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Fluidic Switching in Nanochannels for Control of 
Inchworm: A Synthetic Biomolecular Motor with a 
Power Stroke 

Cassandra S. Niman,a,b Martin J. Zuckermann,c Martina Balaz,a,b Jonas O. 
Tegenfeldt,a,b Paul M. G. Curmi,d,e Nancy R. Forde,c Heiner Linkea,b  

Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal 

motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to 

take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the 

nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA 

confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through 

externally controlled changes in salt concentration (changing the DNA’s extension), coordinated with 

ligand-gated binding of the DNA’s ends to the functionalized nanochannel surface. Brownian dynamics 

simulations predict that Inchworm’s stall force is determined by its entropic spring constant and is 

~ 0.1 pN. Operation of the motor requires periodic cycling of four different buffers surrounding the 

DNA inside a nanochannel, while keeping hydrodynamic load force on the DNA constant. We present a 

two-layer fluidic device incorporating 100 nm-radius nanochannels that are connected through a few-

nm-wide slit to a microfluidic system used for in-situ buffer exchanges, either diffusionally (zero flow) 

or with controlled hydrodynamic flow. Combining experiment with finite-element modeling, we 

demonstrate the device’s key performance features and experimentally establish achievable Inchworm 

stepping times on the order of seconds or faster. 

 
 

Introduction 

Molecular motors in living cells are multi-subunit protein 
assemblies that operate fundamentally differently from man-
made, macroscopic machines. First, because of their small size, 
they are subject to thermal fluctuations in potential and kinetic 
energy that are comparable to the energy turnover per cycle. 
Second, they convert chemical energy directly into mechanical 
energy, omitting heat as an intermediate energy form. They are 
thought to use chemical energy in a cyclic process that rectifies 
thermal motion in an effective free-energy landscape that may 
contain “downhill” stretches in space, sometimes referred to as 
power strokes.1,2 

The construction of synthetic molecular motors allows the 
study of the operational mechanisms of molecular motors in a 
controlled environment. A large number of approaches to 
synthetic motors or molecular-motor elements (such as 
switches and levers) have been realized, most based on small, 
synthetic organic molecules 3–6 or on DNA, exploiting the 
highly programmable nature of base-pair (bp) interactions. 7–13 
This includes a highly advanced synthetic, free-running motor 
based on single-stranded DNA.14 Recently, synthetic-motor 
concepts based protein and peptide modules have also been 

proposed 15,16 in an attempt to closer approximate natural 
protein motors. 

Essentially all existing synthetic motors function entirely 
diffusively in the sense that motor stepping is achieved by 
rectification of random, thermal motion. For example, DNA 
motors step by diffusing from one binding site to another, 
biased by different affinities to binding sites 7,8,17 , but in the 
absence of a long-range force that would direct the motor from 
one binding site to the next. For motors that step by diffusion, 
the step size is inherently limited to the order of tens of 
nanometers.  

Here, we propose a concept for a molecular motor, similar 
to that introduced in 18,19, that incorporates a pronounced power 
stroke that enables very large steps (~ micrometer scale) on a 
time scale of seconds with a finite stall force (0.1 pN). In this 
study we demonstrate and analyze the nanofluidic device 
needed to implement this motor. We name the proposed motor 
concept Inchworm. Inchworm (IW) is based on a several 
kbp-long, double-stranded DNA molecule confined into a 
nanochannel (NC) in an extended, quasi-linear conformation 
(Figure 1).20–23 A power stroke can be realized by changing the 
salt concentration in the NC, controlling the DNA’s persistence 
length by altering the electrostatic repulsion along its 
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In state III, [a+b; high salt] the A’ and B’ sequences are bound. 
In state IV, [a; low salt] the DNA elongates while remaining 
bound at the A’ end, leading to another shift in xCOM to position 
xIV. Cycling through states I-IV leads to repeated steps in the 
same direction, each step ∆xCOM =  xIV - x0 in length. By 
reversing the order (I-II-III-IV versus IV-III-II-I), IW’s 
direction of motion can be externally controlled. 
 
