Nanoscale

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Preparation and enhanced visible light photocatalytic activity of novel g-C₃N₄ nanosheets loaded with Ag₂CO₃ nanoparticles

Yunfeng Li,^a Lin Fang,^a Renxi Jin,^a Yang Yang,^a Xu Fang,^a Yan Xing^{*a} and Shuyan Song^{*b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

As a potential visible-light photocatalyst, the photocatalytic performance of the bulk g- C_3N_4 synthesized by heating melamine (denote as g- C_3N_4 -M) is limited due to its low specific surface area and the high recombination rate of photo-induced electron-hole pair. In this paper, a novel g- C_3N_4 -M nanosheet (g- C_3N_4 -MN) obtained from the bulk g- C_3N_4 -M through a thermal exploitation method is employed to be an

¹⁰ excellent substrate and the Ag₂CO₃ nanoparticles are loaded with different amount at room temperature. The phase and chemical structure, electronic and optical properties of Ag₂CO₃/g-C₃N₄-MN heterostructures are well-characterized. The photocatalytic activities of the as-prepared Ag₂CO₃/g-C₃N₄-MN are evaluated by the degradation of methyl orange (MO) and rhodamine B (RhB) pollutants under visible light irradiation. More importantly, Ag₂CO₃/g-C₃N₄-MN heterostructure has been proved to be an

¹⁵ excellent photocatalytic system with an enhanced specific surface area and charge separation rate compared with those of the Ag₂CO₃/g-C₃N₄-M system.

Introduction

In recent years, the design of efficient, simple and sustainable photocatalysts has received much attention owing to their ²⁰ potential value in worldwide energy shortage and environmental purification.^{1,2} However, the most widely used photocatalyst, TiO₂, has limited practical applications due to its low solar energy conversion efficiency and the high recombination of photogenerated electron–hole pairs.³⁻⁵ Therefore, it is very urgent ²⁵ to develop efficient visible-light-active photocatalysts. Recently, many new visible-light-responsive photocatalysts have been reported, such as WO₃,^{6,7} CdS,^{8,9} BiVO₄,^{10,11} Bi₂WO₆,^{12,13} and Cu₂O.^{14,15} Among them, silver-containing compounds have been proved to be one of the most promising photocatalysts because of ³⁰ their high utilization rate of visible light. Typically, Yu *et al.* reported the simple hydrothermal synthesis of ultralong Ag₂Mo₃O₁₁ nanowires and their potential application in the

- Ag₂Mo₃O₁₁ nanowires and their potential application in the degradation of organic contaminants RhB.¹⁶ Moreover, it was reported that AgBr nanoplates with exposed {111} facets ³⁵ exhibited greatly enhanced photocatalytic properties for the degradation of organic pollutants.¹⁷ Ye and co-workers recently reported that Ag₃PO₄ exhibited excellent photooxidative capabilities for O₂ evolution from water and organic dye
- decomposition under visible-light irradiation.^{18,19} Notably, silver ⁴⁰ carbonate (Ag₂CO₃), as a novel high-efficiency visible-lightdriven photocatalyst, has shown a high photocatalytic activity for the photodegradation of organic pollutant molecules.²⁰ Unfortunately, like most of other silver-containing photocatalysts, Ag₂CO₃ photocatalyst greatly suffers from poor stability under
- ⁴⁵ visible light due to the photocorrosion.²¹ Yu *et al.* recently reported that the photocorrosion of Ag₂CO₃ could be efficiently

inhibited by employing AgNO₃ as an electron acceptor in the photocatalytic reaction system.²² Also Jin *et al.* have successfully synthesized Ag₂O/Ag₂CO₃ heterostructured photocatalyst to ⁵⁰ improve the photocatalytic activity and stability of Ag₂CO₃.²³ However, developing visible light photocatalysts with sufficient charge separation ability and high photocatalytic stability is still the most challenging task in photocatalysis research.

