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The honeycomb lattice of graphene is characterized by linear dispersion and pseudospin chirality of fermions on the Dirac cones.

If lattice anisotropy is introduced, the Dirac cones stay intact but move in reciprocal space. Dirac point movement can lead to

a topological transition from semimetal to semiconductor when two inequivalent Dirac points merge, an idea that has attracted

significant research interest. However, such movement normally requires unrealistically high lattice anisotropy. Here we show

that anisotropic defects can break the C3 symmetry of graphene, leading to Dirac point drift in the Brillouin zone. Additionally,

the long-range order in periodically patterned graphene can induce intervalley scattering between two inequivalent Dirac points,

resulting in a semimetal-to-insulator topological phase transition. The magnitude and direction of Dirac point drift are predicted

analytically, which are consistent with our first-principles electronic structure calculations. Thus, periodically patterned graphene

can be used to study the fascinating physics associated with Dirac point movement and the corresponding phase transition.

Since the isolation of graphene, a two-dimensional (2D)

honeycomb lattice of carbon (C) atoms, tremendous research

efforts have been spent on the physics of the honeycomb lat-

tice and Dirac points1–3. Dirac points manifest themselves in

many intriguing phenomena, including massless fermions in

graphene3 and conducting surface states in topological insula-

tors4. Dirac points can appear in any 2D lattice if parameters

are appropriately adjusted, but the honeycomb lattice is the

simplest and most natural realization. Graphene is a tangible,

solid-state example of such a lattice with C3 symmetry, but

Dirac points also exist on honeycomb lattices without C3 sym-

metry. One possible realization is strained graphene5–7, but

most experiments focus on anisotropy in honeycomb optical

lattices8–12, which can be precisely tuned to study massless

Dirac fermions and their correlated phases.

In pristine graphene, the Dirac points (D and D′ =−D) are

located at the corners of the hexagonal Brillouin zone (K and

K′ = −K). When lattice anisotropy is introduced, the Dirac

points move away from these positions. If the anisotropy

is large enough, the Dirac points will eventually merge and

a topological transition occurs.13–15 The significance of this

transition in condensed-matter physics has lead to extensive

theoretical and experimental efforts8,10,12–14. However, this

phenomenon is extremely challenging to observe in graphene

or any other solid-state materials because of the unrealistic
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lattice anisotropy required. Instead, researchers mainly focus

on artificial honeycomb lattices, including trapping ultracold

atoms in honeycomb optical lattices8,13 and nano-patterning

2D electron gases16,17 for better tunability.

In this article, we present a new mechanism to move Dirac

points and facilitate a topological transition in graphene based

on periodic patterning of defects. Specifically, anisotropic

defects cause the Dirac points to shift, the magnitude of

which can be evaluated according to the renormalization of

graphene’s three hopping parameters. Furthermore, the long-

range order introduced by periodic defects can induce inter-

valley scattering between two Dirac points. The intervalley

scattering condition leads to a transition from semimetal to

semiconductor without requiring the Dirac points to merge

and annihilate. Our prior work18,19 has focused exclusively on

scattering induced by idealized defects that have C3 symme-

try themselves. Here, we consider complex, anisotropic defect

structures and focus on the effects of both local defect geom-

etry and long-range order. Our theoretical analysis is consis-

tent with ab-initio electronic structure calculations. Therefore,

patterned graphene can serve as a tunable platform to adjust

the effective mass of fermions and study electronically corre-

lated topological phase transitions.

1 Results

1.1 Quantifying anisotropy in patterned graphene

Various periodic defects have been realized on graphene,

such as partially H-passivated graphene20,21, graphene
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Fig. 1 The virtual crystal approximation. a, b, In the VCA, a

defected graphene supercell is replaced by a 2-atom primitive cell

with supercell averaged hopping parameters t1, t2 and t3. c, d,

Isotropic defect of a 6C-ring passivated with hydrogen that

preserves the local C3 symmetry so that t1 = t2 = t3 = t. e, f,

Anisotropic H-passivation defect formed from adjacent halves of

two 6C-rings (split-6C) that breaks C3 symmetry with t1 = t2 6= t3.

nanomesh22,23 (GNM), and graphene doped with patches of

hexagonal BN24. Recent works22,23 have demonstrated func-

tional field-effect transistors based on patterned semiconduct-

ing graphene; however, the interplay between local defect con-

figurations and long-range order in these materials is still un-

clear.

