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Elastic limit of silicane

Qing Peng ∗ and Suvranu De

Silicane is a fully hydrogenated silicene–a counterpart of graphene–having promising applications in hydrogen storage with

capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties

by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on

density functional theory. We illustrate that non-linear elastic behavior is prominent in the two-dimensional nanomaterials as

opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag,

and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness

and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect

on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear

elastic response. The limitation of second, third, fourth, and fifth order elastics are in strain range of 0.02, 0.08, and 0.13, and

0.21, respectively. The pressure effect on the second order elastic constants and Poisson’s ratio were predicted from the third

order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions

and properties of silicane monolayers.

1 INTRODUCTION

As the silicon-based counterpart of graphene, silicene gives

rise to intense interest due to the promise of an easily im-

plemented way to improve the performance and scalability of

electronic silicon devices without departure from the silicon-

based status quo, which is a crucial advantage and a large cost

reduction1–9. The fully saturated hydrogenation of silicene,

so-called “silicane” (Fig. 1), is a subject of interest in the

field of modern silicon based nanotechnology in addition to

the field of hydrogen storage. For example, high hydrogen ca-

pacities of Li-decorated (6.3 wt%10,11) and K-decorated (6.13

wt%12) silicane have been reported very recently, in excess of

6 wt%, the U. S. Department of Energy target.

Despite studies on the structural, electronic, magnetic, and

optical properties of silicane12–24, as well as its applica-

tions10,12, there are questions which are still not answered:

What is the elastic limit of silicane? What are nonlinear elas-

tic properties? The answers to these questions are critical in

designing parts or structures with this advanced material, as

well as in regarding their practical applications. Knowledge

of the elastic limit can be served as a guide, for example,

in strain engineering, which is a common and important ap-

proach to tailor the functions and properties of nanomateri-

als17,23,25–27. The non-linear elastic properties are indispens-

able because these 2D materials are vulnerable to strain with

or without intent due to their monatomic thickness. For in-

stance, there are strains caused by the mismatch of lattices or

surface corrugation due to the presence of a substrate.

It is generally accepted that the armchair-like structure of

silicane is the most energetically favorable and thus the most
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Fig. 1 Configurations of silicane. a Silicane plane. b Hexagonal

rings tilt and cside views. d Conventional unit cell and simulation

box. e Orientations and directions of simulation cells.
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stable configuration14,21. Opposite to the zero band gap of sil-

icene, silicane has a large band gap of 4.0 eV13,15,16,21 which

is indirect at zero strain, transforming to direct under a linear

strain of 0.0526, then disappearing beyond a strain of 0.217,26.

The in-plane stiffness and Poisson ratio are predicted as 52.55

N/m and 0.24, respectively17, as well as their chirality depen-

dence26. The tunable gaps and enhanced mobilities in strain-

engineered silicane are also reported27. However, the higher

order elastic constants of silicane, which describe the non-

linear behaviors, have not been studied. Higher order elas-

tic constants are important quantities28 and can be determined

by measuring the changes of sound velocities under the ap-

plication of hydrostatic and uniaxial stresses29. The higher

order elastic constants can be utilized to study the nonlinear

elasticity, thermal expansion (through the gruneisen parame-

ter), temperature dependence of elastic constants, harmonic

generation, phonon-phonon interactions, photon-phonon in-

teractions, lattice defects, phase transitions, echo phenomena,

strain softening, and so on30.

The goal of this paper is to study the elastic limit and non-

linear mechanical properties of silicane, and find an accurate

continuum description of the elastic properties from ab ini-

tio density functional theory calculations. The mechanical

response and the elastic limits including ultimate strengths

and ultimate strains were studied under varies strains. The

high order elastic constants up to fifth order were obtained by

fitting the stress-strain curves to analytical stress-strain rela-

tionships. Moreover, the pressure effect on the second order

elastic constants, in-plane stiffness, and Poisson ratio, are pre-

dicted. Our continuum formulation results are useful in finite

element modeling of the mechanical properties of silicane at

the continuum level because our results of ideal strengths pro-

vide an upper limit of the strength at macroscopic scale which

might contain defects. In addition, modeling defect-free sys-

tems at the continuum level is also a practical and interesting

topic since such kinds of defect-free materials were reported

in large scale in the nanoindentation experiments31.