Graphite-like carbon nitride (g-C₃N₄), a kind of metal-free 55 semiconductor material possessing a narrow band gap of 2.7 eV, has attracted much attention due to its high photocatalytic performance for water splitting²⁴ and the photo-degradation of organic pollutants²⁵ under visible light. However, the photocatalytic performance of g-C₃N₄ is still limited due to its 60 high recombination rate of the photo-induced electron-hole pair and the low specific surface area. To advance this promising photocatalytic material, researchers have coupled g-C₃N₄ with various silver-containing compounds, such as Ag/g-C₃N₄,^{26,27} g- $C_{3}N_{4}\!/Ag_{2}O,^{28} Ag/AgBr/g-C_{3}N_{4},^{29} g-C_{3}N_{4}\!/Ag_{3}PO_{4}^{\ 30} \ \text{and} \ g _{65}$ C₃N₄/Ag₂CO₃³¹ to increase the separation efficiency of photogenerated electrone-hole pairs, thus to improve the photocatalytic performance. However, as a kind of photocatalyst, the lower specific surface area of g-C₃N₄ is still not satisfying and the photocatalytic activity of g-C₃N₄-based photocatalysts may be 70 further enhanced by increasing the specific surface area of g- C_3N_4 .

In this work, g-C₃N₄-M nanosheet (g-C₃N₄-MN) obtained from the bulk g-C₃N₄-M through a thermal exploitation method^{32,33} is used as an excellent substrate, and Ag₂CO₃ $_{75}$ nanoparticles have been loaded on the surface of g-C₃N₄-M nanosheets with high dispersity. The as-prepared Ag₂CO₃/g-C₃N₄-MN nanocomposites exhibit enhanced visible-light photocatalytic activity for degradation of methyl orange (MO) and rhodamine B (RhB) dye. The reusability of the catalyst is evaluated by four consecutive catalytic runs.

Experimental section

5 Preparation of g-C₃N₄-M

The g-C₃N₄-M was synthesized by directly heating melamine according to a reported procedure.²⁵ Typically, 5 g of melamine was put into an alumina crucible with a cover, then heated at 773 K for 2 h at the rate of 2 K min⁻¹. Further heat treatment was ¹⁰ performed at 793 K for another 2 h with the same heating rate. The resultant vellow powder was used in the subsequent studies.

Preparation of g-C₃N₄-MN

The g-C₃N₄-M nanosheets were prepared by thermal exploitation of g-C₃N₄-M obtained above.³² In a typical synthesis, 1g of g-¹⁵ C₃N₄-M placed in an open alumina crucible was heated at 793 K for 4 h at the rate of 2 K min⁻¹. A light yellow powder of g-C₃N₄-MN was obtained.

Decoration of g-C₃N₄-MN with Ag₂CO₃ nanoparticles

- The Ag₂CO₃/g-C₃N₄-MN photocatalysts were fabricated as follows: a certain amount of the as-prepared g-C₃N₄-MN was dispersed in 8 mL of deionized water and sonicated for 30 min. Then a solution of AgNO₃ (0.018 g, 2 mL) was added into the above suspension and stirred for 30 min in the dark to reach complete adsorption of Ag⁺ on the surface of g-C₃N₄-MN. After
- ²⁵ that, 5 mL of NaHCO₃ solution (0.05M) was added into the above $Ag^+-g-C_3N_4$ -MN suspension drop by drop. After stirring for 2 h, the precipitate was collected by centrifugation, washed with deionized water and ethanol, and dried at 333 K for 4 h. The $Ag_2CO_3/g-C_3N_4$ -MN composites with different mass ratios were
- $_{30}$ fabricated through changing the amount of g-C₃N₄-MN. The samples are denoted as MN-10, MN-20, MN-30 and MN-40 when the weight percentages of Ag₂CO₃ in Ag₂CO₃/g-C₃N₄-MN composites are 10%, 20%, 30%, 40%, respectively. The bare Ag₂CO₃ was synthesized by the same method without the
- $_{35}$ addition of g-C₃N₄-MN suspension. The composite of M-30 (weight percentage of Ag₂CO₃ in Ag₂CO₃/g-C₃N₄-M is 30%) was also prepared by using g-C₃N₄-M instead of g-C₃N₄-MN.

