This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Nanoscale

Cite this: DOI: 10.1039/c0xx000000x

www.rsc.org/xxxxxxx

Full Article

Solution-Processed Molybdenum Oxide Treated Silver Nanowire Network: A Highly Conductive Transparent Conducting Electrode with Superior Mechanical and Hole Injection Properties

Jung-Hao Chang, a Kai-Ming Chiang, a Hao-Wei Kang, a Wei-Jung Chi, a Jung-Hung Chang, b Chih-I Wu b and Hao-Wu Lin* a

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX
DOI: 10.1039/b000000x

We demonstrate the fabrication of solution-processed MoO x-treated (s-MoO x) silver nanowire (AgNW) transparent conductive electrodes (TCEs) utilizing low-temperature (sub-100 °C) processes. The s-MoO x can aggregate around the AgNW and formed gauze-like MoO x thin films between the mesh, which can effectively lower the junction resistance by more than two orders of magnitude. Notably, this s-MoO x-treated AgNW TCEs exhibit a combination of several promising characteristics, such as high and broad transmittance across a wavelength range of 400 to 1000 nm, transmission of up to 96.8%, low sheet resistance of 29.8 ohm/sq, low haze value of 0.90%, better mechanical properties against bending and adhesion tests, and preferable gap states for efficient hole injection in optoelectronic devices. By utilizing these s-MoO x-treated AgNW TCEs as the anode in ITO-free organic light emitting diodes, promising performance of 29.2 lm/W and 10.3% external quantum efficiency are demonstrated. The versatile, multi-functional s-MoO x treatment presented here paves the way for the use of low-temperature, solution-processed MoO x as both a nanowire linker and a hole injection interfacial layer for future flexible optoelectronic devices.

Introduction

Transparent conducting electrodes (TCEs) play an essential role in a variety of optoelectronic devices, including light-emitting diodes, touch panels, liquid crystal displays, and solar cells. Indium tin oxide (ITO) TCE films are currently dominant in such applications because of their mature fabrication method, relatively high transparency, and low sheet resistance (R sheet). However, high-quality ITO coatings can only be obtained with expensive vacuum processing and high-temperature annealing. The brittle nature of ITO also makes it difficult to use in flexible devices. Several alternative materials, including highly conductive polyaniline (PANI), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), 1-3 carbon nanotubes, 4-6 metal grids, 7 graphene, 8-11 and silver nanowires (AgNWs), 12-22 have been intensively investigated as replacements for ITO.

Among all the alternatives, AgNWs have demonstrated good optoelectronic characteristics, high mechanical flexibility, and compatibility with low-cost solution processing. These factors make AgNWs the most promising candidate as a next generation TCE. However, there are still issues associated with their utilization in modern optoelectronic devices. These issues include the high R sheet of a dilute pristine AgNW matrix and poor adhesion of this matrix to the substrate. 23 Recently, it has been reported that the R sheet of an AgNW network is dominated by the contact resistance of inter-nanowire junctions. 24, 25 Treatments that have been proposed to reduce junction resistance include high-temperature welding, 23 high-force pressing, 26 ITO nanoparticle fusing, 27 metal oxide particle fusing, 27, 28 plasmonic welding, 29 pulsed light welding 30 and electrical current welding. 31 However, some of these methods involve processes with high energy consumption or treatments of long duration, while others suffer from scalability issues and chemical damage effects.

Recently, efficient hole extraction has been demonstrated with a molybdenum oxide (MoO x) interfacial layer in organic light-emitting diodes (OLEDs) and organic solar cells. 31-33 MoO x is a p-type semiconductor that selectively conducts holes with an ionization potential of ~ 5.3 eV and an electron affinity of ~ 2.2 eV. 36, 37 However, there is strong evidence in the literature that MoO x films could in fact be n-type semiconductors with significantly deeper energy levels than previously assumed. 38, 39

In addition, while MoO x with oxygen defects is an intrinsic n-type material, reports have shown that MoO x with gap states, which are measured by ultraviolet photoemission spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS), can enhance the extraction and injection of both electrons and holes at the interface. 40, 41 Therefore, in this study, we take advantage of this unique property of MoO x, and prepare it by facile solution processing or vacuum evaporation on an AgNW matrix, in order to lower the inter-nanowire junction resistance and thereby improve the R sheet of an AgNW TCE.