Results and Discussion 

Motor Model and Mechanism 

Brownian dynamics simulations show that the IW concept is 
feasible and reveal requirements to test IW performance 
experimentally. To simulate IW, we use a model based on the 
self-avoiding walk  (SAW) approach, with N = 81 monomers, 
yielding a polymer with a contour length of L = (N−1)lB, where 
lB = 100 nm is the polymer bond length, equal to about twice 
the persistence length of dsDNA (~50 nm in high salt). The 
Langevin method used to simulate the motion of the IW is 
formally identical to that used in 32. In brief, the dynamics of 
the polymer parts in their fluid environment, and thus the effect 
of thermal (Brownian) motion, were modeled using the 
overdamped Langevin equation, which includes a stochastic, 
thermal force term, and neglects inertial motion (see 
supplementary information for details).   

To model the effect of the NC, the IW polymer is 
confined in a hard-wall cylinder of diameter d, forcing the IW 
to assume a quasi-linear configuration (Figure 2 A). IW’s 
effective length is determined in the model by a bending 
energy potential VΘ , which controls the range of accessible 
angles between neighboring polymer bonds. When VΘ  = 0, the 
polymer is in a freely-jointed chain (FJC) configuration. As VΘ  

is increased (enforcing a straighter conformation between 
neighboring bonds, and simulating the effect of charge 
repulsion), the polymer becomes more elongated along the NC. 
Thus, VΘ = 0 corresponds to high salt (screened backbone 
charges, contracted DNA), and a finite VΘ corresponds to low 
salt (elongated DNA) (Figure 2 A). The specific parameter 
values used in this model are provided in the supplementary 
information (Table S1).  

The effect of thermal motion results in fluctuations in the 
effective length of the confined polymer, as shown in 
Figure 2 C (top panel) for state II and state IV. On average, the 
DNA has a length of 6.41 µm ± 0.16 µm in state II (contracted, 
high salt, VΘ  =0), and 7.10 µm ± 0.15 µm in state IV 
(elongated, VΘ  = 82 pN⋅nm). Thus, its extension changes by 
about 9% of its total contour length with the parameters used in 
this simulation, and IW demonstrates an average step size of 
0.7 µm. 

To allow the model IW to bind to the NC walls, binding 
sites representing repressor proteins A and B are randomly 
distributed on a square lattice of lattice constant bR = 8 nm 
placed on the wall of the cylindrical NC with 50 % of the sites 
vacant resulting in 7800 binding sites per square micron. 
Binding sites are modeled by localized potentials that can be 
activated or de-activated to model the presence or absence, 
respectively, of the corresponding ligand in the buffer. Binding 

is initiated when the appropriate end of the DNA diffuses 
within 3.45 nm of an activated binding site. The DNA unbinds 
when the binding site is de-activated to model a ligand 
exchange in the buffer. These results do not account for the 
DNA-protein binding kinetics, and spontaneous unbinding and 
re-binding will likely reduce IW performance. To reduce this a 
number of experimental parameters can be tuned, for example 
the addition of repeated binding sites at each end of the DNA, 
to improve experimental performance. 

Successful stepping of the model IW is shown in 
Figure 2 B, which shows the position of the front end of the 
polymer upon repeated cycling through states I – IV (each full 
cycle lasts 0.12 s). The front end fluctuates when it is not 
bound (state IV), is stationary when it is bound, and steps upon 
change in salt concentration while unbound (transition III –IV 
in Figure 1). The variation in step size is about 0.12 µm and is 
consistent with thermal fluctuations in the DNA extension, 
which are about 0.15 µm. When a larger d is used, the polymer 
explores more space in the radial direction, reducing the 
elongation in the axial direction, and the step size is decreased. 
When changes in salt concentration are omitted from the model 
(only protein-binding interactions are present without changes 
in VΘ) then, as expected, directional stepping ceases and the 
polymer effectively diffuses.  