2 COMPUTATIONAL METHOD

We consider a conventional cell (
√

3×
√

3 cell) which con-

tains 12 atoms (6 silicon atoms and 6 hydrogen atoms) for sil-

icane (Fig. 1) with periodic boundary conditions. Such a con-

ventional unit cell is chosen to capture the “soft mode”, which

is a particular normal mode exhibiting an anomalous reduc-

tion in its characteristic frequency and leading to mechanical

instability32. This soft mode is a key factor in limiting the

strength of monolayer materials that can only be captured in

unit cells with hexagonal rings32.

The total energies of the system, forces on each atom,

stresses, and stress-strain relationships under the desired de-

formation configurations are characterized via first-principles

calculations based on density-functional theory (DFT). DFT

calculations were carried out with the Vienna Ab-initio Sim-

ulation Package (VASP)33 which is based on the Kohn-Sham

Density Functional Theory with the generalized gradient ap-

proximations as parameterized by Perdew, Burke and Ernz-

erhof (PBE) for exchange-correlation functions34. The elec-

trons explicitly included in the calculations are the (3s23p2)

electrons. The core electrons (1s22s22p6) are replaced by the

projector augmented wave (PAW) and pseudo-potential ap-

proach35. A plane-wave basis set with kinetic-energy cutoff

of 600 eV is used in all the calculations. The calculations are

performed at zero temperature. The criterion to stop the re-

laxation of the electronic degrees of freedom is set by requir-

ing the total energy change to be smaller than 10−6 eV. The

optimized atomic geometry was achieved through minimizing

Hellmann-Feynman forces acting on each atom until the max-

imum forces on the ions were smaller than 0.001 eV/Å. The

atomic structures of all the deformed and undeformed config-

urations are obtained by fully relaxing atoms in the unit-cells.

The irreducible Brillouin Zone was sampled with a Gamma-

centered 15× 15× 1 k-mesh. Such a large k-mesh was used

to reduce the numerical errors caused by the strain of the sys-

tems. The initial charge densities were taken as a superposi-

tion of atomic charge densities. There was a 20 Å thick vac-

uum region to reduce the inter-layer interaction to model the

single layer system. To eliminate the artificial effect of the

out-of-plane thickness of the simulation box on the stress, we

used the second Piola-Kirchhoff (P-K) stress36 to express the

2D forces per length with units of N/m. The Lagrangian strain

is used in this study, defined as η = ε +1/2ε2, where ε is the

stretch ratio36. When the strains are applied, all the atoms are

allowed full freedom of motion. A quasi-Newton algorithm is

used to relax all atoms into equilibrium positions within the

deformed unit cell that yields the minimum total energy for

the imposed strain state of the super cell.

For a general deformation state, the number of independent

components of the second, third, fourth, and fifth order elastic

tensors is 21, 56, 126, and 252, respectively. However, only

fourteen independent elastic constants need to be explicitly

considered due to the symmetries of the atomic lattice point

group D6h, which consists of a six-fold rotational axis and six

mirror planes37. The fourteen independent elastic constants

of silicane are determined by a least-squares fit to the stress-

strain results from DFT calculations in two steps, detailed in

our previous work36, which have been well used to explore

the mechanical properties of 2D materials38–43. A brief intro-

duction is that, in the first step, we use a least-squares fit of

five stress-strain responses. Five relationships between stress

and strain are necessary because there are five independent

fifth-order elastic constants (FFOEC). We obtain the stress-

strain relationships by simulating the following deformation

states: uniaxial strain in the zigzag direction (zigzag); uniax-
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ial strain in the armchair direction (armchair); and equibiaxial

strain (biaxial). From the first step, the components of the

second-order elastic constants (SOEC), the third-order elas-

tic constants (TOEC), and the fourth-order elastic constants

(FOEC) are over-determined (i.e, the number of linearly inde-

pendent variables are greater than the number of constrains),

and the fifth-order elastic constants are well-determined (the

number of linearly independent variables are equal to the num-

ber of constrains). Under such circumstances, the second step

is needed: least-square solution to these over- and well- deter-

mined linear equations.