Characterization

Powder X-ray diffraction (XRD) analysis was determined by 40 Siemens D5005 Diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å). Scanning electron microscopy (SEM) image and energy dispersive X-ray (EDX) spectrum were performed by using XL30 ESEM FEG microscope. Transmission electron microscopy (TEM) image was obtained on a JEM-2100F microscope with an

- ⁴⁵ accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) was performed by using a Thermo ESCALAB 250 XPS instrument equipped with a standard and monochromatic source (Al K α hv = 1486.6 eV). The specific surface area of the samples was measured on a Micromeritics Tristar 3000 analyzer at 77.4
- ⁵⁰ K. Photoluminescence (PL) spectra were obtained from FLSP920 Edinburgh Fluorescence Spectrometer. UV-vis diffuse reflectance spectroscopy (DRS) was collected through a Cary 500 spectrometer. The thermogravimetric analysis (TGA) was performed by the NETZSCH STA 449 F3 Jupiter instrument with

⁵⁵ a heating rate of 10 K min⁻¹ from room temperature to 1093 K under air flow.

Photocatalytic Test

The photocatalytic performance of the samples was evaluated through the photodegradation of MO and RhB under visible light. ⁶⁰ A 300 W Xe lamp (Feilai Bo Technology Co., Ltd., China) combined with a 400 nm cut-off filter provided visible-light irradiation. In a typical photocatalytic measurement, suspension including the photocatalyst (30 mg) and MO or RhB solution (90 mL, 10 mg L⁻¹) was laid in a beaker. Before irradiation, the ⁶⁵ reaction suspension was ultrasonicated for 5 min and stirred in the dark for 30 min to reach adsorption-desorption equilibrium. During the photocatalytic tests, 3 mL of the suspension was obtained at a given time intervals, followed by centrifugation at 10000 rpm for 5 min to remove the photocatalyst. The ⁷⁰ degradation results were analyzed by using the UV–vis–NIR (Purkinje General, TU-1900) spectrophotometer.

Results and Discussion

Structure and property analysis

In situ growth strategy is widely used to prepare different kinds of composites such as graphene-based composite materials. In this work, Ag₂CO₃/g-C₃N₄-MN photocatalysts are fabricated by the *in situ* precipitation method at room temperature as shown in Scheme 1. Firstly, g-C₃N₄-M nanosheets obtained from the bulk g-C₃N₄-M through a thermal exploitation method are dispersed into deionized water by sonication. With the addition of AgNO₃ solution, Ag⁺ can be bound tightly to the surface of g-C₃N₄-M nanosheets due to the chemical adsorption. Secondly, with the adding of NaHCO₃ solution, Ag⁺ ions attached to the surface of g-C₃N₄-MN react with HCO₃⁻ to generate Ag₂CO₃ nanoparticles under constant stirring. The g-C₃N₄-M nanosheet may act as an excellent substrate to hinder the aggregation of Ag₂CO₃ nanoparticles. Finally, Ag₂CO₃/g-C₃N₄-MN heterostructured photocatalysts are obtained.

90 Scheme 1 Schematic diagram of the fabrication of Ag₂CO₃/g-C₃N₄-MN composites.

The crystal structures of the as-prepared photocatalysts were examined by powder XRD. The supporting Fig. S1 shows that all the diffraction peaks of $g-C_3N_4-M$ and $g-C_3N_4-MN$ can be

indexed to the hexagonal phase of g-C₃N₄ (JCPDS 87-1526).²⁷ But the dominant peak related to the (0 0 2) interlayer reflection in g-C₃N₄-MN changes from 27.3° to 27.7°. This may be due to the decreased distance between the layers.³² The small reflection

- s peak relates to the in-plane structural packing motif at approximately 13° in g-C₃N₄-MN does not change greatly. As shown in Fig. 1, for the bare Ag_2CO_3 nanoparticles, all of the diffraction peaks can be readily indexed to monoclinic phase Ag_2CO_3 (JCPDS 26-0339). After coupled with Ag_2CO_3
- ¹⁰ nanoparticles, the composites of M-30 and MN-30 show the diffraction peaks of both $g-C_3N_4$ and Ag_2CO_3 phases, indicate that a coexistence of Ag_2CO_3 and $g-C_3N_4$, and no impurities are formed during the fabrication of the composites.