We next investigated IW’s ability to operate against a 
load force, arising for example from an applied flow in the 
nanochannel. To simulate this, a rearward force, FM, was 
imposed on each monomer in the direction parallel to the NC, 
such that the total force on the motor is given by FR= N FM. 
With increasing load force, the motor’s step size becomes first 
smaller and then eventually negative, reversing motor direction 
(Figure 2 D). This process can be understood as the result of 
the competition between the polymer contraction and 
elongation expected due to changes in ionic strength on the one 
hand, and the flow-force-driven extension and contraction in 
state II and state IV, respectively, on the other hand. This is 
clearly seen in Figure 2 C where the top panel (zero load force) 
and bottom panel (maximum load force) show how at high 
load force, DNA is shorter in state IV, at low salt, than in state 
II at high salt, opposite to the salt-induced length differences 
under no load. At stall force (zero average step size) the 
distribution of DNA lengths is the same in state II and state IV 
(Figure 2 C, center panel). To reiterate, IW stall results from 
the balancing of salt-driven extension/contraction of the 
polymer and the counteracting flow driven 
contraction/extension in the nanochannel. In other words, IW’s 
stall force is given by the externally imposed compressive 
(extensive) flow force which exactly compensates the salt-
driven extensional (compressive) force.  

Based on this consideration, we can relate the expected 
stall force to the polymer’s, effective, entropic spring 
constant κ. From the thermal fluctuations of the DNA length, 
σth ≈ 0.16 µm (from Figure 2 C top panel), one can use the 
equipartition theorem (κ = kBT/σth

2 )23 to estimate, for the 
model, κ ≈ 0.16 pN µm-1 for N = 81 (contour length of 8 µm).  
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ionic strength and NC diameter, d.23 Using experimentally 
measured thermal fluctuations of lambda DNA (contour length 
of 22 µm) in a 100 nm channel (but for different ionic strength 
than used in the model)23, we estimate κ ≈ 0.01 pN µm-1 (see 
above). Rescaling based on the contour length alone; this 
predicts κ ≈ 0.03 pN µm-1 for DNA with 8 µm contour length, 
or about five times less stiff (lower entropic spring constant per 
monomer) than our modeled DNA. Thus, compared to the 
FR ≈ 0.4 pN observed for the stall force in our model 
(Figure 2 C, D), we expect a lower value by about a factor of 
five for experiment. However, this is a simplified comparison, 
and does not take into account the dependence of the spring 
constant on the DNA-excluded volume and effective 
persistence length, which change with the ionic strength in 
solution.23  

We can conclude that an estimated stall force of order 
Fstall = 0.1 pN is reasonable for IW. With step size of order 
∆xCOM = 1 µm, the work done per step, Fstall ∆xCOM ~ 
100 pN⋅nm ≈ 25kBT, is within the range of biological motors, 
which typically achieve 10kBT per step.33 A shorter DNA with 
a correspondingly larger spring constant would have a larger 
Fstall but also a smaller ∆xCOM, and we thus expect an 
approximately contour-length-independent work output. 

Device 

Device Design 

Based on the modeling results above and their comparison 
to existing experiments, we establish the following 
requirements for a nanofluidic device to control and 
characterize IW: the device needs to provide for (i) NCs of 
100–200 nm diameter to confine the DNA in quasi-linear 
conformation 20–25; (ii) the ability to switch the DNA’s 
chemical environment (buffer) in a specific, cyclical order 34,35; 
(iii) the ability to minimize or apply a defined, constant load 
force on the DNA (crucially, this means that buffer switching 
must be possible without use of hydrodynamic flow in the 
NCs), (iv) the ability to functionalize the NC’s inner walls for 
ligand-gated DNA binding, and (v) the capability to monitor 
IW in real time using epifluorescence microscopy. Importantly, 
such a device with the capability to independently control 
chemical environment and load force, combined with 
fluoresence microscopy, will be more generally useful for a 
wide range of single-molecule studies.  

