
Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

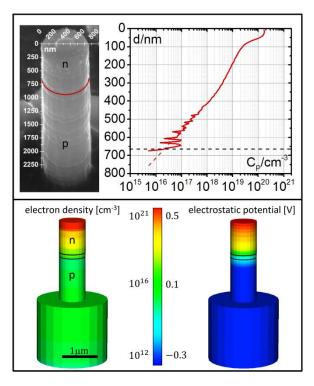
Probing photo-carrier collection efficiencies of individual silicon nanowires diodes on a wafer substrate

S. W. Schmitt, ^{a*} G. Brönstrup, ^{a,b}, G. Shalev, ^a S. K. Srivastava, ^{a+} M. Y. Bashouti, ^a G. H. Döhler ^a and S. H. Christiansen ^{a,b}

Vertically-aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic devices concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nanomanipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V)-curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafer is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insights into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility to monitor the effectiveness of the SiNW device surface passivation with the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.

ARTICLE Nanoscale

Introduction


SiNWs are versatile building blocks for highly innovative opto-electronic devices.^{1,2} It has been shown that they can successfully be integrated in devices such as sensors. NW transistors and solar cells of which some are already beyond the prototype stage.³⁻⁹ Once a silicon p-n diode is reduced to a single NW, its opto-electronic characteristics can significantly change due to an enhanced contribution of the electrical surface response, a strong current confinement within the structure and resonant interaction with light. 10-13 These phenomena require in-depth understanding in order to successfully replace parts of today's technologies by advantageous NW building blocks. To date, opto-electronic parameter retrieval of single SiNW diodes is performed on individual usually structures, where the SiNWs are removed from a substrate (thereby they are taken out of an ensemble of NWs) and electrically contacted using elaborate clean room methods such as e.g. electron beam lithography. 14-16

These contacting techniques are time-consuming and of prototyping nature and do most importantly not account for interface resistance and currents flowing between the SiNW and the substrate. However, the cross-talk between the SiNW and its substrate alters the entire optoelectronic picture, so that measured device characteristics of individual SiNW diodes can not in any way permit the forecast of the behavior of integrated NW devices composed of several to several billions of NWs that act as a device ensemble. To clarify the electrical interaction between substrate and SiNW diode at the level of an individual NW diode with the potential to predict the behavior of the integrated NW based device, vertically aligned SiNW diodes with axial p-n-junction were fabricated on a Si wafer. Individual SiNW diodes are precharacterized using secondary ion spectrometry (SIMS) to find the location of the metallurgical p-n junction and TCAD simulations, to simulate its internal electronic structure. Simulations show the location of the depletion region inside the SiNW depending on details of the p-n-junction doping. Using electron beam induced current (EBIC) we find the origin of carriers in the device under radiative carrier excitation to be in the SiNW in an NW ensemble and in the substrate underneath.¹⁷

In the study, we show measurements of I-Vcurves of individual straight, doped axial SiNW diodes with axial p-n-junction in a SiNW diode array residing on a Si substrate wafer. Therefore, we contact individual SiNWs using a tungsten (W) needle mounted to a nano-manipulator inside an SEM, which is equipped with a fiber feed-through for laser illumination with tunable intensity and wavelength. Measurements of the I-V-curves with varied illumination show that the serially coupled system SiNW/Si-wafer can be described with the equivalent circuit of an individual diode, so that the diode parameters like shunting resistivity, series resistivity and photocurrents can be derived from a fit. The paper shows that the PCE of the individual diode is strongly dependent on wavelength and intensity of the illumination, and that these dependences reflect on the performance of the device at the nanoscale. The PCE for shorter wavelengths permits monitoring effectiveness of the device surface passivation, whereas a reduced PCE for higher illumination intensities points towards a decrease in diode rectification for higher photocurrents that are predominantly contributed by carriers originating from the substrate. In fact, the indepth assessment of diode parameters shows, that high light intensities and photocurrent densities lead to a decrease in the shunting resistivity and a substantial increase of the diode ideality factor of the SiNW diode.

