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Nanotextured stainless steel for improved corrosion 
resistance and biological response in coronary 
stenting 

Chandini C. Mohan†, Anupama Prabhath†, Aleena Mary Cherian, Sajini 
Vadukumpully, Shantikumar V. Nair, Krishnaprasad Chennazhi and Deepthy 
Menon* 

Nanosurface engineering of metallic substrates for improved cellular response is a persistent 
theme in biomaterials research. The need to improve the long term prognosis of commercially 
available stents has led us to adopt a ‘polymer-free’ approach which is cost effective and 
industrially scalable. In this study, 316L stainless steel substrates were surface modified by 
hydrothermal treatment in alkaline pH, with and without the addition of a chromium precursor, 
to generate a well adherent uniform nanotopography. The modified surfaces showed improved 
hemocompatibility and augmented endothelialization, while hindering the proliferation of 
smooth muscle cells. Moreover, they also exhibited superior material properties like corrosion 
resistance, surface integrity and reduced metal ion leaching. The combination of improved 
corrosion resistance and selective vascular cell viability provided by nanomodification can be 
successfully utilized to offer a cell-friendly solution to the inherent limitations pertinent to 
bare metallic stents. 
 
 

Introduction 
Austenitic Stainless Steel (SS) is widely employed biomaterial 
with applications in cardiovascular, orthopedic, dental, and 
craniofacial implants.1,2 However, bare metallic SS stents are 
afflicted by in situ corrosion, acute thrombosis and neointimal 
hyper proliferation, leading to in-stent restenosis and risk of 
myocardial infarction.3 Reports have shown that sub-lethal 
concentrations of metallic ions from corrosion products could 
exacerbate the pro-inflammatory and fibrotic reactions, leading 
to narrowing of the arterial lumen.4,5 In order to address the 
limitations of bare metallic stents (BMS), the scientific 
community offers various approaches such as coating with 
biocompatible materials like gold, diamond like carbon, silica 
and hydroxyapatite, surface immobilization of biological 
moieties like heparin as well as the use of biodegradable and 
drug eluting stents.6-9 Biological coatings are allied with 
inherent limitations of instability, leading to aberrant vascular 
healing.10 Biodegradable metallic stents such as those based on 
Mg or Fe undergo rapid degradation in physiological 
environment.11 This degradation causes tissue inflammation 
and loss of mechanical integrity, leading to a negative 
remodeling of the treated arteries, making these stents less 
viable for clinical use.12,13 Drug eluting stents (DES) are 
arguably the best feasible alternative to BMS. However, anti-
proliferative drugs employed in DES impede the recovery of a 
functional endothelium due to its cytotoxicity, resulting in 
delayed endothelialization, bare stent exposure and 
consequently late stent thrombosis.14 Moreover, the acute and 

delayed hypersensitivity due to polymeric delamination results 
in an additional risk to the outcome of DES implantation.15 For 
obtaining better in vivo response for BMS, ion implantation 
with metals like Ti and Ta has been adopted.16 These 
modifications impart improved corrosion resistance by 
providing a barrier metal oxide layer. However, the high energy 
ion bombardment could result in an increased surface damage 
and thereby higher probability of material failure.17 In recent 
years, nanotechnology has emerged as an innovative option by 
endorsing surface texturing for promoting application-specific 
cellular response.18 Previous research by our group has 
demonstrated the effectiveness of TiO2 nanostructures in 
promoting the growth of vascular endothelial cells, while 
hindering the over proliferation of smooth muscle cells and 
platelets in vitro.19 Likewise, these nanostructures also provided 
improved osteoblast response in vitro20 and in vivo.21 Moreover, 
nanostructuring of implant materials have also found to impart 
surfaces with superior electrochemical and mechanical 
properties, irrespective of the metallic substrate.22,23 Works 
carried out by Xhang and co-workers demonstrated enhanced 
corrosion behavior for nanocrystalline Zr compared to the 
microcrystalline form.24 
In the present study, we have adopted a cell-friendly approach 
of nanosurface modification of 316L SS to entail the dual 
features of non-destructive cellular modulation with superior 
corrosion resistance and stability through alkaline hydrothermal 
processing. The possibility of achieving higher chromium to 
iron (Cr/Fe) ratio on SS surface by hydrothermal processing 
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with and without the use of a chromium source has been 
explored for improved corrosion resistance and mechanical 
integrity. The influence of nanotexturing on hemocompatibility 
and vascular cell behavior was also assessed as a part of the 
biocompatibility evaluation. This study is a primary effort in 
exploring a simple thermo-chemical surface modification of SS 
for generating nanocrystalline structures for providing selective 
vascular cell response, to serve as a viable option for drug 
eluting strategies in coronary stenting. 