We have studied isotropic defects without breaking the lo-

cal C3 symmetry in the past18,19,25, i.e., on average, the three

hopping parameters (t) in the tight-binding (TB) graphene

model3,26 remain identical. Here we focus on anisotropic de-

fects that result in different renormalized hopping strengths.

The anisotropy in defected graphene can be quantified by

simply averaging the three nearest-neighbor hopping param-

eters in a supercell, i.e., the virtual crystal approximation

(VCA)27,28 in solid-state physics. Based on the VCA, we

model a large defected graphene supercell by a two-atom

primitive cell with three distinct hopping parameters t1, t2, and

t3, as illustrated in Figure 1. The details of our VCA model are

in Supplementary Information.

1.2 Dirac point drift

While the defected supercells shown on the left side of Fig-
ure 1 are difficult to deal with, their corresponding VCA
model structures on the right side are well understood analyt-
ically at the TB level of theory5,13–15. In a honeycomb lattice
with three different hopping parameters and bond length a,
Dirac points still satisfy D′ =−D, but their locations13 are:

Dx,± = ±2

a
arccos



−

√

t2
3 − (t2 − t1)2

4t1t2



 ,

Dy,± = ± 2√
3a

sgn(t1 − t2)

arccos





t1 + t2

t3

√

t2
3 − (t2 − t1)2

4t1t2



 . (1)

Previous work5 has demonstrated that strain can move

Dirac points according to Eq. (1). Here, we show that we

can modify the VCA hopping parameters and move the Dirac

points along predictable paths in reciprocal space by adjusting

the local defect structure, as demonstrated by Figure 2. Specif-

ically, Figure 2b and Figure 2c indicate that Dirac points drift

along the ky axis for defects with t1 = t2 6= t3, corresponding to

the case sketched in Figure 1f. Figure 2d and Figure 2e show

the movement of Dirac points when all three VCA hopping

parameters are unequal, t1 6= t2 6= t3, corresponding to Fig-

ure 1b. Since boron nitride doping produces a much weaker

perturbation than hydrogen passivation, the Dirac point shift

in Figure 2c and Figure 2e is smaller than that in Figure 2b

and Figure 2d, respectively.
Using Eq. (1), one can determine the magnitude of Dirac

point movement in patterned graphene in terms of the VCA
hopping parameters. For instance, the anisotropic split-6C
ring defect (Figure 1e) leads to:

t1 = t2 =

(

1− 4

3
fd

)

tCC +
2

3
fd(tHC + tHH),

t3 =

(

1− 5

3
fd

)

tCC +
4

3
fdtHC +

1

3
fdtHH, (2)

where the defected fraction fd ≡ NH/NC, with NH and NC the
numbers of H and C atoms in a supercell. tCC, tHC, and tHH

are hopping parameters between two C atoms without H pas-
sivation, one bare C atom and one passivated C atom, and two
passivated C atoms, respectively. Inserting Eq. (2) into Eq. (1)
and expanding the arccos function to linear order in the defect
fraction fd , we obtain the position of the shifted Dirac point D
for graphene with 6C-split defects:

D
split
y =

4π

3a
− 2(tCC −2tHC + tHH) fd

3
√

3atCC

+O[ fd ]
2. (3)

Here a is the nearest-neighbor C-C bond length, and we orient

our coordinate system so that the movement of Dirac points is
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Fig. 2 Dirac point drift. Crystal structures (left column) and

contour plots of the energy for the highest valence band (right

column) at each k-point in the Brillouin zone (black hexagon, for

the 5×5 supercell) of defected graphene. The highest energy points

(centers of the red areas) indicate the location of Dirac points. a,

Pristine graphene. b and d, Partial hydrogen passivation. c and e,

Boron nitride (BN) doping. Here golden, blue, green, and dark red

dots represent C, H, B and N atoms, respectively. All graphene

structures have the same 5×5 hexagonal supercell indicated by

solid black lines (left column).

along the ky direction for the case of t1 = t2 6= t3 (Figure 2b

and Figure 2c).