Figure 3 gives an overview of the device we have 
developed to solve this challenge. We use a two-layered 
design. The bottom layer consists of a set of parallel NCs 
(300 µm-long half cylinders with radius 100 nm) that start and 
end at microfluidic side channels (Figure 3 A). The side 
channels are used to load the NCs with DNA, and for control 
of pressure along the NCs. The top layer (layout is shown in 
Figure 3 C) is a micofluidic system that runs on top of and 
orthogonal to the NCs, and that allows for cyclical fluid 
switching of the four needed buffer solutions. A key innovation 
is the design of the NCs with a very narrow (5-15 nm) top 
opening 34  that diffusionally connects the NCs to the center 

microfluidic channel above, allowing for switching ligands and 
salt via diffusion, in the absence of flow along the NCs.  

The NCs are made in optically transparent, fused silica, 
enabling epifluorescence imaging of the DNA from below, and 
allowing the use of common techniques for coating the inside 
of NCs with proteins or lipid bilayers.36,37 

The microfluidic top-layer is designed for switching 
between four fluids in arbitrary time sequence and works as 
follows (Figure 3 D). 34 There is an inlet/outlet pair for each of 
the four buffers to minimize diffusive mixing between 
switching events in the microfluidics. All four inlets are kept at 
a pressure above the outlets. To insert a specific fluid into the 
center channel one applies the highest pressure to that inlet 
relative to the other inlets. Fluids can be switched on a time 
scale of  0.1–1 s.34 

In order to be able to control the pressure drop along each 
NC, the device allows us to flow buffer through the side 
channels at the same time as through the center channels, for 
example to establish the same longitudinal pressure drops 
along center and side channels, eliminating any pressure drop 
along each NC. To simplify this, side channels and center 
channel are designed to have the same lateral dimensions and 
hydrodynamic resistance in the region where the nanochannels 
are connected. 

This device is designed to be operated in one of two 
modes, the force-free mode or the constant-force mode. In the 
force-free mode, where no hydrodynamic force is to be applied 
to the DNA, the DNA is to be positioned inside an NC 
underneath the main channel of the microfluidic top layer, and 
is connected to the main channel diffusionally through the 
NC’s very thin top slits, as illustrated in Figure 4 F. Finite 
element modeling, performed in COMSOL Multiphysics 38, 
shows that the concentration of small molecules equilibrates 
vertically between NC and microchannel within milliseconds, 
and that the maximum velocity in the NC induced by the 
constant fluid flow above the top slit is many orders of 
magnitude less than this average fluid flow speed (see 
supplementary  information on modeling details). The fluid 
switching time (and thus the maximal IW stepping time) in this 
mode is then determined by the microfluidics (on the order of 
seconds, see above and 34). 

In the constant-force mode, a constant hydrodynamic 
force is applied to the IW DNA while switching among states 
I-IV. To achieve this, the DNA is to be positioned in a NC in 
the area between the main channel and a side channel, as is 
illustrated in Figure 4 E, and a constant flow is applied to the 
NC once the DNA is bound to the NC wall. We used finite 
element modeling to establish the required pressures to be 
applied to the main and side channels to yield a given 
hydrodynamic flow in the NCs (see supplementary information 
for details). The pressure gradient in the micofluidic channels 
is illustrated in Figure S2 B for both force-free mode, where 
the pressure drop along the center and side channels is equal in 
the region of the NCs, and constant-force mode, where the side 
channels are held at a lower pressure relative to the center  
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Conclusion 

We have proposed a novel concept for an artificial, 
biomolecular motor that utilizes a pronounced power stroke 
and can take repeated, micron-sized steps with an expected 
stepping time on the order of seconds or better. Our 
simulations show that the motor’s stall force is of the order of 
0.1 pN, corresponding to hydrodynamic drag achievable by 
flow speeds of tens of µm s-1, or cargo transport of a 
micrometer-size bead at around 10 µm s-1. This makes IW 
amenable to real-time observation of linear stepping with 
simultaneous characterization of its ability to do work – neither 
of which has been achieved to date with artificial motors. The 
IW concept thus can be seen as a significant step forward in 
synthetic-motor design. 