Experimental section 

Materials and methods 
 
Medical grade 316L stainless steel plates with composition 
(wt%) of 64% Fe, 17% Cr and 13.6% Ni as the major elements 
and diameter of 14 mm was purchased from M/s Jayon 
Surgicals Pvt Ltd, India. SiC paper of grit size ranging from 
120 to 1200 and alumina suspension of 1 and 0.05 microns used 
for polishing the plates was purchased from Buehler Inc. USA. 
Sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) used to 
make the Piranha solution was purchased from Merck India Pvt 
Ltd, India. Other chemicals used in the experiment include 
Sodium hydroxide (NaOH) (Extra pure, Sigma), Chromium 
Nitrate (Cr(NO3)3.9H2O) (Spectrochem Pvt Ltd, India), 
Ethylene glycol and Acetone (Merck Pvt Ltd, India). All 
chemicals were used as received, without any further 
purification. 

Pre-treatment of SS for hydrothermal reaction 
 
Prior to hydrothermal treatment, the SS samples were 
mechanically polished progressively using SiC papers (of grit 
sizes 600, 800 and 1200) and thereafter using alumina 
suspension of 1 and 0.05 microns in a polishing machine 
(Buehler Beta Grinder Polisher, USA). After each polishing 
step, the samples were ultrasonicated (Misonix Inc, USA) in 
acetone, followed by distilled water for typically 10 min. The 
cleaned and air dried samples were later subjected to piranha 
treatment (3:1 ratio of H2SO4:H2O2). This is to remove 
redundant organics and provide a very clean surface as well as 
to activate the surface prior to hydrothermal treatment.25 The 
piranha etched samples were washed thoroughly under 
ultrasonication in excess of milliQ water for 10 min and dried 
in a hot air oven set to 40°C. 

Preparation of chromium precursor 

In an attempt to surface modify SS with enriched Cr content, an 
approach of hydrothermal treatment in presence of a chromium 
precursor was adopted. For this, a chromium precursor complex 
which acts as a source for chromium oxide was prepared as 
follows.26 

 
2 Cr(NO3)3.9H2O + C2H6O2

130 OC

3 h
[Cr2(OH)2(C2H2O4)2] + 9H2O + 4NO2 + 2NO

 
 
The chromium precursor synthesis was carried out in a 3-
necked round bottom flask. Cr(NO3)3 (0.03 M) was completely 
dissolved in ethylene glycol (0.13 M) at a ratio of 2:1 under 
reflux condensation at 130°C for 3 h. The reaction product 
obtained after cooling was purified to remove all by-products 
by repeated washing with excess of acetone, filtered and dried 

at 60°C for 2 h in air and stored in hot air oven for further 
experiments. 

Hydrothermal treatment of pre-treated SS samples 
Hydrothermal treatment of pre-treated SS samples was carried 
out in an alkaline medium (pH ∼13) at varied conditions of 
temperature, molar concentration and reaction time in an 
indigenously fabricated high temperature furnace (Hi Heat 
Furnaces, Cochin) equipped with a programmable temperature 
controller (Shinko Technos Co., Ltd, Japan). Samples were 
immersed in 40 mL of NaOH solution (0.5, 1, 5, 10 M) taken in 
a teflon vessel and placed inside a stainless steel autoclave 
which was subjected to hydrothermal treatment (referred to as 
PHT) in a furnace under various temperature (150-500°C) and 
reaction time (2, 4, 5, 8, 9 and 12h). Likewise, hydrothermal 
processing of SS substrates was also carried out under same 
processing conditions with the addition of 0.001 wt% Cr 
precursor (referred to as PHT Cr). After the reaction, the 
samples were collected and sonicated for 10 min, washed and 
air dried. 