Nanoscale ARTICLE

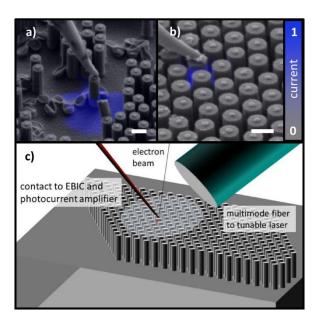

Device fabrication and pre-characterization

Figure 1: top right: SIMS analysis showing the phosphorous diffusion profile in the Si wafer; top left: SEM image of a SiNW in oblique view (45° tilt). The red line indicates the location of the metallurgical junction; bottom: 3D TCAD simulation showing color coded the electron density and the electrostatic potential in the SiNW and the underlying Si substrate. The black lines delineate the depletion region determinated by the TCAD simulation.

A silicon wafer (Float Zone, p-type, Boron (B) 10^{16} cm⁻³) was spin-coated with phosphorus (P) spin-on dopant (SOD / P509, Filmtronics, USA) and annealed at 900 °C for 30 min. Simultaneously, an ohmic back contact was obtained by the diffusion of a sputter deposited Al layer on the back of the wafer. After removal of SOD and excess Al in a short HF dip (HF 5%, 30s), the P-diffusion profile in the silicon wafer was recorded using secondary ion mass spectrometry (SIMS). Figure 1 shows that compensation between P and B is reached in a depth of about 700±40nm (metallurgical junction). The wafer with a planar p-n junction was subsequently used for the fabrication of SiNWs. To fabricate SiNWs, polystyrene (PS) spheres were used as a hard mask for subsequent patterning using reactive ion etching (RIE) as described in a previous paper in more detail.¹⁸ The SiNW diameters are strictly determined by the PS-sphere diameters, whereas the SiNW lengths depend on the RIE etching details. With this large area nano-patterning method, an array of 2.3±0.1µm long SiNWs with a diameter of 737±21nm and 1µm pitch was formed. Figure 1 shows an oblige SEM image of an individual asetched SiNW for which the red line indicates the position of the metallurgical junction as determined by SIMS measurements on the unpatterned P-diffused overall boron-doped Si wafer. At the direct contact area between PS spheres and Si wafer, a small circular nap sticks out of the NW surface due to not having been exposed to RIE etching at all as can be seen after removal of the PS spheres in an ultrasonic bath. A device simulator (Synopsys TCAD Sentaurus, Mountain View, CA, USA) was used to determine the electron density and electrostatic potential in the SiNW diodes (Figure 1 / bottom). Poisson and continuity equations were solved by finite difference time domain (FDTD) calculations in line with the Pdiffusion profile measured by SIMS and assuming a configuration in the dark (i.e. zero carrier generation) with no voltage bias between top and bottom contact of the SiNW. The simulations demonstrate that the top part of the SiNW is degenerate (i.e. the minority carrier / electron density is as high as 10^{21} cm⁻³), and that the depletion region (i.e. the electronic p-n junction) is clearly located inside the 2.3±0.1µm long SiNW.

ARTICLE Nanoscale

Figure 2: a, b) SEM images of individually contacted SiNWs (45° tilt angle). The EBIC mappings are superimposed in blue color (scale bars 1 μ m). c) Scheme of the experimental setup showing the sample, the W-needle for contacting and the multimode fiber for tunable laser light illumination.

To contact individual SiNWs, a W-needle was mounted onto a nano-manipulator stage inside the SEM (TESCAN Lyra 3). Figure 2a shows the probing of a free standing SiNW with no neighboring **SiNWs** due to a local inhomogeneity in the SiNW ensemble. In Figure 2b a SiNW in the NW ensemble was chosen for probing. In both cases the EBIC mappings (3kV, 100pA) were superimposed (blue) on the SEM images, showing very different EBIC signals from the two essentially identical SiNWs.¹⁷ The intensity of the EBIC signal depends on the amount of carriers generated by the incident electron beam and their ability to reach the diffused p-n junction located inside the SiNW. Moreover, the EBIC signals are normalized to the maximum intensity in each image, so that the resulting EBIC currents can only serve as a qualitative measure. In Figure 2a) the EBIC signal at the bottom of the SiNW and in the substrate is highest and vanishes in the upper part of the SiNW. This can be explained as follows: Due to the low beam energy (3kV) selected for this EBIC measurement, carriers are