We found that solution-processed MoO x (s-MoO x) can aggregate around AgNW junctions and effectively lower the junction resistance and hence R sheet of the film by more than two orders of magnitude. It has been reported that solution-processed TiO x can effectively improve the AgNW film conductivity. 28 During solvent evaporation of the TiO x solution, the volume of TiO x shrinks. The dehydrated TiO x aggregation will drive the crossed AgNWs tighter and result in better contact between AgNWs at the junctions. Since the conductivity of MoO x (~ 10 11
S/cm) is even lower than that of TiO₂ (≈ 10⁻⁸ S/cm), it is most unlikely that MoO₃ aggregation can act as conducting connector between AgNWs. As a result, we believe the enhancement of film conductivity in this work is due to the capillary forces induced closer packing of AgNWs, which is similar to the solution-processed TiO₂ case. By utilizing an optimized concentration of s-MoO₃ solution, a TCE is produced that has high average transmittance (T.average) of 94.8% in the visible to near-infrared wavelength range, maximum transmittance of 96.8% at 565 nm, low R.450 down to 29.8 ohm/sq, and low haze value of 0.90%. This s-MoO₃-treated AgNW network not only shows excellent optical and electrical properties, but also exhibits improved mechanical properties against bending and adhesion tests, and simultaneously provides a preferable energy level for effective hole injection. This last feature is particularly important for active optoelectronic devices such as LEDs, in which the TCE not only acts as a conductor, but also takes the role of the anode that injects holes to the active semiconducting layers.

Experimental

Materials

Silver nanowires suspended in ethanol with a concentration of 10 mg/mL were purchased from Blue Nano Incorporation and used as received. The mean length and diameter of the AgNWs were 15 µm and 35 nm, respectively. The s-MoO₃ precursor ammonium heptamolybdate (NH₄MO₇O₂4·4H₂O) was purchased from Aldrich and used as received.

Fabrication of s-MoO₃-treated and vacuum-evaporated MoO₃-treated (e-MoO₃) AgNWNs networks

Glass substrates were cleaned in an ultrasonic bath with deionized water, acetone, and then methanol for 15 minutes each. The glass substrates were then UV-ozone treated before AgNW layer deposition. The AgNW dispersion was diluted to 1.42 mg/mL with alcohol and then cast onto the glass substrate by a home-made bar-coating machine with bar speed of 500 mm/s (controlled by a servomotor). The bar-coating process was performed on a hot plate at 50 °C, and the AgNW films remained on the hot plate for ~5 minutes to evaporate the residual solvent. The coating process was performed inside a nitrogen-filled glove box. Subsequently, solutions of MoO₃ precursor in alcohol were spin-coated directly onto the pre-deposited AgNW film at 800 rpm for 40 s and annealed at 100 °C for 10 minutes either inside the N₂-filled glove box or in air. The e-MoO₃ layer was prepared by thermal evaporation of MoO₃ powders in a vacuum chamber with a base pressure of ~1 × 10⁻⁶ Torr. The thickness of the e-MoO₃ was monitored using a quartz crystal microbalance.

Organic light emitting diode fabrication

Prior to organic thin-film deposition, the TCEs were prepared by the above-mentioned method with the following four conditions: (A) pristine AgNW, (B) e-MoO₃-treated AgNW (20 nm), (C) s-MoO₃-treated AgNW (20 mg/mL, annealed in N₂) and (D) s-MoO₃-treated AgNW (20 mg/mL, annealed in air). The samples were then transferred to a vacuum chamber with a base pressure of ~1 × 10⁻⁶ Torr for organic material, salt, and metal deposition. For the other layers in the OLEDs, the following materials were used: dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN); N,N′-Di(1-naphthyl)-N,N′-diphenyl-[1,1′-3,1′-terphenyl]-3,3′-diyl]-bispyridine (NPB); 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP); Tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)₃); 3,3′-[5-[3-(Pyridinyl)phenyl]-[1,1′:3′,1″-terphenyl]-3,3″-diyl]bispyridine (TmPyPB); CsF; and Al. The device structure was configured as follows: glass / (A)–(D) / HAT-CN (10 nm) / NPB:HAT-CN (1.5%, 185 nm) / CBP (5 nm) / CBP:Ir(ppy)₃ (8%, 20 nm) / TmPyPB (20 nm) / CsF (1 nm) / Al.