Furthermore, we have designed, fabricated and tested a 
nanofluidic device, which meets all of the requirements to 
make and test IW. A key innovation is the use of a nanoscale 
topslit that connects our NCs to a separate microfluidic system. 
This device will permit us to not only observe DNA in NCs 
with different salt concentrations in real time, as has been 
achieved previously 25, but also to control the fluid flow at the 
level needed to measure force-velocity curves for IW, and even 
stop it, in the NCs. Furthermore, our microfluidic design 
allows the change between more than two solutions in arbitrary 
time sequence, making it possible to control both forward and 
rearward motion of IW. This design of a nanofluidic device is 
the main innovation needed to realize IW, with other essential 
steps (such as control of changes of DNA length in an NC with 
real time observation 25) achieved previously elsewhere. 

To complete the experimental realization of IW, as we 
have proposed it, the following needs to be done. The NCs 
need to be coated with randomly distributed, functional 
repressor proteins. We intend to use the larger opening to the 
NC connected to the side channels in the microfluidics to flow 
the proteins to the inner NC walls using external pressure. 
Functionalization can be achieved, for example, by linking 
biotinylated repressors via streptavidin to biotinylated BSA 46 
or a biotinylated lipid bilayer 36. IW DNA is then to be 
introduced into the NC via overpressure or electrophoresis as is 
commonly done.20,24 Orientation of the DNA can be 
accomplished with the addition of a loading chamber, where 
one end of the DNA can be bound forcing the free end to enter 
the nanochannel first when the bound end is released. To test 
IW without load force, the DNA will be positioned just below 
the center microfluidic channel (force-free mode, Figure 4 E), 
keeping the side channels at an appropriate pressure to 
minimize flow in the NCs. Switching from state I to IV or from 
IV to I it should be possible to make IW walk in either 
direction. Because the steps predicted here are large, only a 
few steps are needed to verify IW movement. To test IW 
performance against a load force, the DNA can be moved 
within the NC to a position in between the center channel and 
side channel (constant-force mode, Figure 4 E) where we can 
control the fluid flow to the degree necessary (a few µm s-1 up 
to tens of µm s-2 or more), as we have demonstrated above.  

The fluidics device presented here has many uses outside 
of the IW motor. For example, the ability to change solutions 
in a NC and observe changes in real time without inducing a 
drag force on the DNA can be useful for further studies of 
DNA, including melt mapping for genomics. 47 It is also 
amenable to single-molecule studies where one would like to, 
for example, observe protein motors moving along DNA, now 
without an external force acting on the protein.34,48,49 Where 
protein movement is studied without external force, this device 
gives the ability to change chemical environment unlike 
standard techniques.49,50 Furthermore, NCs of diameter 
≈ 100 nm can be used to study actomyosin motility in a 3D 
configuration similar to that in the sarcomere (and unlike the 
planar configuration of traditional motility assays), as recently 
demonstrated in hollow nanowires.51 Using NCs with open top 
slits will allow for continuous ATP supply along long channels 
52,53, including the capability to turn motors on and off. 
Switchable motility in long NCs may also be useful for 
improved biocomputation devices based on motility assays, for 
example to introduce local, chemical gating.54 

 

Experimental Section 

Device Fabrication 

Nanochannel fabrication 

NCs were made as in 53, in quartz, 1” x 1” fused silica 
substrates with a thickness of 500 µm (Structure Probes Inc. 
Supplies, PA, USA). To clean the quartz before fabrication we 
rinsed the quartz in running MilliQ water for 10 min, then 
placed the quartz in RCA1: 70% MilliQ, 15% NH3 (> 25% in 
water solution) (VWR, PA, USA), and 15% H2O2 (>30%) 
(VWR, PA, USA) heated to 70-80 ºC, adding the H2O2 just 
before the quartz was added. The quartz was then rinsed in 
running MilliQ water for 10 min, then placed in RCA2: 70% 
MilliQ water, 15% HCl (>37%) (VWR, PA, USA), and 15% 
H2O2 (>30%) heated up to 70-80 ºC, adding the H2O2 just 
before the quartz was added. The quartz was rinsed in running 
MilliQ water for 10 min, and then dried in N2.  