Another example is the ‘pair’ defect formed by two ad-
sorbed H atoms on top of a pair of adjacent C atoms (Fig-
ure 2b). Depending on the defect fraction fd , the Dirac point

moves to

D
pair
y =

4π

3a
+

2(tCC −2tHC + tHH) fd√
3atCC

+O[ fd ]
2. (4)

Comparing the slopes of the linear expansions in Eqs. (3) and

(4), we draw two conclusions: (i) split and pair defects cause

the Dirac point to drift in opposite directions and (ii) for an

identical defect fraction, the magnitude of the ky drift for split

defects is less than that of pair defects. Direct verification of

Dirac point movement predicted by Eqs. (3) and (4) is diffi-

cult because the values of tHC and tHH are unknown. Instead,

we perform first-principles electronic structure calculations to

examine the above two conclusions drawn from Eqs. (3) and

(4).

Fig. 3 Dirac point drift vs defect fraction. a, Magnitude of Dirac

point drift in 4 types of defected graphene as functions of defect

fraction fd . Dashed lines are linearly fitted to calculated data plotted

with solid dots. For split defects, the drift is along the −ky direction,

while the drift is along +ky for pair defects. Results for BN doping

are presented in Supplementary Information. b, Blue and red solid

lines are trajectories of Dirac points in reciprocal space as fd
increases for the two examples discussed in text. Purple dots are

numerical data for the defect shown in Figure 2e and the green line

is a numerical fit.

We track the movement of Dirac points in the ±ky direction
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for graphene supercells with pair and split defects created by

partial H-passivation, vacancies, and BN doping. We consider

arbitrary supercell geometries and sizes to test the generality

of our theory. By unfolding the Brillouin zones of these ma-

terials, we find the Dirac-like points derived from the Dirac

points of pristine graphene. Our defining criterion for Dirac-

like points is a gapless state with linear dispersion nearby.

Some materials may have very small band gaps due to buck-

ling of the graphene sheet or broken inversion symmetry. For

our purposes, these materials are practically gapless. Not all

materials show these Dirac-like points; the exceptions to this

rule are semiconductors (when the topological phase transition

occurs) and will be discussed shortly. Figure 3a demonstrates

that for vacancy defects (GNM), the ratio of the fitted slopes

for split and pair defects is 0.64, while this ratio is 0.54 for H-

passivation. The direction of the Dirac point drift due to split

defects is, as predicted, opposite that of pair defects (see Fig-

ure 2b and Figure 2c). Our VCA tight binding model, there-

fore, can qualitatively predict the movement of Dirac points in

graphene with anistropic defects.
We now turn our attention to the case t1 6= t2 6= t3. It proves

convenient to reparameterize the VCA hopping parameters ac-
cording to

t1 = (1− fd)tCC + fdt ′1,

t2 = (1− fd)tCC + fdt ′2,

t3 = (1− fd)tCC + fdt ′3. (5)

Here, the t ′i parameters represent the hopping in the i-th di-

rection averaged only for the defected C atoms. These values

enter the VCA with the weight fd , and the remainder of the

supercell is the usual C-C hopping with the weight (1− fd).
We explore the evolution of the Dirac points as a function of

defect fraction fd for different combinations of t ′1, t ′2 and t ′3
analytically (details in Supplementary Info) and then compare

with numerical results from first-principles calculations.