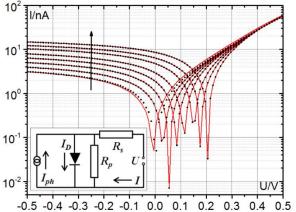
generated close to the surface (<150nm depth as obtained from Monte-Carlo-Simulations using freeware SRIM software package, www.srim.com) and are therefore strongly affected by recombination of the as-etched SiNW surfaces (see an x-ray photoelectron spectroscopy / XPS scan in the supplementary information). This results in an overall lower effective carrier concentration in the SiNWs as compared to the bulk silicon wafer counterpart which has a lower surface to volume ratio. Figure 2b shows a SiNW in a densely packed SiNW array, contacted by the W-needle. Due to the low penetration depth of the selected 3kV electrons these are all absorbed in the SiNWs themselves, i.e. the entire EBIC signal is generated within the contacted NW. The two representative EBIC analyses in Figures 2a and 2b show the origin of the generated current depending on details of the carrier exciting radiation. Depending on the penetration depths of incident electrons (or light, see next section), the overall EBIC current contains contributions from the SiNW alone or the underlying Si substrate in addition.

Measurements and discussion

To monitor the optoelectronic characteristics of a single axial SiNW diode on a wafer, the device was illuminated with well defined, tunable laser light, incident parallel to the SiNW long axis. 56 I-V measurements of a single SiNW diode were recorded using illumination with seven different wavelengths (500, 550, 600, 650, 700, 750 and 800nm) where for each wavelength the light intensity was varied in eight discrete steps (0, 20, 50, 100, 200, 500, 1000 and 2000nW). The measurement setup inside the SEM is depicted in Figures 2c. A multimode glass fiber was transferred to the SEM chamber and was connected to a tunable laser light source outside of the SEM. The light was generated by a white light laser source equipped with a mode-selector box (NKT-photonics). Thereby the sample could be illuminated with (non-polarized) light of Nanoscale ARTICLE

controlled wavelengths and intensities. The light intensity at the fiber end was calibrated using a beam splitter outside of the SEM chamber combined with a photodiode. Varying the laser pumping power and power attenuating filters, the adjustment of distinct intensities the seven wavelengths of choice was possible. For each intensity/wavelength pair the accurate output intensity at the fiber end was recorded using a calibrated diode. Underneath the fiber the individual SiNW diodes were contacted as shown in Figure 2a and 2b. To obtain experimental conditions resembling that of an axial p-n junction SiNW photovoltaic device under solar illumination, the following measurements were performed using a contact configuration as shown in Figure 2b.

In Figure 3 the experimentally measured I-V curves for all eight light intensities at a constant wavelength of 700 nm (example chosen, full dataset see supplementary information) are shown. The superimposed fits were determined by a simulated annealing algorithm. ¹⁹ They are based on a single diode equivalent circuit shown in Figure 3 (inset) which can analytically be described by the implicit equation


$$I_{m} = I_{p} - I_{D} - \frac{U + I_{m}R_{s}}{R_{n}}$$
 (1)

where, I_m is the current measured at the load, U is the voltage drop at the load, I_p is the generated photocurrent, R_s and R_p are the series and parallel resistances of the device and I_D is the diode current. I_D is expressed as:

$$I_D = I_S \left(e^{\frac{U + I_m R_S}{n k_B T}} - 1 \right) \tag{2}$$

where n is the diode quality factor, I_s is the reverse saturation current, k_B is the Boltzmann constant and T is the temperature. For $R_p \rightarrow \infty$, $R_s \rightarrow 0$, Eq. (1) reduces to the diffusion modulated

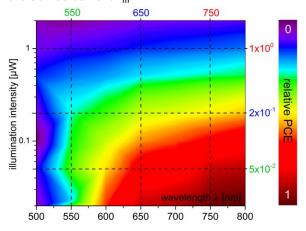
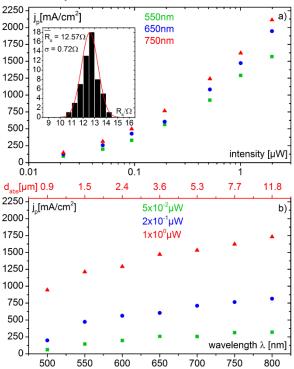

ideal Shockley equation without implicit dependency of I_m .²⁰ Note that the SIMS profile and TCAD simulations (Fig. 1) suggest a degenerated top part of the SiNW and hence an ohmic contact between the W probe and the SiNW is expected. Therefore, and from the high matching quality of the fits with respect to measurements, it can be concluded that the system SiNW diode/wafer physically resembles a single diode. To permit a judgment of the quality of the fits, all plots are shown in the supplementary information both in linear and in semi-logarithmic scale.