3 RESULTS AND ANALYSIS

3.1 Atomic structure

We first optimized our system to determine the equilibrium

lattice constants for silicane. The total energy as a function

of lattice spacing is obtained by specifying seven lattice con-

stants varying from 3.6 Å to 4.2 Å , with full relaxations of

all the atoms. A least-square fit of the energies versus lat-

tice constants with a fourth-order polynomial function yields

the equilibrium lattice constant as a=3.89 Å , with Si-Si bond

lengths of 2.36 Å , a little bit larger than twice the covalent

bond length of silicon of 1.11 Å 48. This most energetically

favorable structure is set as the strain-free structure.

Our result of the structure of the conventional cell of the

chair-like configuration of silicane is shown in Fig. 1. For a

comparison of the buckling behaviors among different atomic

monolayer structures, we define a dimensionless parameter

buckling roughness ρb =∆/a as the ratio of the bucking height

∆ to its spacial frequency (lattice constant a here). The ge-

ometry parameters including the lattice constant a, charac-

teristic bond length Si-Si and Si-H, sheet buckling height ∆,

bond angle Si-Si-Si β and Si-Si-H γ , buckling roughness ρb

of Silicane, as well as those of silicene and the counterparts

of graphane are summarized in Table 1, agreeing well with

previous theoretical and experimental results.

In reference to silicene which is low buckled5,49, the Si-Si

bonds in silicane are stretched by a factor of 3.5% while the

lattice constant a only increases 0.5%. This indicates that the

hydrogenation of silicene has little effect on its in-plane struc-

ture. It is not surprising that the silicane structure is similar

to the silicene since the silicon atoms have the same type of

(sp3) bonds. The Si-H bonds are perpendicular to the silicon

planes (Fig. 1 c) with an effort pulling the silicon atoms out

of plane. As a result the buckling height ∆ increases greatly

by 60%. Compared to graphane, the bond length of Si-Si is

2.36 Å , 1.53 times of that of C-C bond. Interestingly, the dif-

ferences of bond angles are less than 0.4% despite the large

difference in bond lengths and buckling heights. This is a

combined effect of their sp3 bond type and the hydrogena-

Fig. 2 Phonon dispersion curve The calculated phonon dispersion

curves of silicane monolayers at zero temperature and strain-free

state.

tion. Furthermore, by introducing the dimensionless parame-

ter buckling roughness ρb, the silicane atomic structures have

the high similarities characterized by ρb (Table 1).

3.2 Phonon dispersion curve

The dynamical instabilities of a crystal is in general observed

through phonon dispersion curves. Our phonon dispersion

curves are obtained from density functional perturbation the-

ory calculations implemented in Quantum Espresso50. The

PAW-PBE pseudo-potentials with kinetic-energy cutoff of 60

Ry (816 eV) for wave-functions is used in this phonon calcu-

lations. The kinetic energy cutoff for charge density is 240 Ry

(3264 eV). The k-point grid and q-points grid are 24×24×1

and 8 × 8 × 1, respectively. The calculated phonon disper-

sion curves of silicane monolayers at zero temperature are dis-

played in Fig. 2.

There is no soft modes, or negative frequencies, in the

phonon dispersion curves along any high-symmetry direction

of the Brillouin zone, which indicates that silicane monolayers

are dynamically stable at the ground state. The three acous-

tic phonon bands (blue lines) reflect the long-wave phase mo-

tions. They are longitudinal acoustic (LA), transverse acoustic

(TA), and flexural acoustic (ZA) modes in the bottom panel
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Table 1 Geometry parameters The lattice constant a, characteristic bond length Si-Si and Si-H, sheet buckling height ∆, bond angle Si-Si-Si

β and Si-Si-H γ , buckling roughness ρb of Silicane from our DFT calculations, compared with previous DFT calculations and experimental

results, as well as those of silicene and the counterparts of graphane. All lengths are in Åand angles in degrees.

