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The leviton is an electron or hole wavepacket that rides the surface of the Fermi sea. When a series of Lorentzian or Gaussian
time dependent pulses are applied to an ultracold system a soliton-like excitation with only one electron and no localised hole
emerges. Graphene is a unique system where the Fermi surface may arise from a Dirac point and therewith the levitons character
may display many interesting features. For example, the leviton formation may be associated with a chiral anomaly, and inside
a single potential step an anti-leviton forms. We show that the application of weak magnetic fields may switch on and off the
leviton Klein tunneling. Also, in a moderate field negative refraction arises along a curved trajectory, whereas with a stronger
field a new elementary excitation - the levity vortex - in the reflected wavefunction occurs. Herein we describe these phenomena
in detail along with a complete explanation of the transmission of graphene levitons at a step potential in terms of the probability
densities and a series of phase diagrams and the tunneling times.

1 Introduction

In the 19th Century John Scott Russell was the first to take
note of the propagation of a single, localised wave that had
consistency of shape and velocity as it moved through a chan-
nel of water. The wave, nowadays known as a near-soliton,
was generated when a boat suddenly stopped in the Union
Canal that runs from Falkirk to Edinburgh, in Scotland. Pure
solitons are invariant in shape and speed when they collide
with other solitons, but Scott Russell’s “wave of translation”
was diminished in amplitude (dissipated) as it continued on
its journey along the waterway. Having observed this phe-
nomenon, Scott Russell had discovered a method to propel
boats in front or atop of these waves and an impetus to design
hull shapes that had minimal resistance began. The research
that followed led to the Scottish system of “fly-boats” which
were drawn by horses along the banks of canals at relatively
large speeds with lowered resistance. The lowering of the re-
sistance occurred once the boat, which started at low velocity
behind a wave, was suddenly jerked forward so that it rose
atop the wave1. Scott Russell then focused upon optimising
the shape of the hull and stern of the boats for canal transit.
The work pre-empted an era of increasingly fast naval vessels.
Just like the fly-boats, a single electron wave-packet can travel
unimpeded on the top of the Fermi sea. This wave packet is
a kind of soliton that has recently been found experimentally
by Dubois et al2. This modern day observation is of a new
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quasiparticle that has been named the “leviton” because its
existence was predicted by Levitov and co-workers3–5. The
sea of electrons have their highest energies close to the Fermi
surface. Under usual conditions a perturbation to the electron
leaves behind a positive quasiparticle called a “hole”. At low
temperatures, a Lorentzian or Gaussian pulse can inhibit the
formation of particle-hole excitations and generate an electron
wave that rises out of the Fermi sea, in analogy to Scott Rus-
sell’s wave of translation.

In our work we apply Gaussian shaped pulses to pro-
duce levitons through graphene. Graphene is the first two-
dimensional (2D) crystal observed6 and it is an allotrope of
carbon similar to diamond, fullerene and charcoal - all of
which have their own unique properties7. It may usually
be found in the form of highly ordered pyrolytic graphite
(HOPG), whereby individual 2D graphene layers stack on top
of one another to form a crystalline lattice8. Its stability is due
to a tightly packed, periodic array of carbon atoms and an sp2

orbital hybridisation - a combination of orbitals px and py that
constitute the σ -bond9. The final third are pz electrons of the
carbon atom that make up the π-bond, and it is key to the half-
filled band and the Dirac electronic spectrum9. The stability
of the 2D crystals such as graphene, silicene and germanene
may be associated with small displacements of the sub-lattices
A and B which can be slightly shifted in the z-direction10.
Graphene has not only a monolayer hexagonal structure but
it is more conductive than copper, with mobilities reaching up
to 200,000cm2/V s11–13. Charge carriers in graphene travel
with a Fermi velocity νF ≈ 106m/s10,11,14, which is approx-
imately 1/300 the speed of light. It has a minimum conduc-
tivity σ0 ≈ 4e2/h,15 which is approximately double that for
the conductance quantum16,17. The levitons represent elec-
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tronic coherent wavepackets. As we will show, the levitons
in graphene are very sensitive to external magnetic fields and
can be propagated over relatively large distances (as compared
to, for example, plasmons in noble metals18). Over the last
few years subwavelength devices have been engineered to pro-
duce negative refraction19. However, it has been shown that
graphene can naturally bend light in the opposite direction to
what is intuitive and super resolution imaging devices have
been predicated20. The leviton, travelling atop the Fermi sea,
is a type of long-lived quasiparticle that opens up a new kind
of quantum electronics, one that may ultimately result in de-
vices where the leviton could act to communicate quantum
information and to control nanoscale circuitry.