Characterization techniques 
 
The morphology of the treated samples was examined using 
scanning electron microscope (JEOL 6490L Analytical 
scanning electron microscope SEM, Japan). Energy dispersive 
analysis was performed to quantify the surface percentage 
composition using the EDAX attached to the SEM. XPS 
analyses (Axis Ultra DLD, Kratos Analyticals, UK) were 
carried out to assess the surface chemistry of the samples. 
Crystallinity was analyzed using an X-ray diffractometer 
(X’Pert Pro, PANalytical) fitted with a Cu Kα (λ = 1.541  Å) in 
the range 10° to 80° at a step size of 0.05°. The JCPDS 
database was utilized in phase identification. Surface roughness 
of the bare and nanomodified samples was analyzed by stylus 
profilometry using a surface profiler (Veeco Dektak 150 
Profiler, USA). By summing the deviations from the centerline 
and dividing the number of data points along a length of 500 
μm (n=5), the average roughness of the samples was 
determined and interpreted. 

In vitro corrosion studies  
 
Corrosion resistance of the two surface modified samples was 
analyzed in comparison to non-treated, control SS using an 
electrochemical work station (Autolab, Metrohm). Open circuit 
potential (OCP) analysis was done for 30 min in Phosphate 
Buffered Saline (PBS) at a pH of 7.4 to attain a steady state 
condition. Linear sweep voltammetry experiments were 
performed at a scan rate of 0.5 mVs−1 in PBS using an 
electrochemical cell, which consisted of a platinum counter 
electrode, and an Ag/AgCl reference electrode. The specimen 
area exposed to the electrolyte solution was 1 cm2 and the 
potential range was set between -1.0 and +1.0 V.27 The 
corrosion potential (Ecorr) and corrosion current density (icorr) 
were determined by Tafel extrapolation method using Tafel tool 
bar software in Origin Lab, version 9.28 
 
Static immersion tests for ion release analysis 
 
Surface modified SS samples were subjected to a static 
immersion test for ion release analysis in comparison to bare 
SS. The samples were immersed in a solution containing 10 mL 
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PBS maintained at pH 7.4, with 100  μL of antibiotic Pen Strep 
and kept in shaker incubator maintained at 37°C. The 
percentage of ion release was analyzed by inductively coupled 
plasma atomic emission spectroscopic (ICP-AES) analysis after 
1, 14, and 28 days to quantify the time dependent release of 
Ni2+, Cr2+ and Fe3+ ions from various samples.29 Untreated bare 
polished SS was maintained as the control, with a bare sample 
coated with the epoxy resin on both sides (to calculate any ion 
release from the resin) kept as the blank. 
 
Nanoindentation and nanoscratch analyses 
 
The hardness and modulus of elasticity of modified substrates 
were compared with respect to the bare polished SS substrate 
by a nanoindenter (TI-900, Hysitron Inc., USA) with a diamond 
Berkovich tip (200nm radius) using Oliver Pharr 
nanoindentation method with special load and displacement 
control properties. A constant load of 10 mN was retained for 
10 s and the corresponding load displacement curve was plotted 
to elucidate the mechanical properties of the samples.30

 The 
scratch resistance, integrity and average roughness of the 
modified surfaces were deduced from a nanoscratch test 
performed using the same nanoindenter. A progressive load of 
0.1 μN - 10 mN was applied to the sample and the scratch 
distance was set to 10 μm/min. The distance progressed by the 
tip without failure signifies the scratch resistance of the film. 
The load at which the failure occurred was determined from the 
plot of force vs displacement that corresponds to the ‘critical 
load’. 
 
Hemocompatibility studies  
 
To evaluate the blood compatibility of surface modified SS 
samples, interactions with various blood components were 
assessed. 30 mL of whole blood was drawn from healthy 
volunteers in sodium citrate containing vials. The samples were 
incubated with 2 mL whole blood for 1 h with mild shaking at 
37°C. Positive and negative controls were maintained for each 
of the experiments. 
 