15 Fig. 1 XRD patterns of as-prepared Ag₂CO₃, M-30 and MN-30 composites.

SEM images of g-C₃N₄-M and g-C₃N₄-MN are shown in Fig. 2A and 2B, respectively. It can be seen that both g-C₃N₄-M and g-C₃N₄-MN possess sheet structure. TEM images of g-C₃N₄-M ²⁰ and g-C₃N₄-MN are shown in Fig. 2C and 2D, respectively. Compared with g-C₃N₄-M, g-C₃N₄-MN becomes more flexible and its thickness decreases dramatically, which may result in the increase of the specific surface area and the reactive sites. As for the as-prepared nanocomposites, Ag₂CO₃ nanoparticles are found ²⁵ to be aggregating in M-30 (Fig. 2E). However, Ag₂CO₃ propositional gradient of the surface area of the surface area for the surface area for the surface area for the surface area for N MN

nanoparticles are highly dispersed on the surface of $g-C_3N_4$ -MN and their sizes become much smaller (Fig. 2F, Fig. S2).

Fig. 3 shows the EDX spectrum and XPS spectra of the MN-30 composite. The EDX spectrum in Fig. 3A indicates that the composite is composed of C, N, O and Ag element, which is consistent with the result of XPS survey spectrum (Fig. 3B). The thermogravimetric analysis of MN-30 indicates that the weight percentage of Ag₂CO₃ in MN-30 composite are 32.0%, which is nearly consistent with the theoretical dosage (Fig. S3). The scorresponding high-resolution XPS spectra are shown in Fig. 3C-F. The two individual peaks with the binding energies of 368.0 and 374.0 eV in Fig. 3C are ascribed to Ag 3d_{5/2} and Ag 3d_{3/2}, respectively.^{20,34,35} The high-resolution C 1s spectrum in Fig. 3D exhibits two main peaks at 284.6 and 288.1 eV. The peak at 284.6 eV can be attributed to carbon in Ag₂CO₃^{34,35} or graphitic carbon in g-C₃N₄-MN.³⁶ Another peak at 288.1 eV can be identified as sp² C atoms that corresponds to N-C=N coordination in g-C₃N₄-

MN. The main N 1s spectrum is shown in Fig. 3E. The peak at

398.5 eV is assigned to sp² hybridized aromatic N bonded to

Fig. 2 SEM images of (A) g-C₃N₄-M and (B) g-C₃N₄-MN. TEM images of (C) g-C₃N₄-M, (D) g-C₃N₄-MN, (E) M-30 and (F) MN-30 samples.

carbon atoms (C=N-C). The emergence of the peak at 400.1 eV ⁵⁰ corresponds to tertiary N bonded to C atoms in the form of N-(C)₃.³⁶ The weak peak at 401.1 eV is from the N-H structure. The O 1s peak shown in Figure 3F could be split into two peaks. The peak at 532.2 eV is assigned to the external –OH group or water species adsorbed on the surface of the sample. The other peak

Fig. 3 EDX spectrum (A) and XPS survey spectrum (B) of MN-30 composite. The corresponding high-resolution XPS spectra: (C) Ag 3d,

(D) C 1s, (E) N 1s and (F) O 1s.

appearing at 531.2 eV corresponds to oxygen in Ag_2CO_3 , which is highly consistent with the value reported previously.^{23,35}

Fig. 4 displays the nitrogen adsorption-desorption isotherms ⁵ and the corresponding pore size distribution curves of the asprepared g-C₃N₄-MN and MN-30 samples. It can be seen that both of them exhibit type *IV* isotherm and H₃-type hysteresis loop ($P/P_0>0.4$), thus implying the mesoporous features of the materials. As expected, the BET surface area of g-C₃N₄-MN is ¹⁰ 155 m² g⁻¹, which is much higher than that of g-C₃N₄-M (10 m² g⁻¹)

¹, Fig. S4). After decoration with Ag_2CO_3 nanoparticles, the MN-30 composite still possesses a large surface area of 105 m² g⁻¹.

Fig. 4 Nitrogen adsorption-desorption isotherms and the corresponding ¹⁵ pore size distribution curves (inset) of the bare g-C₃N₄-MN and MN-30 composite.