Figure 3: Black dots show the I-V curves of a single SiNW diode under illumination with 700nm (semi-logarithmic scale). The black arrow shows the direction of increasing power in 8 discrete steps at the fiber end inside the SEM. Red lines indicate a fit of the I-V curves with Eq. (1). The inset depicts an equivalent circuit of the individually contacted SiNW diode which is analytically described by Eq. (1).

The fit parameters I_s , R_s , R_p , n and I_p can now be utilized to quantitatively assess the local behavior of the fabricated SiNW device. The series resistance R_s is given by the sum of the resistance of the W-needle contact, the internal resistance of the SiNW diode and the spreading resistance of the substrate wafer. The histogram (inset Figure 5a) shows the extracted series resistances R_s retrieved from all 56 measurements/fits where R_s is sharply peaking at

around 12.6 Ω . This implies that R_s is not significantly dependent on the minority carrier injection level. Therefore, contributions of the SiNW diode and the wafer to R_s can be neglected. Accordingly, R_s should mostly be determined by the mechanical contact between the SiNW and the W-needle which, in turn, is sufficiently small and stable to enable probing of the device current I_m .


Figure 4: Color coded relative PCE of the SiNW diode on the wafer substrate for different light wavelengths and intensities. Along dashed lines the diode photocurrent density j_p , diode ideality factor n and parallel / shunting resistivity R_p of the SiNW diode are plotted in Figures 5 and 6.

To quantify the probability of carriers to reach the p-n junction in dependence of intensity P and wavelength λ of incindent light, a photocarrier collection efficiency is defined as

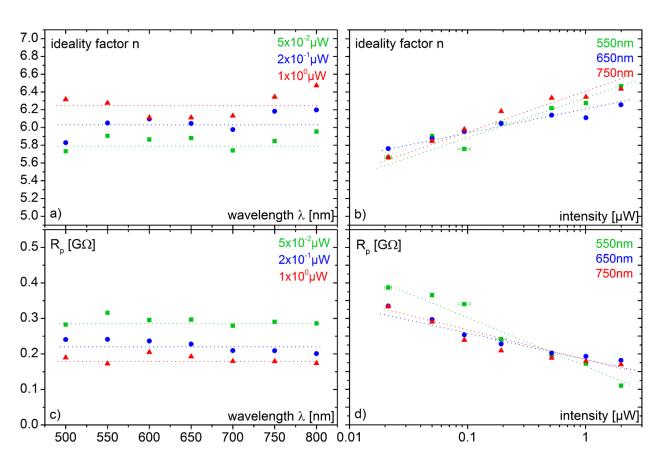
$$PCE(\lambda, P) = \alpha \cdot \frac{j_p}{j_{py}}$$
 (3)

where j_p is the photocurrent density in the individual diode, $j_{\hbar\nu}$ is the incident photon flux and α is a constant normalizing the maximum PCE value to 1. Figure 4 shows the PCE a function of wavelength and intensity. It can be seen that it strongly decreases for lower wavelength and higher light intensity for which in the following two separate mechanisms will be made out. The lower PCE for higher illumination intensities has its origin in a smaller rectification of the SiNW diode for high

illumination intensities and high photocurrent densities, j_p .

Figure 5: Photocurrent density j_p in an individual SiNW diode as a function of intensity (three different wavelengths) and wavelength / mean absorption depth (three different intensities).²¹ The inset in the lower image shows a histogram over the series resistivity from all 56 measurements.

Figure 5 shows that the photocurrent density j_p for higher light intensities strongly rises, which should actually lead to an increase in PCE. Nevertheless, the PCE for high light intensities drops as Figure 4 clearly shows. The reason can be found in deviations of the SiNW diode from a carrier diffusion controlled Shockley diode $(1 \le n \le 2, R_p \to \infty, R_s \approx 0 \text{ in Eq.})$ 1). These deviations are most instructively described in terms of parameters R_p and n of the equivalent circuit model (Eq. 1). According to Sah and Shockley, non-saturable reverse currents (i.e. $R_p < \infty$) and a deviation of the forward bias behavior of a Si p-n diode from the ideal Shockley equation (i.e. $I \propto (\exp(\frac{eV}{nkT}) - 1)$ with values $n \le 2$) can be explained with the