TCE and OLED characteristics measurements

Transmittance, reflectance, and diffuse-transmission spectra of the TCEs were collected using a UV2600 UV-visible spectrophotometer (SHIMADZU) with an integrating sphere. Measurements of the TCEs were taken using the four-point probe method. The nanostructure and surface morphology of the electrodes were imaged using a field emission scanning electron microscope (FE-SEM) (JSM-7000F, JAPAN ELECTRON OPTICS LABORATORY CO., LTD). Atomic force microscopy (AFM) images were analyzed with a Bruker Dimension Icon® Atomic Force Microscope operating in tapping mode. The OLED characteristics were measured by a Keithley 2636A Sourcemeter (Keithley Instruments, Inc.) and a silicon photodetector calibrated by a PR-650 SpectraScan colorimeter (Photo Research, Inc.). The ultraviolet photoemission spectroscopy and X-ray photoelectron spectroscopy were taken in an ultra-high vacuum chamber with a base pressure of 10⁻¹⁰ Torr. The UPS valence band spectra were measured with He I (21.2 eV) as the excitation source. XPS measurements were performed using an Al K (1486.6 eV) source. The resolutions of UPS and XPS were 0.15 and 0.5 eV, respectively.

Results and discussion

A schematic diagram of the experimental procedure is shown in Figure 1. The AgNW dispersion was diluted to the desired concentration and bar-coated onto the cleansed glass substrate (3 cm × 3 cm) inside an N₂-filled glove box. Subsequently, solutions of MoO₃ precursor with varying concentration, ranging from 0 to 160 mg/mL, were spin-coated directly onto the pre-deposited AgNW network and annealed at 100 °C in either N₂ atmosphere or air. Upon annealing, the aggregation of MoO₃ generated at the AgNW junction and formed a MoO₃-linked AgNW network. The nano-morphology of the resulting s-MoO₃-treated AgNW network was observed by SEM and the images are shown in Figure 2. Figure 2 (a) displays the pristine AgNW mesh formed by the bar-coating method, where the AgNWs show random orientation and distribution. Owing to capillary action, all the AgNW junctions are linked after s-MoO₃ treatment, as shown in Figure 2 (b) – (e). Intriguingly, the lower concentration treatments (Figure 2 (b) – (d) and Figure S1 in supporting information) show gauze-like MoO₃ thin films between the mesh. By contrast, the high concentration treatment (Figure 2 (e)) exhibits larger pellet-shaped MoO₃ precipitates adhering to the AgNWs. For comparison, e-MoO₃ was also deposited on the AgNW matrix (see Figure 2 (f)). The morphology of this sample is much different from the s-MoO₃-treated AgNW networks, where the e-MoO₃ homogeneously covers the AgNWs and the surface topology is the same as the pristine AgNW mesh (Figure 2 (a)).
Figure 1. Schematic diagram of the procedure for fabricating s-MoO$_x$-treated AgNW composite transparent conducting electrodes.

Figure 2. SEM images of (a) pristine AgNWs, (b) s-MoO$_x$-treated AgNW 5 mg/mL, (c) s-MoO$_x$-treated AgNW 20 mg/mL, (d) s-MoO$_x$-treated AgNW 40 mg/mL, (e) s-MoO$_x$-treated AgNW (160 mg/mL) and (f) e-MoO$_x$-treated AgNW (30 nm). All s-MoO$_x$-treated samples shown were annealed in N$_2$.

The R_{sheet} of s-MoO$_x$-treated AgNW and e-MoO$_x$-treated AgNW TCEs are shown in Figure 3 (a). The R_{sheet} dramatically decreases from 4411 ohm/sq to 47.3 ohm/sq with a 5-mg/mL s-MoO$_x$ precursor solution spin-coated and annealed in N$_2$. The R_{sheet} reaches lowest value of 29.8 ohm/sq using a 20-mg/mL MoO$_x$ precursor solution. This resistance value is over two orders of magnitude lower than that of the pristine AgNW matrix. A similar trend can be observed if the precursor is annealed in air, resulting from the same gauze-like MoO$_x$ between the AgNW mesh as shown in Figure S2. However, the samples annealed in N$_2$ slightly outperform the samples annealed in air, which could be due to the different electronic characteristics of MoO$_x$ prepared in various atmospheres. These characteristics will be discussed further later, when XPS and UPS results are presented. The effect of the e-MoO$_x$ treatment on the AgNW matrix is also shown in the inset of Figure 3 (a). Only a slight decrease in R_{sheet} is observed in e-MoO$_x$-treated samples, indicating that without solvent evaporation and volume shrinkage processes of s-MoO$_x$, solely adding MoO$_x$ on AgNWs by thermal evaporation cannot effectively lower the R_{sheet}. The results clearly indicate that s-MoO$_x$ is more suitable than e-MoO$_x$ for conductivity enhancement in AgNW-based TCEs.