Silicane Calculationsa Experiments Silicened Graphanee

a 3.89 2.82-3.97 3.8-4.1b 3.87 2.54

Si−Si 2.36 2.32-2.39 2.35c 2.28 1.54 f

Si−H 1.50 1.50-1.52 1.15c 1.11g

∆ 0.72 0.69-0.72 0.45 0.46

β 111.1 110.5-111.6 116.1 111.5

γ 107.7 107.3

ρb 0.185 0.18-0.24 0.116 0.181
a Ref.12–22,24; b Ref.44,45; c Ref.46; d Ref.5; e Ref.47; f C−C; g C−H;

of Fig. 2. These three bands show a linear dependence on

the wave vectors around the zone center (Γ points). There

are three optical phonon modes which are similar curves with

higher frequencies referring to silicene51 are longitudinal op-

tical (LO), transverse optical (TO), and flexural optical (ZO)

modes in the middle panel of Fig. 2. There are two stretch-

ing phonon modes along the out-of-plane direction: one is

symmetric (ZS) and the other is anti-symmetric (ZS*), shown

in the top panel. The rest four phonon modes are related to

the bending, divided into two groups (symmetrical and anti-

symmetrical) for two directions (longitudinal and transverse),

as symmetrical longitudinal bending (LB), symmetrical trans-

verse bending (TB), anti-symmetrical longitudinal bending

(LB*), and anti-symmetrical transverse bending (TB*). Our

results agrees with previous prediction well52.

3.3 Strain Energy

We applied the strains in three deformation modes, namely

armchair for uniaxial strain along the armchair direction,

zigzag for uniaxial strain along the zigzag direction, and bi-

axial for biaxial strains in both directions. We studied both

compressive (negative) and tensile (positive) strains in range

of -0.1 to 0.4 with an increment of 0.01 in each step. Such an

asymmetrical strain range is selected according to the asym-

metrical mechanical responses to the tensile and compressive

strains, as demonstrated in the next subsection. It is worth

noting that in general the compressive strains will cause rip-

pling of the free-standing thin films, membranes, plates, and

nanosheets53. Take graphene as an example. The critical

compressive strain for rippling instability is much less than

the critical tensile strain for fracture, for example, 0.0001%

versus 2% in graphene sheets54. However, the rippling can

be suppressed by applying constraints, such as embedding

(0.7% )55, substrate (0.4% before heating)56, thermal cycling

on SiO2 substrate (0.05%)57 and BN substrate (0.6%)58, and

sandwiching59. Our study of compressive strains is important

Fig. 3 Energy-strain responses. The strain energy per Si-H pair as

a function of Lagrangian strain 36 η under uniaxial deformations

along armchair (armchair) and zigzag (zigzag) directions, and

biaxial deformation along both directions (biaxial) for both

compression (η < 0) and tension (η > 0) in a silicane monolayer.
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in understanding the mechanics of these non-rippling applica-

tions.

Here we define the strain energy per silicon atom as Es =
(Etot − E0)/n, where Etot is the total energy of the strained

system, E0 is the total energy of the strain-free system, and

n = 6 is the number of silicon atoms in the unit cell. Overall,

Es is non-symmetrical for compression (η < 0) and tension

(η > 0) for all three modes. This non-symmetry indicates the

anharmonicity of the silicane structures. It is also shown that

Es is isotropic in uniaxial tensile strains up to 0.3. In addition,

the Es describes the potential energy profile as a well with a

large depth , indicating a wide stable region for the silicane

monolayer under various strains.

The strain energy variation with respect to strain (Fig. 3)

displays linear elastic, non-linear elastic, plastic, and failure

regions. In the linear elastic region, the Es is a quadratic func-

tion of applied strain. The stresses are derivatives of the strain

energies with strains. As a result, the stresses are proportional

to strains in this region. This linear elastic region is small,

−0.02 < η < 0.02, compared to ultimate strains of silicane

monolayers discussed later. In the non-linear elastic region,

the linear stress-strain relationship is invalid and higher order

terms are not negligible. The Es is a higher order (anharmonic)

function of applied strains. Such region is still considered

elastic because when the applied strains are removed, the sys-

tem will return to the reference equilibrium state of E0 since

there are no defects in the system. However, with larger load-

ing of strains, the systems will undergo irreversible structural

changes, and then fail. The maximum strain in the non-linear

elastic region is defined as critical strain. Under armchair de-

formation of a silicane monolayer, the critical strain is 0.33

(Fig. 3), larger than that of silicene (0.30). The critical strains

were not spotted in the testing range for both materials under

zigzag and biaxial deformations.

