV is a magnitude lower than the number of

misclassified VZV spectra indicating a higher in-group vari-

ance. Such high variance for certain species was also observed

by another working group13 and is thereby not an artefact of

the presented measurements.

Furthermore, the variation of the TERS intensities can be

explained by a different orientation of the molecules to the

TERS tip as well as by the field gradient Raman (FGR) ef-

fect. The high lateral resolution of TERS results is much less

averaging, consequently, the spectral variations are also re-

lated to locally specific interactions on the nanometre scale.12

Furthermore, at the apex of the tip (in the optimal case, there

is a single nanoparticle), a field gradient can be induced in

TERS measurement, so that a FGR effect may occur.39 Both

effects result in intenity variations and significantly influence

the spectroscopic analysis of complex structures. As previ-

ously mentioned, the VZV shows a high variability in its struc-

ture and is composed of lipids as well as proteins in com-

parison to the PTV. Thus, the interaction of the more com-

plex virus structure with the mentioned effects can explain the

higher variance in the TERS spectra of VZV.

Nevertheless, a discrimination of the two examined viruses

based on a LDA is possible. In addition, the results indicate

an improvement using an automatic quality rating for the spec-

tral data and thereby a successful application of the introduced

method.

4 Conclusion

Two different virus species were examined using tip-enhanced

Raman spectroscopy and spectroscopic information was ob-

tained from the virus surface. Due to the application of

the TERS technique, the viruses were analysed on a single-

particle level. Therefore, the possibility exists to refrain from

pre-cultivation of viruses.

Through the assignment of characteristic lipid and protein

bands, component maps of both categories were created. In

the TERS spectra of the Varicella-zoster virus protein and

lipid signals were identified. In comparison, for the Porcine
teschovirus only protein signals were detected due to compo-

sitional differences. This is reflected in the component maps

of both viruses that allowed a visual discrimination based on

the spectroscopic data of the two examined species. Thus, the

manual component maps represent a possibility to distinguish

viruses for the untrained eye through detachment of the deci-

sion from spectroscopic expert knowledge.

Furthermore, the method used to create the above men-

tioned maps was adopted to perform an automatic quality rat-

ing of the TERS spectra. This step allows an objective view

of the data as well as the inclusion of a high number of spectra

and a reduction of the analysis time avoiding a manual qual-

ity rating by a spectroscopist. This is not only an achieve-

ment towards the automation but also to an user-independent

data evaluation. The spectra which have at least one spe-

cific signal were positively rated, used to train a classifica-

tion model based on a LDA, and evaluated by a leave-one-

out cross-validation. For the two investigated virus species a

classification accuracy of approximately 91 % was achieved.

Further, it was shown, that the automatic quality rating was
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successfully applied to TERS spectra and thus increased the

classification power of the trained model.

Thereby, the presented study illustrates two paths for suc-

cessful discrimination of single viral particles based on their

spectroscopic information. To our knowledge, this is the first

time that a discrimination of viruses is achieved solely based

on TERS spectra in combination with chemometric methods.
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16 R. Treffer, R. Böhme, T. Deckert-Gaudig, K. Lau, S. Tiede, X. Lin and

V. Deckert, Biochem. Soc. Trans., 2012, 40, 609–614.

17 R Development Core Team, R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria,

2008.

18 C. G. Ryan, E. Clayton, W. L. Griffin, S. H. Sie and D. R. Cousens, Nucl.
Instrum. Methods Phys. Res., Sect. B, 1988, B34, 396–402.

19 W. N. Venables and B. D. Ripley, Modern Applied Statistics with S,

Springer, New York, 4th edn, 2002.

20 W. Schumacher, M. Khnert, P. Rsch and J. Popp, Journal of Raman Spec-
troscopy, 2011, 42, 383–392.

21 S. Stckel, S. Meisel, M. Elschner, P. Rsch and J. Popp, Angewandte
Chemie International Edition, 2012, 51, 5339–5342.

22 M. R. Bunow and I. W. Levin, Biochimica et Biophysica Acta (BBA) -
Lipids and Lipid Metabolism, 1977, 489, 191 – 206.

23 H. Akutsu, Biochemistry, 1981, 20, 7359–7366.

24 E. Bicknell-Brown and K. G. Brown, Biochemical and Biophysical Re-
search Communications, 1980, 94, 638 – 645.

25 J. R. Beattie, S. E. J. Bell and B. W. Moss, Lipids, 2004, 39, 407–419.
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