A 30 nm-thick layer of silicon was evaporated onto the 
quartz via thermal evaporation (Pfeiffer Classic 500L, Pfeiffer 
Vacuum, Asslar, Germany). About 10 nm of the silicon layer 
on quartz was oxidized with O2 gas flow 1501 h-1 at 1000 ºC 
for 5 min (Rapid Thermal Process Oven 1200, UniTemp, 
Pfaffenhofen, Germany). Quartz was cleaned in acetone 
(VWR, PA, USA) then isopropanol (VWR, PA, USA) in an 
ultrasonic bath for 5 min each, dried in N2 and exposed to 
oxygen plasma for 90 s (Plasma-Preen, Plasmonic Systems, 
Inc., NJ, USA).  

To prepare for patterning we spin-coated with a mixture 
of ZEP520A7:anisol, 1:1 (Zeon Corporation, KY, USA) at 
3000 rpm for 60 s and baked it on a hot place at 180 ºC for 60 s 
resulting in a resist layer of 110 nm. To create a conductive 
layer we spin-coated with Espacer 300z (Showa Denko, 
Tokyo, Japan) at 2000 rpm for 60 s and baked it on a hot plate 
at 80 ºC for 60 s resulting in a 20 nm layer of Espacer. To 
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syringe filter (VWR, PA, USA). The fluorescein in the micro- 
and nanochannels was imaged through the bottom of the quartz 
substrate using an inverted Nikon Eclipse TE2000-U 
microscope using epifluorescence (Nikon Corporations, 
Tokyo, Japan) with either a 4x Plan Fluor objective or a 60x 
Plan Fluor water immersion objective (Nikon Corporations, 
Tokyo, Japan). All measurements were performed at room 
temperature. The detector used was an Andor iXon-EM+ 
camera, model DU-897D (Andor Technology, Belfast, 
Northern Ireland), and the light source was the Lumen 200 
(Prior Scientific Inc., Rockland, MA, USA).  

Fluidics Simulations 

Two finite element simulations in COMSOL Multiphysics 
(COMSOL AB, Stockholm, Sweden) were performed to better 
understand the two-layer fluidic system.38 In both simulations 
we used the function for “laminar flow” and “transport of a 
dilute species”. We assume the diluted solute does not 
influence the viscosity or density of the fluid and this does not 
take into account particle-particle-hindered diffusivity. The 
material in the channel was set to have the viscosity and 
density of water. The sidewalls were defined by no-slip 
boundaries with no flux. Inlets were given the appropriate 
pressure relative to the outlets, set at 0 mbar. Some inlets were 
also set to have fluid entering with a solute with 
D = 4.9·10-10 m2 s-1 (fluorescein).42 
The first simulation of the microfluidic channels was done in 
2D using the shallow channel approximation of 50 µm, shown 
in Figure 7 and Figure S2 A. The geometry was imported from 
the UV mask design file. The inlet pressures on the inlets of 
the two inlet/outlet pairs of the center channel are 47 mbar and 
35 mbar, and the concentration of the solute is 0 mM and 
1 mM respectively to simulate fluorescein, used 
experimentally. The side channels have inlet pressures of 25 
mbar in one simulation and 5 mbar in the other, results in 
Figure S2 B show top and bottom respectively, and both have 
solute concentration of 0 mM. The stationary solution using 
“laminar flow” and “transport of a dilute species” agree with 
experimental observation and are further discussed in the 
supplementary information.  
The second simulation, of a cross section of the NCs with a 
large microfluidic channel above, was done in 2D. The 
geometry of the channel is illustrated in Figure S3. For the 
second simulation we used a stationary solution for the 
“laminar flow”, and a second time-dependent solution using 
the velocity field from the first solution as the initial 
conditions. The time-dependent solution was solved with both 
“laminar flow” as well as “transport of diluted species.”  The 
left side of the large microfluidic channel is an inlet with a 
pressure 0.26 mbar and solute concentration 1mM. The top 
boundary is set to be mirrored and the right most boundary is 
an outlet. Both the velocity profile of the fluid, results shown 
in Figure S3, and the concentration of the fluid in the channel, 
shown in Figure S4, are discussed further in the supplementary 
information.  
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