To investigate the optical properties of MoO$_x$-treated AgNW TCEs, a UV-Vis spectrometer with an integrating sphere was used to measure the total transmittance (T), total reflectance (R), and diffuse transmission of the samples. The results are shown in Figure 4 and the key parameters are summarized in Table 1. The total transmittance of the TCE decreases with an increase in the concentration of the s-MoO$_x$ precursor solution and the thickness of the e-MoO$_x$ layer. Compared to the pure AgNW-based TCE without MoO$_x$ treatment (T_{average} = 96.7%, R_{sheet} = 4411 ohm/sq), the s-MoO$_x$-treated AgNW-based TCEs using 5 and 20 mg/cm3 precursor concentrations only show negligible reductions of T_{average} of 0.5% and 0.8%, respectively, but greatly reduced R_{sheet} values of 47.3 and 29.8 ohm/sq, respectively. The reduction of R_{sheet} by more than two orders of magnitude is attributed to s-MoO$_x$ effectively joining AgNW junctions. Furthermore, because the s-MoO$_x$ only aggregates locally at the inter-nanowire junctions, and does not fully cover the substrate, it only occupies a negligible percentage of the total area, and therefore does not affect the TCE transparency. Remarkably, the best 20 mg/cm3 s-MoO$_x$-treated AgNW TCE, which was annealed in N$_2$ atmosphere, has a transparency of ~96% in the whole wavelength range between 400 and 1000 nm. The optical transmittance and sheet resistance can be expressed by:

$$T(\lambda) = \left(1 + \frac{188.5 \sigma OP(\lambda)}{R_{\text{DC}} \sigma DC}\right)^{-2}$$ \hspace{1cm} (1)

Where $\sigma OP(\lambda)$ is the optical conductivity and σDC is the DC conductivity of the film. The TCE can be rated by a figure of merit (FoM), the ratio of $\sigma OP(\lambda)/\sigma DC$. The high and broad transmission spectrum with excellent low R_{sheet} in this sample corresponds to a very high FoM of 385.8.23 This value is among the highest reported values in TCEs,16, 47-49 indicating that s-MoO$_x$-treated AgNWs provide a promising alternative for ITO, which normally shows a FoM value of ~ 240.16 Total reflection and film absorption ($R = 1 - R - T$) spectra were also investigated. The results indicate that a further increase of MoO$_x$ precursor concentration (80 and 160 mg/cm3) not only results in a slightly lower conductivity, but also a significant increase in the reflectance (for 80 and 160 mg/cm3 samples) and absorption (160 mg/cm3 sample). We attribute the inferior performance of higher
MoO$_x$ precursor concentration samples to the formation of distinct pellet-shaped MoO$_x$ aggregates that diffract light back to substrate and thus decrease the total transmission (Figure 2 (e)). The higher amount of MoO$_x$ accumulating on the surface also contributes to the higher absorption of the sample. In the e-MoO$_x$-treated samples, the high absorption observed is due to the full coverage of MoO$_x$ on the substrate surface. Higher reflection in the 30 nm e-MoO$_x$ sample is caused by an interference effect of the high refractive index MoO$_x$ (n = 2) on the low refractive index glass substrate (n \approx 1.5). In addition to total transmission and conductivity, the haze value also plays a critical role in the quality of TCEs, especially in see-through applications such as displays, touch panels, and windows. The haze value is defined as

\[
\text{Haze value} = \frac{\text{Forward scattered light}}{\text{Forward nonscattered light} + \text{Forward scattered light}} \times 100\% \quad (2)
\]