Three examples are plotted in Figure 3b. The blue curve

corresponds to t ′1 = t ′2′ = 6tCC, t ′3 = 11tCC, the red curve de-

picts the case t ′1 = 4tCC, t ′2 = 3tCC, t ′3 = −tCC, whereas the

green curve is a numerical fit to the purple data points com-

puted for the BN defect shown in Figure 2e. All these trajecto-

ries begin at the K or K′ points and evolve towards an M point

of the Brillouin zone as fd approaches 1. Note that the upper

bound on anistropy is when fd is 1, which may not induce high

enough anisotropy to merge the Dirac points at an M point.

If they do merge, a topological transition from semimetal to

semiconductor occurs. Figure 3b suggests that, among these

three cases, only the red curve can cause the Dirac points to

merge. However, such large values of fd and t ′i are unrealistic,

and any practical anisotropy induced by defects can only gen-

erate a small amount of Dirac point drift (e.g., the green curve

and purple data points). Nonetheless, the intriguing semimetal

to semiconductor phase transition can be realized in periodi-

cally defected graphene by intervalley scattering.

1.3 Topological phase transition

While scientifically very interesting, drifting Dirac points also

have important ramifications for technological applications.

When the Dirac points drift on top of each other, a topo-

logical transition occurs and a bulk band gap opens.5,9,13,14

As already stated, the degree of anisotropy required for the

Dirac points to merge is unreasonably large. For example, in

strained graphene, uniaxial strains of around 20% are neces-

sary to facilitate this transition6,7.

Fortunately, the long-range order created by defects pro-

vides an alternative route to opening a band gap at the Dirac

points without the need for such high anisotropy18,19,25,29,30.

Previous work has shown that band gap opening under an ex-

ternal potential is not possible when the potential varies slowly

over the scale of the interatomic distance31–34. However, if the

external potential U(G) has appreciable contributions at high

wave vectors |G| ∼ |D|, as we expect in defected graphene,

bulk band gap opening is possible. In this case, even though

the Dirac points do not merge, the Dirac cones themselves and

their associated ±π Berry phases no longer exist, indicating

the topological character of the transition. An examination of

the band topology in the presence of intervalley scattering in

graphene will be presented in future work.

The topological phase transition takes place when the in-

tervalley scattering condition U(D−D′) 6= 0 is satisfied. This

condition is equivalent to the requirement that the Dirac points

drift onto a supercell reciprocal lattice vector (G) or onto

a middle point M = G/2. To test our prediction, we nu-

merically search for defected graphene structures with drifted

Dirac points that satisfy the intervalley scattering condition.

This search is quite challenging because the degree of Dirac

point movement is only known numerically, and each super-

cell has its own set of reciprocal lattice vectors. For a given

defect, changing the size of the supercell changes not only fd

and the position of the Dirac points, but also changes the high

symmetry points of the Brillouin zone.

Figure 4a shows a successful search for such a transition

schematically. For a fixed defect of three H-passivation pairs,

the drift of the Dirac point decreases as the size of supercell

increases from 5× 5 to 8× 8 (red to green, Figure 4b to Fig-

ure 4d). As fd decreases, the shift of Dirac points is reduced;

the 7×7 supercell has an M point overlapping with D, as in-

dicated in Figure 4a, inducing intervalley scattering between

two Dirac points and resulting in gapped and parabolic disper-

sion at M3 in the calculated electronic band structure.

One can also add defects to a fixed supercell to increase

defect fraction fd and Dirac point drift, as summarized in Fig-

ure 5. Figure 5a, Figure 5c, and Figure 5e show that the Dirac

point drifts away from A2 and towards a reciprocal lattice vec-
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Fig. 4 Numerical search for topological phase transition in graphene with anisotropic defects. a, Black dots indicate the original

positions of the Dirac points in pristine graphene. After unfolding their respective Brillouin zones, red and green dots correspond to equivalent

positions of the Dirac point for 5×5 (panel b) and 8×8 (panel c) supercells subject to three H-pair defects. The blue dot corresponds to the

unfolded k-point location of the band gap in a 7×7 supercell (panel c) subject to three H-pair defects. Red, blue, and green ×’s mark the

reciprocal lattice vectors of their respective structures. Only the blue dot falls at an M or G point of its Brillouin zone. b, c and d, Crystal and

electronic structures of the 5×5, 7×7 and 8×8 supercells with three H-pair defects presented in panel a.