ARTICLE

population of trap states in the depletion zone (space charge layer / simulations Figure 1).²²

Figure 6 a,b shows that the diode ideality n and the shunting resistivity change significantly with increasing light intensity. R_p drops as the excitation level increases independently of the wavelength of incident light, indicating the enhanced population of trap states in the depletion zone for a high carrier injection in the device and high j_p in the SiNW diode (compare scan of the as-etched surface / supplementary information). Axial SiNWs in general behave less ideal (i.e. have higher ideality factors n) in comparison with radial SiNWs. 16,23 It has been speculated that this is due to the fact that in axial SiNW diodes the depletion region is exposed to the surface whereas in radial designs the depletion region is embedded within the SiNW itself. In the present case ideality factors n are also quite high (between 5.5 and 6.5 / Figure 6a) and rise further for higher illumination intensities. Since the wafers used in the current study are high purity float zone Si it is most likely that high generation/recombination currents (i.e. high quality factors n) stem from comparably rough and unpassivated surfaces of the SiNW (Figure 1). As compared to planar devices, current densities in SiNW devices are typically higher due to the strong confinement of the current and the resulting current density in individual SiNW diodes will be a function of the surface filling fraction of contacted SiNWs. The current density of about 40mA/cm² for a planar silicon solar cell i.e. would lead to about 400mA/cm² for a 10% filling fraction of contacted SiNW.24 In the presented case of an individual contacted diode, j_p in the SiNW diode gets as high as

2000mA/cm² corresponding to about 10¹⁹ electrons s⁻¹cm⁻² in the diode, which is three orders of magnitude higher than the exciting photon flux density of about 10¹⁶ photons s⁻¹ cm⁻² (~1µW from the fiber). Physically this means that the carriers contributing to j_p in the presented case emerge from an area at least 1000 times bigger than the SiNW. It can be concluded that SiNW diodes have to be designed that they sustain a proper rectification especially at high current densities and injection levels. Further, the maximum reachable current density in a SiNW diode on a device can be controlled, in order to avoid the occurrence of the measured detrimental effects on diode rectification. Lower photocurrent densities j_p flow through the SiNW diode for short wavelength light which is absorbed closer to the device surface. This is indicated in Figure 5b (top red axis) showing the absorption depth for the used different wavelengths.²¹ The results suggest photocarriers which are generated close to the surface (i.e. within the SiNW array or directly below) have a lower probability to reach the p-n junction i.e. are prone to surface recombination. Consequently, the PCE decreases for surfacenear absorption, which makes it a measure for the effectiveness of the surface passivation of the SiNW array. Figures 6c,d show that R_p and n stay constant for variations in light wavelength (three intensities selected for clarity), meaning that the rectification characteristics of the SiNW diode does not change for different wavelengths of incident light. This confirms that the drop in PCE for low wavelengths is independent of the diode characteristics and is merely related to surface recombination.

ARTICLE Nanoscale

Figure 6: SiNW diode ideality factor n and parallel/shunting resistance R_p as a function of wavelength and intensity of incident light. Three intensities per wavelength / three wavelengths per intensity are plotted for clarity; dashed lines are a guide to the eye.

Conclusions

An SEM-based nano-probing method is shown that permits the measurement of the dark and illuminated I-V curves of an individual vertically-aligned axial SiNW p-n diode coupled to a wafer substrate. It turns out that the serially coupled system SiNW/wafer exhibits characteristics of a single diode, and that the diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit of an equivalent circuit model. The determined PCE of the p-n junction in the SiNW allows to quantitatively assess various design aspects for nano-enabled devices. We find that the PCE strongly depends on the absorption depth (wavelength) of the incident light which allows to quantify the effectiveness of the device surface passivation at the nanoscale. Further, it turns out that high photo carrier densities predominantly emerging from the wafer substrate reduce the rectification of the individual SiNW diode, which leads to a reduction of PCE for high injection levels. This is especially relevant for nanowire enabled device designs where photocurrent densities exceed the values for planar devices.