Hemolysis assay 
 
The plasma hemolytic character of the modified substrates was 
analyzed spectrophotometrically (UV-1700, Shimadzu) with 
reference to unmodified SS as control by Soret band absorption 
of free hemoglobin at 415 nm. The whole blood after treatment 
with the substrates was centrifuged at 4500 rpm for 15 min and 
platelet poor plasma (PPP) was isolated. The absorbance of 
diluted PPP containing 0.01% sodium bicarbonate (1:10) was 
measured at 380, 415 and 450 nm. Plasma hemoglobin was 
estimated to calculate the percentage of hemolysis (Eq. 1) by 
the equation. 
 

(Eq 1) 
 
A represents the absorbance. A415 is the Soret band based 
absorption of hemoglobin, A380 and A450 are the correction 
factors applied for uroporphyrin, another pigment whose 
absorption falls in the same wavelength range. E is molar 
absorptivity value of oxyhemoglobin at 415 nm which is 79.46. 
1.655 is the correction factor applied due to the turbidity of 
plasma sample. The percentage hemolysis was calculated as: 

 

                       
0.9 % saline and 1% Triton X-100 served as negative and 
positive controls, respectively in this experiment.  
 
Coagulation studies  
 
To analyze if the surface modified samples induced any 
alterations in the blood coagulation profile, the samples were 
incubated with whole blood for 2 h. Post incubation, the blood 
was collected and centrifuged to extract PPP. This extract was 
employed in coagulation assays to assess the influence of the 
material in activating the extrinsic and intrinsic pathways of 
coagulation using the coagulation analyzer. Prothrombin time 
(PT), activated partial thromboplastin time (APTT) and 
thrombin time (TT) were measured using the reagent kits (STA 
Neoplastine CL, CK Prest and Thrombin Time) from 
Diagnostica Stago (France) following manufacturer’s protocol.  
 
Platelet aggregation 
 
Interactions of platelets with the modified substrates were 
studied using a platelet aggregation assay. Whole blood was 
incubated on the samples under static conditions at room 
temperature for 1 h. Post incubation, blood was collected and 
platelet count was analyzed using hematology analyzer (Cell 
Dyn 3700, Abbott, USA). PBS and adenosine dihydrogen 
phosphate (ADP) served as negative and positive controls, 
respectively. The platelet count values obtained were plotted.31 
 
Cell culture and cell viability assay 
 
Human umbilical vein endothelial cells (HUVEC) and Vascular 
smooth muscle cells (SMCs) were isolated from umbilical cord 
collected from voluntary donors with approval of the 
Institutional Ethical Committee of Amrita Institute of Medical 
Sciences, Kochi, adopting the protocol reported by Jaffe et al.32 
The cells used for the experiment were at the 3rd or 4th passage, 
maintained in Iscove's Modified Dulbecco's Media (IMDM) 
growth medium supplemented with 20% FBS and Endothelial 
cell growth supplement (ECGS, Sigma, USA) for their normal 
growth and viability. Similarly, smooth muscle cells were also 
cultured in platelet derived growth factor (PDGF) 
supplemented 20% IMDM growth medium upto 4th and 5th 
passage before being used for the experiments. Cell viability on 
nanomodified SS was assessed by Alamar Blue assay and 
compared with that of control polished bare SS. HUVEC cells 
were seeded on the SS plates at a density of 1.6×104 cells/ cm2. 
After incubation for the required study period of 24, 72 and 120 
h, SS samples were washed with PBS to remove non-adherent 
cells. The cells adherent on the substrate were incubated with 
Alamar blue (Invitrogen Life Sciences, USA) for 6 h and the 
color change was quantitatively recorded by measuring the 
optical density using a microplate spectrophotometer (Model: 
BioTek Powerwave XS, USA) at 570 nm, with 600 nm set as 
the reference wavelength. Similar study was done with SMCs at 
the same seeding density. All the experiments were done in 
triplicate. 
 
Cell Morphological analysis by fluorescent staining 
 
SS samples were cultured individually with HUVEC and SMCs 
at a cell density of 1.6×104cells/cm2 in 20% IMDM for a period 

)655.1(
1000)(2)/( 450380415

×
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of 5 days, followed by fixation in 4% paraformaldehyde in PBS 
for imaging. Consequently, the cells were permeabilized with 
0.5 % Triton X-100 in PBS for 5 min and the non-specific 
binding sites were blocked with 1% FBS in PBS for 15 min. 
Further, the cells were stained using Texas red conjugated 
Phalloidin (Molecular probes, Invitrogen Life Sciences, USA) 
for 60 min at room temperature to visualize the actin filament 
assembly. The samples were further counter stained with DAPI 
(Molecular probes, Invitrogen Life Sciences, USA) to image 
the nucleus. 
 