PL technique is usually employed to investigate the migration, transfer and recombination processes of photogenerated electron-hole pairs in semiconductors. As shown ²⁰ in Fig. 5, both the bare $g-C_3N_4$ -M and $g-C_3N_4$ -MN have a strong, wide peak in PL spectra. However, the PL peaks of M-30 and MN-30 composites decrease remarkably, and the peak in the PL spectrum of MN-30 is very weak, indicating the recombination of electron-hole pairs in MN-30 is hindered greatly.

The light absorption properties of the as-prepared samples

were investigated by UV–vis DRS. As shown in Fig. 6, g-C₃N₄-MN shows a slight blue shift of absorption edge compared to g-³⁰ C₃N₄-M, which is similar to the performance of other g-C₃N₄ nanosheet fabricated by heating dicyandiamide.³² Notably, the Ag₂CO₃/g-C₃N₄-MN composites show a significant enhancement of light absorption, and the absorption intensity increases with the increasing amounts of Ag₂CO₃. In addition, based on the plot of ³⁵ transformed Kubelka-Munk function (F(R)*hv*)ⁿ versus the energy of exciting light (*hv*) (n value is 2 for direct transition and 1/2 for indirect transition, Fig. S5),^{23,32} the bandgap of g-C₃N₄-M, g-C₃N₄-MN and Ag₂CO₃ is estimated to be 2.64, 2.67 and 2.37 eV, respectively.

Fig. 6 UV-vis diffuse reflectance spectra of the as-prepared photocatalysts.

Photocatalytic activity

Fig. 7A and 7B show the photocatalytic activities of the as-⁴⁵ prepared samples and commercial P25 catalyst toward degradation of MO under visible-light irradiation (λ > 400 nm). As shown in Fig. 7A, no obvious degradation of MO is observed after visible light irradiation for 30 min in the absence of catalysts, indicating that the photolysis of MO can be ignored.
⁵⁰ Compared to pure Ag₂CO₃ and g-C₃N₄-MN, all Ag₂CO₃/g-C₃N₄-MN composites exhibit enhanced photocatalytic activities and the photocatalytic activities increases gradually as increasing the proportion of Ag₂CO₃ in the composites. The as-prepared MN-30

composite shows the highest activity and no enhancement is ⁵⁵ observed with further increasing the Ag₂CO₃ content up to 40%. The results above indicate that the amount of Ag₂CO₃ in the composite is crucial to the synergistic effect between the two components.^{37,38} Additionally, the photocatalytic activities of g-C₃N₄-M, M-30 composite and commercial P25 were also tested ⁶⁰ for comparison under the same conditions. As shown in Fig. 7B, they all show rather poor photocatalytic activity for the degradation of MO compared to the MN-30 photocatalyst.

RhB was also selected as the other target compound to further evaluate the photocatalytic activity of MN-30 composite. Fig. 7C for shows that almost all RhB is degraded for MN-30 after 30 min visible-light irradiation. But only 7.4%, 11.3%, 26.7%, 33.1% and 41.2% of RhB is removed under the same conditions for P25, g-C₃N₄-M, M-30, Ag₂CO₃ and g-C₃N₄-MN, respectively. The results of degradation of MO and RhB dyes confirm that the large 70 surface area and the small sheet thickness of the g-C₃N₄-MN

substrate may play an important role for improving photocatalytic performance.

¹⁵ which has been proven to effectively suppress photocorrosion during the g-C₃N₄ based photocatalytic reaction.^{39,40} It is notable that the photocatalytic efficiency of MN-30 composite does not exhibit any significant loss of activity even after four successive cycles, indicating its excellent stability and great potential value ²⁰ in environmental purification.

the photocorrosion. g-C₃N₄ possesses a conjugated π structures,

Fig. 8 The reusability of as-prepared Ag_2CO_3 and MN-30 composite for photodegradation of MO.