3.4 Stress-strain curves

The second Piola-Kirchhoff (P-K) stresses were calculated

within the frame of density functional theory at prescribed

strains36 and were plotted in Fig. 4 for uniaxial strains along

the armchair and zigzag directions as well as the biaxial

strains. The ultimate strength is defined as the maximum stress

that a material can withstand while being stretched, which can

be read from the stress-strain curves. The corresponding strain

to the ultimate stress is the ultimate strain. The critical strain

is larger than the ultimate strain under ideal conditions with-

out defects and thermal vibrations. In other words, the sys-

tems of perfect silicane beyond ultimate strains are in a meta-

stable state, which might be easily destroyed by factors in-

cluding long wavelength perturbations, vacancy defects, and

high temperature effects60. As a result, only the data within

the ultimate strain has physical meaning, which we used in

determining the high order elastic constants in the following

subsection. The ultimate strains are still very important be-

cause they reflect the intrinsic bonding strengths. They are

also useful since they act as a lower limit of the critical strain.

Therefore they have practical meanings in consideration for

the applications of silicane.

Table 2 Ultimate strengths Ultimate stresses (Σa
u,Σz

u,Σb
u), ultimate

strains (ηa
u , ηz

u, ηb
u ), and Young’s modulus (Y a,Y z,Y b) under

uniaxial strain (armchair and zigzag) and biaxial of silicane from

DFT calculations, compared with silicene and graphane.

Silicane Calc.a Siliceneb graphanec

Y a (N/m) 56.37 54.8

Σa
u(N/m) 5.8 7.3 6.0 18.9

ηa
u 0.22 0.23 0.17 0.17

Y z (N/m) 56.17 54.5

Σz
u(N/m) 6.0 7.93 5.9 21.4

ηz
u 0.28 0.25 0.21 0.25

Y b (N/m) 69.43

Σb
u(N/m) 5.7 6.2 20.8

ηb
u 0.21 0.17 0.23

a Previous DFT study in Ref.17

b Low-buckling configuration in Ref.5

c Ref.47

Our results of the ultimate strengths and ultimate strains are

summarized in Table 2, compared with those of silicene and

graphane. All three materials behave in an asymmetric man-

ner with respect to compressive and tensile strains. The com-

pressive strains cause a more severe increase of stresses than

tensile strains. Specifically, the stress applied on silicene is -

10 N/m when a biaxial strain of -0.1 is applied (Fig. 4), whose

magnitude is more than double of that at strain 0.1 (4.2 N/m),

and about the twice of the ultimate strength of the material

(5.7 N/m). We noticed that the large negative strains beyond

-0.1 will cause unphysically large stresses. Consequently, we

did not consider the compressive strains larger than 0.1 in this

study.

Under tensile strains, the Si-Si bonds are stretched. With

the increase of the bond lengths, the bonds are weakened, and

eventually rupture. Such behaviors also have a direction de-

pendent association with applied strains. When the strain is

applied in the armchair direction, the bonds of those parallel

in this direction are more severely stretched than those in other

directions. The Si-H bonds are not affected since they are per-

pendicular to the strains. When the strain is applied along the

zigzag direction, which is perpendicular to the armchair, there

is no bond parallel to this direction, but instead inclined or

perpendicular. The bonds at an incline to the zigzag direction

are more severely stretched than those in the armchair direc-

tion. Under the ultimate strain, which is 0.28, the bonds at an
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Fig. 4 Stress-strain responses. The stress-strain responses of a silicane monolayers compared to b silicene monolayers 5 under the armchair

(top), zigzag (middle), and biaxial (bottom) strains. Σ1 (Σ2) denotes the x (y) component of stress. “Cont” stands for the fitting of DFT

calculations (“DFT”) to continuum elastic theory. The linear elastic and non-linear elastic regions are within the elastic limit defined by

ultimate strains. The systems under strains beyond the elastic limits are unstable. The strain limits of silicane are 0.22, 0.28, and 0.21 for

armchair, zigzag, and biaxial deformations, respectively, with the stress limits of 5.8, 6.0, and 5.7 N/m respectively.
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incline to the armchair direction are observed to be ruptured

(Fig. 4 middle). Under the ultimate strain in biaxial deforma-

tion which is ηb
m=0.21, all the Si-Si bonds are observed to be

ruptured. This directional dependance of the ultimate strains

reflect the chirality effects. Typically for a hexagonal lat-

tice structure, zigzag direction tensile test can withstand more

loading than armchair direction tensile test due to the chirality

effects of both the bond angle variation and the bond length

extension, which leads bond rotation in addition to elongation

in the zigzag direction61,62. Our results of the chirality depen-

dent mechanical properties agree well with the general trend

as well as previous study in silicane nanoribbons26.