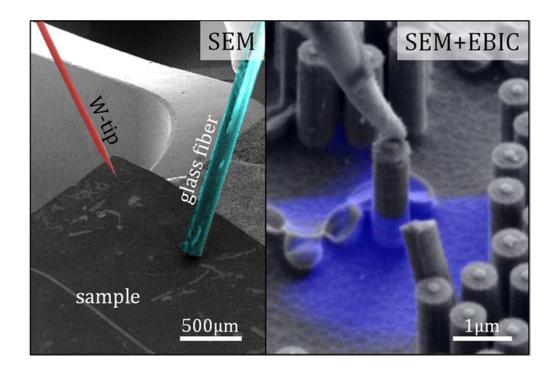
- Y. Cui, X. Duan, J. Hu, and C. M. Lieber, *J. Phys. Chem.* B, 2000, 104, 5213–5216.
- Y. Cui and C. M. Lieber, Science, 2001, 291, 851–853.
- 3. P. Alivisatos, Nat. Biotechnol., 2004, 22, 47–52.
- 4. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, *Nat. Biotechnol.*, 2005, **23**, 1294–1301.
- Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, *Nano Lett.*, 2003, 3, 149–152.
- W. M. Weber, L. Geelhaar, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Pamler, C. Chèze, H.

ARTICLE

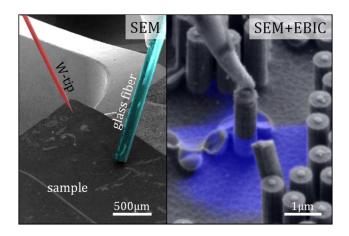
- Riechert, P. Lugli, and F. Kreupl, *Nano Lett.*, 2006, **6**, 2660–2666.
- E. C. Garnett and P. Yang, J. Am. Chem. Soc., 2008, 130, 9224–9225.
- V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, *Nano Lett.*, 2009, 9, 1549–1554.
- L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett., 2007, 91, 233117.
- D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, *Science*, 2003, 299, 1874–1877.
- R. Q. Zhang, Y. Lifshitz, D. D. D. Ma, Y. L. Zhao, T. Frauenheim, S. T. Lee, and S. Y. Tong, *J. Chem. Phys.*, 2005, 123, 144703.
- G. Brönstrup, N. Jahr, C. Leiterer, A. Csaki, W. Fritzsche, and S. Christiansen, ACS Nano, 2010, 4, 7113–7122.
- L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. L. Brongersma, *Nano Lett.*, 2010, 10, 439–445.
- 14. S.-W. Chung, J.-Y. Yu, and J. R. Heath, *Appl. Phys. Lett.*, 2000, **76**, 2068–2070.
- B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu,
 J. Huang, and C. M. Lieber, *Nature*, 2007, 449, 885–889.
- J. D. Christesen, X. Zhang, C. W. Pinion, T. a Celano, C.
 J. Flynn, and J. F. Cahoon, *Nano Lett.*, 2012, 12, 6024–6029.
- 17. H. J. Leamy, J. Appl. Phys., 1982, 53, R51.
- S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti,
 S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, *Nano Lett.*, 2012, 12, 4050–4054.

- M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi, *Gnu Sci. Libr. Ref. Man.*, 2009, 592.
- 20. W. Shockley, Bell Syst. Tech. J., 1949, 28.3, 435–489.
- M. A. Green and M. J. Keevers, *Prog. Photovoltaics Res. Appl.*, 1995, 3, 189–192.
- C. Sah, R. N. Noyce, and W. Shockley, *Proc. IRE*, 1957,
 45.
- T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, *Nano Lett.*, 2008, 8, 3456–3460.
- S. W. Glunz, J. Knobloch, C. Hebling, and W. Wettling, Conf. Rec. Twenty Sixth IEEE Photovolt. Spec. Conf. -1997, 1997.

Acknowledgements


S.W.S., G.B., F.S., M.B. and S.C. acknowledge partial financial support by the FP7 Projects Fiblys (FP7-NMP-214042) and LCAOS (FP7-HEALTH.2010.1.2-1) and the BMBF project Nawion (FKZ: 16SV5386K, V4MNI014). S.K.S. thanks the Department of Science and Technology, Government of India for BOYSCAST fellowship (Award No. SR/BY/P-03/10).

Notes and references


- ^a Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen / Germany
- b Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, 12489 Berlin / Germany
- ⁺ Parent affiliation: CSIR-National Physical Laboratory, New Delhi-110012 / India
- * sebastian.schmitt@mpl.mpg.de

Nanoscale RSCPublishing

ARTICLE

55x37mm (300 x 300 DPI)

Dark and illuminated electrical nano-probing of individual silicon nanowire diodes coupled to a wafer substrate, permits to derive design aspects for nano-enabled devices.