Fig. 5 Topological phase transition in graphene by changing number of defects in a supercell. a, c and e Crystal (left) and electronic

(right) structures of a 7×7 graphene supercell subject to one, two, and three split H-passivation defects, respectively. b, d and f, Crystal (left)

and electronic (right) structures of a 7×7 graphene supercell subject to one, two, and three pair vacancy defects, respectively.

tor G as fd increases. Once the Dirac point drifts onto a G

vector, a topological phase transition occurs and the result-

ing electronic band structure has a gap at the Γ-point. Fig-

ure 5b, Figure 5d and Figure 5f show a similar trend: their

Dirac points move towards an M-point. Once the Dirac point

drifts onto M2, the intervalley scattering condition is satisfied

and a band gap opens at M2.
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2 Discussion

We have demonstrated the sensitivity of a defected graphene

sheet’s electronic structure to the geometries of both the super-

cell and the defect structure. The movement of Dirac points

is well predicted by considering the local configuration of de-

fects and the supercell size. The appearance of a band gap

depends on both the local defect structure and the long range

order. Therefore, patterned graphene could be a practical ma-

terial to investigate the fundamental physics of Dirac point

movement and the relevant topological phase transition in a

solid-state system.

The seemingly complicated behaviors of Dirac points in

these complex graphene systems can be understood by a sim-

ple effective TB model based on the VCA. Because the defect

structures vary on the scale of the interatomic distance, they

can induce intervalley scattering between the Dirac points and

cause a semimetal-to-semiconductor transition. Not surpris-

ingly, the intervalley scattering mechanism has a strong re-

semblance to the annihilation of merging Dirac points, lead-

ing to a topological phase transition in both cases. However,

overlap of Dirac points in the supercell Brillouin zone simply

due to zone folding does not cause them to merge. For exam-

ple, it is possible to construct a non-Bravais lattice of defected

graphene such that the phase factors for each defect cancel,

effectively reversing the appearance of a band gap and caus-

ing a semiconductor-to-semimetal transition19. In this case,

the two Dirac points both overlap with G but they do not an-

nihilate each other. The cancellation of phase factors is strong

evidence that a scattering mechanism is responsible for band

gap opening in patterned graphene, not the merging of Dirac

points. We are preparing research for a future publication that

details the character of the transition and band topology in the

case of scattering off an external potential.

Finally, the technological importance of such semiconduct-

ing graphene structures cannot be understated. Patterned

graphene sheets with sizable band gaps have already been

fabricated as electronic devices20–22,24,35. Despite these suc-

cesses, however, a fundamental understanding of defects on

graphene was missing, especially regarding the interplay be-

tween long-range order and local defect configuration. Our

theory points out that the long-range order offers possible in-

tervalley scattering while the local defect configuration can

move Dirac points. When Dirac points meet a supercell re-

ciprocal lattice vector G or a middle point M = G/2, a topo-

logical phase transition occurs and the massless fermions gain

effective mass. Therefore, our work not only provides a plat-

form to investigate the fundamental physics of Dirac cones,

but also presents a reliable road map to designing semicon-

ducting graphene materials.

3 Methods

Our first-principles electronic structure calculations based on

density functional theory were performed using the SIESTA

package36 using a triple-ζ polarized atomic basis set for car-

bon atoms, whose numerical accuracy has been rigorously

tested against the planewave-based VASP program37. The

2D Brillouin zones of supercells were sampled on a 2 × 2

Monkhorst-Pack k-point grid with good convergence due to

very large unit cells. The generalized gradient approxima-

tion38 was used for the exchange-correlation functional. All

calculations are spin-polarized. Structures are optimized until

the maximum atomic force is less than 0.02 eV/Å. Dangling

bonds in GNM structures are passivated with hydrogen atoms.
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