Compared to silicene, the stress-strain responses show that

all the ultimate tensile strengths (Σa
u,Σz

u,Σb
u) of silicane are very

close to those of silicene, indicating that the hydrogenation

from silicene to silicane has little effect on its ultimate ten-

sile strengths. On the contrary, the ultimate strains increase

by 29%, 33%, and 24% under armchair, zigzag, and biaxial

deformations, respectively. Such an increase of the ultimate

strains are due to the increase of the roughness of 59% of the

hydrogenation.

It is worth noting that by applying the periodic boundary

conditions for simulation boxes in size of nanometers, our

model represents an infinite plane of silicane without any de-

fect, which may not be materialized in practice. However, our

results can serve as an upper limit of the nanoribbons of sili-

cane in a real application.

3.5 Elastic Constants

The elastic constants play a central role in representing the

mechanical properties of a material. In this study, the elas-

tic constants, including high order elastic constants, were ob-

tained from the stress-strain curves within the elastic regions

(Fig. 4) by linkage between the elastic theory and the atomistic

model. Based on the precise ab initio density functional the-

ory calculations, our results of these elastic constants provide

an accurate continuum description of the elastic properties of

silicane, which are suitable for incorporation into numerical

methods such as the finite element technique for macro scale

modeling. We classified the elastic constants into second and

higher order (> 2) elastic constants according to their linear-

ity. The second order elastic constants model the linear elastic

response while the higher order elastic constants are important

to characterize the nonlinear elastic response. All the elastic

constants up to 5th order are summarized in Table 3, com-

pared with those values of silicene and graphane.

The in-plane stiffness Ys is an important parameter in mea-

suring a monolayer’s strength. The Poisson ratio which is

defined as the negative ratio of transverse to axial strain of

the monolayer is also an important quantity for its mechan-

ical properties. The in-plane stiffness and Poisson ratio ν

Table 3 Elastic constants Nonzero independent components for

the second order elastic constants (SOECs), third order elastic

constants (TOECs), fourth order elastic constants (FOECs), fifth

order elastic constants (FFOECs), in-plane stiffness Ys, and Poisson

ratio ν of silicane from DFT calculations, compared with silicene

and graphane.

Silicane Calc.a Siliceneb Graphanec

Ys 53.8 63.8 63.8 246.7

ν 0.240 0.240 0.325 0.078

C11 57.1 71.3 248.2

C12 13.7 23.2 19.4

C111 -404.9 -397.6 -2374.1

C112 -34.6 -14.1 -95.4

C222 -349.6 -318.9 -2162.8

C1111 2146 -830 19492

C1112 -195 -309 819

C1122 -107 -5091 68

C2222 1240 -629 14823

C11111 -7525 -20614 -103183

C11112 2495 6923 816

C11122 -1671 -11681 -16099

C12222 -3318 -7593 -10151

C22222 -4517 -29735 -134277
a Previous DFT calculations in Ref.26

b low-buckling configuration in Ref.5

c Ref.47
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are closely related to the second order elastic constants as

Ys = (C2
11 −C2

12)/C11 and ν = C12/C11. For silicane, our re-

sults are Ys = 53.8 (N/m) and ν = 0.240, which are in good

agreement with a previous ab initio study26 as listed in Table

3. The in-plane stiffness of silicane is 84% of that of silicene,

which indicates that the silicene is softened by the hydrogena-

tion to silicane. This could be understood as follows. The

Si-Si bond length in silicane is 2.36 Å , about 3.5% larger than

that of silicene (2.28 Å), which implies that the Si-Si bonds

in silicene have been stretched by the introduction of hydro-

gen atoms in priori. These stretched Si-Si bonds are weaker

than those un-stretched, resulting a reduction of the mechani-

cal strength.