Possible Photocatalytic Mechanism

25 It is important to investigate possible photocatalytic mechanism for a composite photocatalyst system. In this study, the trapping experiments of free radical and hole are carried out to investigate the main reactive species for degradation of MO and RhB by MN-30. Disodium ethylenediaminetetraacetate (EDTA), 1,4-30 benzoquinone (BQ) and tert-butyl alcohol (t-BuOH) are used as the hole scavenger, superoxide radical (O_2) scavenger and hydroxyl radical (OH) scavenger, respectively. The results (Fig. S6) show that the degradation rate of MO is decelerated obviously after addition of 2 mM EDTA or 2 mM BQ. However, $_{35}$ the degradation rate has almost no change in the presence of t-BuOH, suggesting that the holes and O_2 are the main reactive species for degradation of MO. As for the degradation of RhB, the photocatalytic activity decreases slightly after addition of t-BuOH, however it is inhibited greatly in the presence of EDTA 40 and BQ, indicating that the holes and O_2 also play a major role in the degradation of RhB.

Based on the above experimental results and physicochemical properties of g-C₃N₄-MN and Ag₂CO₃, a possible photocatalytic mechanism of Ag₂CO₃/g-C₃N₄-MN system is proposed. Photo-⁴⁵ excited carriers can transfer smoothly mainly due to the matching potentials of the composites, as shown in Fig. 9. The band gap of g-C₃N₄-MN and Ag₂CO₃ is 2.67 eV and 2.37 eV, respectively. Thus both the g-C₃N₄-MN and Ag₂CO₃ can be excited under the visible light radiation. The g-C₃N₄-MN has a more negative ⁵⁰ potential of the conduction band (CB: ~-1.1 eV) and valence band (VB: ~1.6 eV)^{38,41} than that of Ag₂CO₃ (CB: ~0.3 eV, VB: ~2.7 eV, see the Supporting Information). Therefore, the excited electrons on g-C₃N₄-MN could directly inject into the CB of Ag₂CO₃ to that of g-C₃N₄-MN, which promotes the effective separation of photoexcited electrons and holes. As a result, the

Fig. 7 Photocatalytic activity of as-prepared samples and commercial P25 5 catalyst toward degradation of MO (A) and (B), RhB (C) under visible light irradiation.

Catalyst Stability

From the viewpoint of practical applications, the stability of the bare Ag₂CO₃ and MN-30 samples was also investigated. Fig. 8 ¹⁰ shows that a relatively high stability is kept over the MN-30 heterostructured photocatalyst during the successive cycle of photocatalytic degradation of MO, whereas Ag₂CO₃ nanoparticles almost lose their activity in the second run due to enriched electrons on the CB of Ag_2CO_3 will react with oxygen to generate superoxide radicals ($\cdot O_2^-$). The $\cdot O_2^-$ active species together with the holes on the VB of g-C₃N₄-MN are responsible for the degradation of organic pollutants.

- ⁵ After one cycle of photodegradation reaction, the Ag^0 nanoparticles were formed on the surface of Ag_2CO_3 (Fig. S7), which generally serve as a good electron acceptor. Therefore, the electrons on the CB of Ag_2CO_3 can transfer to the Ag^0 nanoparticles, which may decreases the amount of O_2^- that
- ¹⁰ generated on the CB of Ag₂CO₃. This may cause the decreased photocatalytic activity in recycling reactions. The enriched electrons on the Ag⁰ nanocrystals could react with oxygen via multielectron-transfer routes (O₂+2e⁻+2H⁺=H₂O₂; O₂+4e⁻+4H⁺=2H₂O).^{22,28} Moreover, the Ag nanoparticles ¹⁵ gradually grew on the Ag₂CO₃ surface under the photocatalytic reaction process, which could prevent the light absorption of
- $Ag_2CO_3^{31}$. In addition, the excessive Ag^0 could become the recombination center of electrons and holes,⁴² which also resulting in the decreased of the photocatalytic activity.

Fig. 9 Schematic illustration of photocatalytic reaction and charge transfer of the Ag₂CO₃/g-C₃N₄-MN composites under visible-light irradiation.

Conclusion

- In summary, g-C₃N₄-M nanosheets (g-C₃N₄-MN) have been ²⁵ prepared through a thermal exploitation process from its parent bulk material, and the novel g-C₃N₄-M nanosheets loaded with highly-dispersed Ag₂CO₃ nanoparticles were fabricated at room temperature. Under visible light irradiation, the Ag₂CO₃/g-C₃N₄-MN heterostructures show much superior photocatalytic activities
- ³⁰ to the Ag₂CO₃/g-C₃N₄-M (bulk g-C₃N₄) composites and the pure Ag₂CO₃ nanoparticles. The enhanced photocatalytic activity of the Ag₂CO₃/g-C₃N₄-MN composites was mainly attributed to the large surface area and the small sheet thickness of the g-C₃N₄-MN substrate, as well as the improved dispersibility and the
- ³⁵ decreased particle size of Ag₂CO₃. The Ag₂CO₃/g-C₃N₄-MN composite may serve as a promising candidate as the catalytic material in pollution treatment applications.