The haze value represents the degree of diffuse light scattering through a TCE. A high haze value corresponds to increased scattering and image blur, and is a common issue in nanowire-based TCEs because of the random distribution of nano/microstructures and the resultant rough surface, particularly in TCEs with densely packed nanowires.55-58 The total diffuse transmission and haze value of TCEs prepared with various treatments were studied, and the results are shown in Figure 4 (d) and Table 1. A low haze value of 0.57% is found in the TCE of pristine AgNWs. The 5 and 20 mg/mL s-MoO$_x$-treated samples have haze values of 0.87% and 0.90%, respectively. All three of these samples have haze values that are lower than the haze value normally required for various critical applications (1%).55 Such a low haze value results from the low density of AgNWs used in this study (see Figure 2). A low-density AgNW matrix usually exhibits high R_{sheet}, such as in the case of the pristine AgNW TCE shown here ($R_{\text{sheet}} = 4411$ ohm/sq, Table 1). However, the s-MoO$_x$-treated samples show that with effective linking of nanowire junctions, excellent low resistance of less than 30 ohm/sq and a low haze value of 0.90% is still feasible in a AgNW-based TCE. Among all samples, the one treated with the 160 mg/mL s-MoO$_x$ precursor displays the highest haze value, 3.17%, which is attributed to a large amount of aggregation and crystallization (see Figure 2 (e)) of the s-MoO$_x$ on AgNWs, which causes a higher scattering effect. The transmission, reflection, absorption and haze data of the pure MoO$_x$ films without AgNWs are listed in supporting information for reference.

While ITO-coated flexible substrates can be used in flexible applications, the brittle nature of ITO means that a strain of 1% or higher can cause the formation of irreversible cracks in the film.55 As a consequence, AgNW networks coated on flexible plastic substrates have been intensively investigated as an alternative in flexible devices. The low glass transition temperature (T_g) of plastic substrates (ex: polyethylene naphthalate (PEN)) $T_g \approx 120$ °C restricts the nanowire linking approaches to relatively low temperatures. Heating the plastic substrate to a temperature equal to or greater than its T_g can cause its surface to wrinkle, especially when the surface area is large.56 Therefore, nanowire fusing methods that require annealing temperatures greater than 120 °C may not be practical with flexible substrates.57-59 The process of forming s-MoO$_x$ on AgNWs in this study only requires a temperature of 100 °C, which makes it attractive for flexible substrates. To demonstrate the feasibility of our method, a large area (5 cm \times 10 cm) s-MoO$_x$-treated AgNWs composite electrode on a PEN substrate was fabricated (Figure 5 (a)). The flexibilities of the best s-MoO$_x$-treated AgNW TCE (20 mg/mL precursor concentration, annealed in N$_2$ atmosphere) and ITO on PEN substrates were tested by subjecting the samples to a bending test. The instrument setup and the results are shown in Figures 5 (b) and (c). Mechanical flexibility was evaluated by repeated tensile bending of the samples to a radius of 3 mm. The R_{sheet} of the s-MoO$_x$-treated AgNW TCE only increased from ~ 30 ohm/sq \textasteriskcentered 43 ohm/sq after 3000 bending cycles, which indicates good flexibility. In contrast, the R_{sheet} of ITO dramatically increased from 13.2 ohm/sq to 1.4 \times 103 ohm/sq after only 700 bending cycles, which indicates very poor flexibility.

Table 1. Parameters of AgNW electrodes for various preparation methods.

<table>
<thead>
<tr>
<th>AgNWs TCE</th>
<th>R_{sheet} (ohm/square)</th>
<th>Average total transmittance (%) at 550 nm</th>
<th>Average total reflectance (%)</th>
<th>Average absorption (1 − R − T, %)</th>
<th>Haze value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pristine</td>
<td>4411</td>
<td>70</td>
<td>15</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>s-MoO$_x$ 5 mg/mL</td>
<td>80 mg/mL treated AgNW</td>
<td>70</td>
<td>15</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>s-MoO$_x$ 15 mg/mL treated AgNW</td>
<td>80 mg/mL treated AgNW</td>
<td>70</td>
<td>15</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. (a) Total transmittance (T), (b) total reflectance (R), (c) absorption ($1 − R − T$) and (d) diffuse transmission of AgNW TCEs. The s-MoO$_x$-treated AgNW TCEs were annealed in N$_2$ atmosphere.