Statistical analysis 
 
All quantitative results were carried out in triplicates and are 
expressed as mean ± SD. The statistical analyses were 
performed using one-way ANOVA, followed by Tukey’s post-
hoc tests by means of OriginLab software, USA (OriginPro8). 
p<0.05 were considered statistically significant. *p<0.05 and 
**p<0.01 indicate statistical significance with respect to 
polished control SS. #p<0.05 and ##p<0.01 represent statistical 
significance between the two nanosurfaces compared, viz., PHT 
and PHT Cr  
 
Results and discussion  

Nanosurface modification of SS 
Hydrothermal technique has been established to create a highly 
crystalline surface texture at the nanoscale, with its architecture 
being dictated by the experimental parameters such as 
temperature, pH, time, etc. This technique involves the 
activation energy dependent dissolution, primary-secondary 
nucleation and diffusion controlled particle growth of the 
elements which are relatively insoluble under normal 
conditions.33 Our group has already proven that such a 
treatment in alkaline pH can induce nanotopographical 
alterations on metallic Ti, with temperature and concentration 
of NaOH being the key determinants.19 In this study, uniform 
nanostructures were developed on the surface of SS by direct 
hydrothermal technique under alkaline conditions as well as 
with the addition of a chromium precursor. Fig. 1A represents 
the SEM images of surface modified SS at different 
magnifications (Ai, Aii, Aiii) subsequent to direct hydrothermal 
processing in 0.5 M NaOH at 250°C for 5 h (PHT) depicting 
nanosized pyramidal structures having well defined faceted 
morphology.  

 
 

Fig.  1  SEM  of  surface modified  SS  samples  at  different magnifications  by  (A) 
direct hydrothermal treatment (PHT) and (B) in presence of chromium precursor 
(PHT Cr) 

 
Fig. 2 (A) XRD patterns of bare and modified SS samples with the representations 
implying  the  following: # ɣ(111), + ɣ(200) * Cr2O3  (113)and ¤ ɣ(220), €  α(110) 
and  (B)  Atomic  percentages  of  the major  elements  (Fe,  Cr,  Ni)  on  bare  and 
modified SS. 