Acknowledgements

This work is supported by the National Natural Science 40 Foundation of China (Grant No. 21473027); The project development plan of science and technology of Jilin Province (No. 20140101110JC); Research Fund for the Doctoral Program of Higher Education of China (No. 20120043110005); Opening Fund of State Key Laboratory of Rare Earth Resource Utilization,

⁴⁵ Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Opening Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University.

Notes and references

- ^a Department of Chemistry, Northeast Normal University, Changchun,
- ⁵⁰ 130024, China. E-mail: <u>xingy202@nenu.edu.cn</u> Tel:+86-431-85099657. ^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.
- †Electronic Supplementary Information (ESI) available: Other 55 information of the samples. See DOI: 10.1039/b000000x/
 - 1 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, *Chem. Rev.*, 1995, **95**, 69-96.
- 2 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278.
- 60 3 M. D. Hernández-Alonso, F. Fresno, S. Suárez and J. M. Coronado, *Energy Environ. Sci.*, 2009, 2, 1231-1257.
- 4 G. Liu, Y. N. Zhao, C. H. Sun, F. Li, G. Q. Lu and H. M. Cheng, *Angew. Chem. Int. Ed.*, 2008, **47**, 4516-4520.
- 5 X. B. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891-2959.
- ⁶⁵ 6 D. Chen and J. H. Ye, *Adv. Funct. Mater.*, 2008, **18**, 1922-1928.
 7 G. C. Xi, Y. Yan, Q. Ma, J. F. Li, H. F. Yang, X. J. Lu and C. Wang, *Chem. Eur. J.*, 2012, **18**, 13949-13953.
- 8 N. Z. Bao, L. M. Shen, T. Takata and K. Domen, *Chem. Mater.*, 2008, **20**, 110-117.
- 70 9 Y. X. Li, Y. F. Hu, S. Q. Peng, G. X. Lu and S. B. Li, J. Phys. Chem. C, 2009, 113, 9352-9358.
- 10 G. C. Xi and J. H. Ye, *Chem. Commun.*, 2010, **46**, 1893-1895. 11 G. S. Li, D. Q. Zhang and J. C. Yu, *Chem. Mater.*, 2008, **20**, 3983-3992.
- ⁷⁵ 12 H. F. Cheng, B. B. Huang, Y. Y. Liu, Z. Y. Wang, X. Y. Qin, X. Y. Zhang and Y. Dai, *Chem. Commun.*, 2012, **48**, 9729-9731.
 13 S. M. Sun, W. Z. Wang and L. Zhang, *J. Mater. Chem.*, 2012, **22**, 19244-19249.
- 14 Y. Zhang, B. Deng, T. R. Zhang, D. M. Gao and A. W. Xu, J. Phys. 80 Chem. C, 2010, 114, 5073-5079.
- 15 H. Yang and Z. H. Liu, *Cryst. Growth Des.*, 2010, **10**, 2064-2067. 16 M. Feng, M. Zhang, J. M. Song, X. G. Li and S. H. Yu, *ACS Nano*, 2011, **5**, 6726-6735.
- 17 H. Wang, J. Gao, T. Q. Guo, R. M. Wang, L. Guo, Y. Liu and J. H. Li, ss Chem. Commun., 2012, 48, 275-277.
- 18 Y. P. Bi, S. X. Ouyang, N. Umezawa, J. Y. Cao and J. H. Ye, *J. Am. Chem. Soc.*, 2011, **133**, 6490-6492.
- 19 Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu and R. L. 90 Withers, *Nat. Mater.*, 2010, **9**, 559-564.
- 20 H. J. Dong, G. Chen, J. X. Sun, C. M. Li, Y. G. Yu and D. H. Chen, *Appl. Catal.*, *B*, 2013, **134-135**, 46-54.
- 21 C. W. Xu, Y. Y. Liu, B. B. Huang, H. Li, X. Y. Qin, X. Y. Zhang and Y. Dai, *Appl. Surf. Sci.*, 2011, **257**, 8732-8736.
- 95 22 G. P. Dai, J. G. Yu and G. Liu, J. Phys. Chem. C, 2012, 116, 15519-15524.
- 23 C. L. Yu, G. Li, S. Kumar, K. Yang and R. C. Jin, *Adv. Mater.*, 2014, **26**, 892-898.
- 24 X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. ¹⁰⁰ Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, **8**, 76-80.
 - 25 S. C. Yan, Z. S. Li and Z. G. Zou, *Langmuir*, 2009, **25**, 10397-10401. 26 Y. X. Yang, Y. N. Guo, F. Y. Liu, X. Yuan, Y. H. Guo, S. Q. Zhang,
 - W. Guo and M. X. Huo, *Appl. Catal.*, *B*, 2013, **142-143**, 828-837.
- 27 L. Ge, C. C. Han, J. Liu and Y. F. Li, *Appl. Catal.*, *A*, 2011, **409-410**, 105 215-222.
 - 28 M. Xu, L. Han and S. J. Dong, ACS Appl. Mater. Interfaces, 2013, 5, 12533-12540.