Besides the in-plane stiffness, the hydrogenation also re-

duces the Poisson ratio, by a factor of 26% from silicene to

silicane. As shown in Fig. 1, the Si-H bonds are perpendic-

ular to the plane. These stiff “arms” (Si-H bonds) result in a

low Poisson ratio through in-plane bending modes, involving

the Si-Si-Si angles. In principle, it could cause a strong anhar-

monic coupling of the out-of plane bending mode with these

in-plane bending accordion modes, which reduces the out-of-

plane strains as the in-plane strains are applied. A recent re-

view paper also reports that materials with stiff arms or struts

in directions normal to the loading axis will resist transverse

contraction and exhibit low Poisson ratios63. The reduction

of both mechanical strengths and the Poisson ratio is also ob-

served in the hydrogenation of graphene to graphane47.

Our results show that silicane monolayers are mechanically

stable under tensile strains of 0.21. The mechanical instabil-

ity shows up at larger tension. Their stress-strain curves show

that they will soften when the strain is larger than the ultimate

strain. The increased strains reduce the stresses due to bonds

weakening and breaking at the atomic level. In the continuum

aspect, this softening behavior is determined by the third and

fifth-order elastic constants. The negative values of the third-

order elastic constants and the fifth-order elastic constants en-

sure the softening of the silicane monolayer under large strain.

Using the higher order elastic continuum description, one

can calculate the stress and deformation state under uniaxial

stress, rather than uniaxial strain. Explicitly, when pressure

is applied, the pressure dependent second-order elastic mod-

uli can be obtained from the higher order elastic continuum

description36. The third-order elastic constants are important

in understanding the nonlinear elasticity of materials, such as

changes in acoustic velocities due to finite strain. As a con-

sequence, nano devices (such as nano surface acoustic wave

sensors and nano waveguides) could be synthesized by intro-

ducing local strain64,65.

A good way to check the importance of the high order elas-

tic constants is to consider the cases when they are missing.

With the elastic constants, the stress-strain response can be

predicted from elastic theory36. When we only consider the

second order elasticity, the stress varies with strain linearly.

Take the biaxial deformation as an example. As illustrated in

Fig. 5, the linear behaviors are only valid within a small strain

range, about ηh = 0.02, the same result obtained from the en-

ergy versus strain curves in Fig. 3. With the knowledge of the

elastic constants up to the third order, the stress-strain curve

can be accurately predicted within the range of η ≤ 0.08. Us-

ing the elastic constants up to the fourth order, the mechanical

behaviors can be well treated up to a strain as large as 0.13.

For the strains beyond 0.13, the fifth order elastic are required

for accurate modeling. The analysis of the uniaxial deforma-

tions provides similar results.

Fig. 5 Limits of higher order effects. Predicted stress-strain

responses of biaxial deformation of silicane from different orders of

elastic constants. comparing with density functional theory (DFT)

calculations (dotted line) indicates the limitations are 0.02, 0.08,

0.13, and 0.21 for second, third, fourth, and fifth order elastics,

respectively.

Furthermore, our result also illustrated that the non-linear

elastic behavior is prominent in the two-dimensional nanoma-

terials compared to the linear elastic behavior (Fig. 5). This is

very different from their macro-scale counterparts, where non-

linear elastic region is only within the strain of 0.01 beyond

the linear elastic region. Such prominent non-linear elastic

behaviors are commonly spotted in other nanostructures. The

underlying reason could be that there are much less defects in-

side the nanostructures than the bulk materials. For the same

reason, a similar non-linear behavior of perfect bulk aluminum

was observed in a DFT study for hydrostatic type strains66.

It is worthy to mention that our results of mechanical prop-

erties of silicane are restricted to zero temperature. At finite

temperatures, the thermal expansions and dynamics will in

general reduce the interactions between atoms. One can ex-

pect that the longitudinal mode elastic constants will decrease

with respect to the temperature of the system. However, the

8 | 1–11

Page 8 of 11Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



variation of shear mode elastic constants might be more com-

plex in response to temperature, which deserve further studies.