Figure 5. (a) Photograph of a large-area (5 cm \times 10 cm) flexible TCE fabricated by s-MoO$_x$-treated AgNWs on PEN. (b) Photograph of a flexible TCE with a bending radius of 3 mm. (c) The resistance of s-MoO$_x$-treated AgNWs TCE and ITO during repeated bending testing (radius: 3 mm).
The XPS spectrum of s-MoO3 treated AgNW films was also subjected to an adhesion test using 3M Scotch tape. Figures 6 (a) and (b) show the s-MoO3-treated and pristine AgNW TCEs after peeling the film repeatedly with the tape. The results show that the pristine AgNW TCE can be easily peeled off and thus has poor mechanical adhesion to the substrate. As shown in Figure 6 (d), the Rsheet of this film increased dramatically with double peeling procedures (from 4411 ohm/sq to 1.2 × 10^8 ohm/sq). In contrast, the s-MoO3 treatment largely improved the adhesion of AgNWs on the substrate, and the film appearance remained uniform after the peeling test (Figure 6 (a)). As shown in Figure 6 (c), only a slight increase of Rsheet was observed after the adhesion test (from ~ 30 ohm/sq to 132 ohm/sq). Therefore, s-MoO3 not only largely enhances the conductivity of AgNW films, but also effectively adheres the AgNWs to the substrate.

The structural and elemental compositions of the MoO3-treated AgNW TCEs and pure MoO3 layers were analyzed with XPS and the results are shown in the supporting information. The XPS analysis investigated the oxidation states of the Mo atoms, and the Mo 3d spectra were carefully fitted with contribution from Mo6+, Mo5+, and Mo4+ oxidation states at 232.7, 231.2, and 229.5 eV, respectively. The XPS spectrum of s-MoO3 films annealed in an oxygen-rich environment (in air) shows that the Mo atoms are mainly in the Mo6+ oxidation state. In contrast, the MoO3 films prepared in the oxygen-deficient environment (s-MoO3 and s-MoO3 annealed in N2) contain atoms in Mo5+, Mo4+, and Mo3 oxidation states. This difference can be attributed to the formation of defect states arising from oxygen vacancies, which is in good agreement with the recent literature.

The work functions of the MoO3-treated AgNW TCEs were measured by UPS. As shown in the supporting information, we find that all samples show high work functions of ~ 5.4 eV. Slight lower work functions observed in s-MoO3-treated AgNW samples can be attributed to the partly coverage of MoO3 on AgNWs. On closer inspection of the UPS spectra, it is found that both e-MoO3 and s-MoO3 TCEs annealed in N2 display emissions from gap states in the range of 0.8–1.7 eV below the Fermi level, which is caused by the O-vacancies. No such trace can be found in the air-environment-annealed s-MoO3 sample. These results are consistent with the Mo compositions found in XPS measurements. The high work function and the existence of gap states are believed to provide an efficient hole injection. Despite the fact that the e-MoO3 also shows the signal of these gap states in XPS and UPS results, the resistance performance in e-MoO3-treated TCEs is still dominated by the poor contact between AgNWs at the intersections.

To demonstrate that the s-MoO3-treated AgNW TCEs can readily be utilized in the optoelectronic applications, four TCEs were used to fabricate the ITO-free OLEDs: (A) pristine AgNW, (B) e-MoO3-treated AgNW (20 nm), (C) s-MoO3-treated AgNW (20 mg/mL, annealed in N2) and (D) s-MoO3-treated AgNW (20 mg/mL, annealed in air). Figure 7 shows a schematic of the OLED configuration and relative energy levels of the components. Noted that the gap states of the MoO3 exist only in Device (B) and (C). Figures 8 (a) and (b) show the current-density-voltage-luminance (J–V–L) characteristics of the devices. Low current density and luminance are found in Devices (A) and (B), indicating retarded carrier transportation arising from poor TCEs. Because s-MoO3 achieves effective connection of the AgNWs as indicated by low Rsheet, devices (C) and (D) show much better electroluminescence performance. Moreover, the gap state provides an improved hole injection efficiency from Ag to HAT-CN, which explains why the turn on voltage decreases from 3.3 V (annealed in air) to 2.9 V (annealed in N2). Device (C) with annealed in N2 s-MoO3-treated AgNW TCE shows a low turn-on voltage of 2.9 V, a maximum power efficacy of 29.2 lm/W, and a maximum external quantum efficiency (E.Q.E.) of 10.3%. At high luminance, the Device (C)