29 J. Cao, Y. J. Zhao, H. L Lin, B. Y. Xu and S. F. Chen, *Mater. Res. Bull.*, 2013, **48**, 3873-3880.

30 H. Katsumata, T. Sakai, T. Suzuki and S. Kaneco, *Ind. Eng. Chem. Res.*, 2014, **53**, 8018-8025.

- ⁵ 31 H. Xu, Y. X. Song, Y. H. Song, J. X. Zhu, T. T. Zhu, C. B. Liu, D. X. Zhao, Q. Zhang and H. M. Li, *RSC Adv.*, DOI: 10.1039/C4RA03443K. 32 P. Niu, L. L. Zhang, G. Liu and H. M. Cheng, *Adv. Funct. Mater.*, 2012, **22**, 4763-4770.
- 33 H. X. Zhao, H. T. Yu, X. Quan, S. Chen, Y. B. Zhang, H. M. Zhao and 10 H. Wang, *Appl. Catal.*, *B*, 2014, **152-153**, 46-50.
- 34 H. J. Dong, G. Chen, J. X. Sun, Y. J. Feng, C. M. Li, G. H. Xiong and C. Lv, *Dalton Trans.*, 2014, **43**, 7282-7289.

35 H. Xu, J. X. Zhu, Y. X. Song, W. K. Zhao, Y. G. Xu, Y. H. Song, H. Y. Ji and H. M. Li, *RSC Adv.*, 2014, **4**, 9139-9147.

- ¹⁵ 36 Y. J. Cui, J. S. Zhang, G. G. Zhang, J. H. Huang, P. Liu, M. Antonietti and X. C. Wang, *J. Mater. Chem.*, 2011, **21**, 13032-13039.
 ³⁷ Y. S. Xu and W. D. Zhang, *ChemCatChem*, 2013, **5**, 2343-2351.
 ³⁸ H. Xu, J. Yan, Y. G. Xu, Y. H. Song, H. M. Li, J. X. Xia, C. J. Huang and H. L. Wan, *Appl. Catal.*, *B*, 2013, **129**, 182-193.
- ²⁰ 39 Y. J. Wang, R. Shi, J. Lin and Y. F. Zhu, *Energy Environ. Sci.*, 2011, 4, 2922-2929.

40 S. Kumar, T. Surendar, A. Baruah and V. Shanker, *J. Mater. Chem. A*, 2013, 1, 5333-5340.

41 S. W. Cao, Y. P. Yuan, J. Fang, M. M. Shahjamali, F. Y. C. Boey, J.

- 25 Barber, S. C. J. Loo and C. Xue, Int. J. Hydrogen Energy, 2013, 38, 1258-1266.
- 42 R. Georgekutty, M. K. Seery and S. C. Pillai, *J. Phys. Chem. C*, 2008, **112**, 13563-13570.