3.6 Pressure effect on the elastic moduli

Same as strains, pressure engineering is also a “clean” ap-

proach to tailor the functions and properties by mechanical

load without introducing alien species25. Thus it is also

important to know the pressure effect on the elastic mod-

uli, which could be achieved through elastic theory with the

knowledge of the higher order elastic constants. With third-

order elastic moduli, As demonstrated in the following, the

effect of pressure p on the second-order elastic moduli of the

silicane monolayers can be obtained with third-order elastic

moduli. It is worth noting that the pressure p acts in the plane

of silicane. When pressure is applied, the pressure dependent

second-order elastic moduli ( ˜C11, ˜C12, ˜C22) can be obtained

from C11, C12, C22, C111, C112, C222, Ys, and ν 64,65.

Our results of the pressure effect on the second-order elas-

tic moduli are illustrated in Fig. 6 for the silicane monolayers.

There is a general trend that these second-order elastic moduli

increase linearly with the applied pressure. However, Pois-

son’s ratio decreases monotonically with the increase of pres-

sure, which means that silicane monolayers are more easily

compressed than sheared under a higher pressure. In addition,
˜C11 is not symmetrical to ˜C22 any more under pressure. Only

when P = 0, ˜C11 = ˜C22 = C11. This anisotropy could be the

outcome of anharmonicity. We notice that the pressure effects

on the elastic moduli of silicane have similar trends as that

on silicene, however with a smaller magnitude. Furthermore,

the hydrogenation does not change the monotonic decrement

of the Poisson ratio with increasing pressure. Our results il-

lustrate that the hydrogenation affects the elastic behaviors of

silicene under pressure.

To the authors’ best knowledge, the synthesis of silicane

has not been reported. The successful synthesis of silicane

depends on many factors. Our computational study shows

that silicane is mechanically stable in ideal cases without any

defects, which is invaluable to experiments since it points

out that silicane could be synthesized when defects are well

treated. In addition, our results of the elastic limits of sili-

cane monolayers also provide a safe guide for their promising

applications, as well as strain engineering their functions and

properties.

The electron mobility in silicane is predicted to scale with

the inverse average effective mass at the conduction band min-

imum27. The increasing uniaxial strain along the armchair

direction and biaxial strain keep increasing the electron mo-

bility. Counting in the large ultimate strains, silicane is a

promising high-mobility semiconductor under strain engineer-

ing, such as High-electron-mobility field-effect transistor, for

next-generation electronics.

Fig. 6 Pressure effect Second-order elastic constants, in-plane

stiffness, and Poisson ratio as a function of the pressure in the plane

of silicane monolayers.

4 CONCLUSIONS

We studied the elastic limits of silicane under various strains

using first-principles calculations based on density functional

theory. It was observed that silicane exhibits a nonlinear elas-

tic deformation up to an ultimate strain, which is 0.22, 0.28,

and 0.25 for armchair, zigzag, and biaxial directions, respec-

tively. Silicane was observed to have a relatively low in-plane

stiffness (53.8 N/m) and a low Poisson ratio (0.24) compared

to silicene, which indicates that the full hydrogenation of the

silicene reduced its intrinsic strength by a factor of 16% and its

Poisson ratio by 26%. However, such hydrogenation has little

effect on its ultimate tensile strengths. On the contrary, the ul-

timate strains increase by 29%, 33%, and 24% under armchair,

zigzag, and biaxial deformations, respectively. Such increase

in the ultimate strains are due to the increase of the buckling

roughness of 59% of the hydrogenation.

We also investigated the nonlinear mechanical properties

and the mechanical instabilities of silicane. By linking the

elastic theory with precise first-principles calculations, we ob-

tained an accurate continuum description of the elastic proper-

ties which is suitable for a finite element analysis model for its

applications at large scale. The fourteen independent compo-

nents of high order (up to fifth order) elastic constants are de-

termined from the fitting of the stress-strain curves from DFT

calculations. We also found that the harmonic elastic constants

are only valid with a small range of -0.02 ≤ η ≤ 0.02. With

the knowledge of the elastic constants up to the third order,

the stress-strain curve can be accurately predicted within the

range of η ≤ 0.08. Using the elastic constants up to the fourth

order, the mechanical behaviors can be accurately predicted
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up to a strain as large as 0.13. For the strains beyond 0.13, the

fifth order elastic constants are required for accurate model-

ing. The second-order elastic constants linearly increase with

applied in-plane pressure and the Poisson’s ratio monotoni-

cally decreases with increasing pressure. The pressure effect

on the second-order elastic constants and the in-plane stiffness

of silicane are less than those of silicene.
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