<table>
<thead>
<tr>
<th>Pristine AgNW</th>
<th>e-MoO3 (30 nm)-treated AgNW</th>
<th>e-MoO3 (20 nm)-treated AgNW</th>
<th>s-MoO3 (160 mg/mL)-treated AgNW</th>
<th>s-MoO3 (80 mg/mL)-treated AgNW</th>
<th>s-MoO3 (20 mg/mL)-treated AgNW</th>
<th>s-MoO3 (5 mg/mL)-treated AgNW</th>
</tr>
</thead>
<tbody>
<tr>
<td>4411</td>
<td>3125</td>
<td>2845</td>
<td>47.7</td>
<td>38.3</td>
<td>29.8</td>
<td>47.3</td>
</tr>
<tr>
<td>96.7 [97.3]</td>
<td>90.1 [90.8]</td>
<td>93.4 [94.6]</td>
<td>92.4 [93.6]</td>
<td>94.7 [94.9]</td>
<td>95.9 [96.8]</td>
<td>96.2 [96.9]</td>
</tr>
<tr>
<td>1.27</td>
<td>2.69</td>
<td>1.78</td>
<td>4.59</td>
<td>2.52</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2.03</td>
<td>7.21</td>
<td>4.82</td>
<td>3.01</td>
<td>2.78</td>
<td>2.58</td>
<td>2.34</td>
</tr>
<tr>
<td>0.57</td>
<td>1.72</td>
<td>1.31</td>
<td>3.17</td>
<td>1.61</td>
<td>0.90</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Average total reflectance values are taken over the wavelength range from 400 to 1000 nm. The s-MoO3-treated AgNW TCEs were annealed in N2 atmosphere.
still maintained 28.2 lm/W and 10.2% E.Q.E. at 100 nits and 14.2 lm/W and 8.1% E.Q.E. at 1000 nits, respectively. The excellent performance of Device (C) can be attributed to a combination of characteristics of the N2-environment-annealed, s-MoO3-treated AgNW TCE, which include low Rsheet, high carrier conductivity, and good hole injection capability. The ITO-based OLEDs with same device structure were fabricated and their characteristics are shown in Figure S8 in the supporting information. The AgNW electrode devices achieve ~ 90% E.Q.E. of which the ITO electrode device counterparts can obtain. Slight lower efficiency in AgNW TCE devices is attributed to the higher surface roughness of AgNW TCEs and thus the higher leakage current in AgNW-based devices.

Table 2. Performance of AgNW-based OLEDs with various preparation methods.

<table>
<thead>
<tr>
<th>AgNW TCEs</th>
<th>Turn on voltage (0.1 cd/m²)</th>
<th>Power efficacy (lm/W)</th>
<th>External quantum efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine AgNW</td>
<td>-</td>
<td>0 - 1</td>
<td>1.0</td>
</tr>
<tr>
<td>e-MoO3 (20 nm)-treated AgNW</td>
<td>5.4 V</td>
<td>0.4, 0.1, 0.1</td>
<td>0.3, 0.1, 0.2</td>
</tr>
<tr>
<td>s-MoO3 (Annealed in N2)-treated AgNW</td>
<td>2.9 V</td>
<td>29.2, 28.2, 14.2</td>
<td>10.3, 10.2, 8.1</td>
</tr>
<tr>
<td>s-MoO3 (Annealed in air)-treated AgNW</td>
<td>3.3 V</td>
<td>25.1, 17.9, 10.2</td>
<td>8.3, 7.1, 5.2</td>
</tr>
</tbody>
</table>

Conclusions

In summary, we have demonstrated the fabrication of s-MoO3-treated AgNW TCEs utilizing low-temperature (sub-100 °C) processes. The solution-processed s-MoO3-treated AgNW TCEs exhibit a combination of several promising characteristics, such as high and broad transmittance across a wavelength range of 400 to 1000 nm, total transmission of up to 95.9%, low Rsheet of 29.8 ohm/sq, low haze value of 0.90%, better adhesion on the substrate, good flexibility, and preferable gap states for efficient hole injection in optoelectronic applications. By utilizing the s-MoO3-treated AgNW TCE as the anode in ITO-free OLEDs, promising performance results of 29.2 lm/W and 10.3% E.Q.E. are demonstrated. The versatile, multi-functional s-MoO3 treatment presented here paves the way for the use of low-temperature, solution-processed MoO3, as both a nanowire conductivity enhancer and a hole injection interfacial layer for future flexible optoelectronic devices.

Acknowledgements

The authors would like to acknowledge financial support from the Ministry of Science and Technology of Taiwan (102-2221-E-007-125-MY3, 101-2112-M-007-017-MY3, 102-2633-M-007-002, 103-3113-E-007-004), and the Low Carbon Energy Research Center, National Tsing Hua University. SEM images were taken in the Center for Nanotechnology, Microsystems (CNMM) of the National Tsing Hua University, which is partly supported by the Ministry of Science and Technology of Taiwan.

Notes and references