 
Samples subjected to hydrothermal processing in NaOH under 
identical conditions, but with the addition of 0.001 wt% Cr 
precursor (PHT Cr) also revealed a dense, uniform nanotexture 
with submicron sized pyramidal structures as seen in Fig. 1B 
(Bi, Bii, Biii). The average roughness of the nanotextured oxide 
layer on SS deduced through surface profilometry was found to 
be 0.41 and 0.18 nm for PHT and PHT Cr, respectively. 
X-ray diffraction analysis was used to decipher the differences 
in crystallinity and phase change induced by nanotexturing of 
SS. As clearly evident from Fig. 2A, untreated bare SS depicted 
the characteristic peaks of face centered cubic γ-austenitic 
phases, viz.,(111), (200) and (220).34 Moreover, the body 
centered cubic (BCC) α-ferrite phase (110) is present adjacent 
to the γ-austenitic phase at a 2θ value of 44.5°. Upon direct 
hydrothermal treatment, the γ-austenitic phase (111) was 
intensified, while the BCC α-ferrite phase got diminished. 
Additionally, a new peak appeared at 35.5° which signify the 
development of the oxide phase of Cr, viz., Cr2O3. In contrast, 
PHT Cr samples showed a significantly reduced intensity for 
the γ-austenitic phase at (111) as well as the BCC α-ferrite 
phase, with the Cr2O3 peak retained at 35.5°.35 This clearly 
implies that hydrothermal treatment, both direct and precursor 
mediated, resulted in the formation of a chromium-rich oxide 
layer on SS, indicating the surface passivation of the modified 
samples.  
This was further substantiated with the composition analysis by 
EDAX. Table in Fig. 2B depicts the atomic percentages of the 
SS alloy components, viz., Cr, Fe and Ni, on bare and modified 
SS. As evident from the table, there is a significant 
improvement in the Cr/Fe ratio from 0.23 for bare SS to 0.31 
for PHT and 0.45 for PHT Cr samples. This enhanced Cr/Fe 
ratio for the precursor treated sample confirms the speculation 
that additional chromium fortifies the SS surface with a passive 
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Similar results on differential cell response for HUVECs and 
SMCs induced by nanotopography were observed by our own 
group on Ti surfaces as well, which was attributed to the 
differences in the focal adhesion mediated mechano-
transduction pathways.19 Mechanical stimulations perceived by 
focal adhesions formed by cells on nanosurfaces can trigger the 
nucleus directly or indirectly and thereby influence various 
cellular events such as proliferation, migration, gene expression 
etc.43,44 Ceylan et al observed analogous results by developing a 
bioactive stent coating capable of promoting endothelialization 
while restricting the viability of SMCs.45 Previous research by 
Webster et al has shown the enhanced endothelial cell function 
on rationally designed patterned titanium surfaces.46 There is 
also a strongly reinforced argument that cells such as SMCs 
respond more effectively to submicrometric than to nanometric 
surfaces.47 
Bare SS stents continue to be used ubiquitously, despite the 
issue of pitting corrosion which causes toxic metal ion release, 
induces platelet activation and smooth muscle cell over- 
proliferation leading to in-stent restenosis.48 Endothelial cells 
which form the innermost lining of arteries play a critical role 
in maintaining vascular hemostasis, controlling smooth muscle 
cell proliferation and platelet activity.49 Thus, a surface 
constructive to reestablishment of endothelium is the 
fundamental requirement for a vascular stent material.50 

Cell morphological analysis by fluorescence staining 
The morphology of HUVECs and SMCs after incubation on the 
modified surfaces was also analyzed by fluorescent staining 
(Fig. 10). Here again, substantiating the results of Alamar Blue 
assay, HUVEC cells showed prominent cell growth and 
spreading on the nanomodified samples (Fig. 10 Bi, Bii and Ci, 
Cii) in comparison to bare SS (Fig. 10 Ai, Aii) at days 3 and 5. 
In contrast, SMC growth was significantly diminished on 
modified SS surfaces (Fig. 10 Biii, Biv and Ciii, Civ), while 
retaining a proliferative growth on bare SS (Fig. 10 Aiii, Aiv). 
A material capable of promoting endothelialization while 
restricting the proliferation of SMCs, coupled with improved 
mechanical and corrosion attributes would be an ideal substrate 
for vascular applications. Together, our results indicate that the 
precursor mediated surface modified SS surface would be an 
appropriate candidate for further studies as a coronary stent 
material. 

 
Fig. 10 Fluorescence staining of Actin (red) and DAPI (blue) for HUVECs and SMCs 
proliferating on (A) bare SS, (B) PHT and (C) PHT Cr surfaces at days 3 and 5. 

A material capable of promoting endothelialization while 
restricting the proliferation of SMCs, coupled with improved 
mechanical and corrosion attributes would be an ideal substrate 
for vascular applications. Together, our results indicate that the 
precursor mediated surface modified SS surface would be an 
appropriate candidate for further studies as a coronary stent 
material. 

Conclusions 
The present study reports the development of an intrinsic, 
uniform nanotextured layer on SS substrates by simple 
oxidative processing using an alkaline hydrothermal technique 
in presence of a chromium precursor. The nanotopography was 
conducive in providing a surface milieu that selectively 
promoted endothelialization and hindered the over proliferation 
of SMCs and platelets. Moreover, it also provided improved 
corrosion resistance and mechanical stability, both of which are 
fundamental to the success of any metallic implant. These 
results provide exciting insights into the prospect of employing 
hydrothermal technique for nanosurface modifying SS stents. 
The dual triumph of improved corrosion resistance and 
selective vascular cell viability of the novel surfaces can be 
successfully maneuvered to provide a long term solution to the 
inherent problem of metal ion release and delayed 
endothelialization pertinent to bare metallic stents. 
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