2 Levitons in a magnetic field

The stimulus for the creation of the levitons may be light
from a laser, injection through a ferromagnetic layer or volt-
age pulses through an electrode2. Once a leviton is produced it
can be channelled through a waveguide or constriction, as in2.
For example, the pulses carry integer charge q = ne and ex-
cite n electrons above the Fermi level, with the compensation
for excited electron dislocation occurring with the electronic
sea moving so as to prevent the creation of holes and to fill-in
the void that is left5. In this way there is a uniform electron
sea. This creates a system of right and left moving electrons
as the leviton moves along the Fermi surface. The fact that
the Fermi sea remains intact is due to there being no entan-
glement between the quasiparticles, because of there being no
holes. In graphene the propagation of excited charge carriers
is extremely fast and closely linked to the Dirac spectrum21.
As such, we solve the system of equations11,

h̄
i

∂t

(
Ψ1
Ψ2

)
= H

(
Ψ1
Ψ2

)
(1)

where,

H = νF

(
0 −ih̄∂x − h̄∂y − eBy

−ih̄∂x + h̄∂y − eBy 0

)
. (2)

The wavefunction Ψ1 represents the motion of an electron as
a second electron wave Ψ2 maneuvers to fill any void created
by the former and to produce a complete Fermi sea. The levi-
ton moves with Fermi velocity, νF , through the graphene. In
the above we have introduced the Landau gauge in the form
A = (−By,0,0). With the magnetic flux density B, a magnetic
length lB =

√
h̄/eB is incorporated into Eq. (1) and (2).This

magnetic scale is equivalent to lB ≈ 26nm/
√

B where B be-
comes a dimensionless parameter. We now write the dimen-
sionless form of Eq. (1),

−i∂τ

(
Ψ1
Ψ2

)
= H̄

(
Ψ1
Ψ2

)
(3)

and

H̄ =

(
0 −i∂x̄ −∂ȳ − ȳB

−i∂x̄ +∂ȳ − ȳB 0

)
. (4)

Using the magnetic length scale, time is written in dimension-
less units as, τ = νF t/26nm, and the positions are defined
as x̄ = x/26nm and ȳ = y/26nm. The height of a potential
step is defined as Up = νF h̄/r, where r is an effective step di-
mension. In dimensionless units Ūp = 26nm/r

√
B. Through-

out we will apply a Gaussian wavepacket to the system. In
general a leviton could consist of many particles and conceiv-
ably have different shapes that could be self-consistently de-
termined. In the present work we are interested in relativistic
levitons in graphene, which may have similarities with point-
like relativistic particles. For this purpose we have to construct
a wavepacket that allows correspondence to a single quantum
number. By way of reasonable approximation we consider a
very narrow distribution of quantum numbers around the cho-
sen one. It is believed that the best way do do this is for it to be
described by a Gaussian distribution which corresponds (after
a Fourier transform) to the Gaussian wave packet that is stud-
ied in this paper. Moreover, due to the same reason (the nar-
row range of quantum numbers) the Gaussian packet may in
general be more stable than any other shapes of the wavepack-
ets. Indeed, Mita showed that any non-Gaussian wavepacket
takes a Gaussian shape as it disperses with time22. Further-
more, in magnetic fields the electron wave function associated
with a Landau level has a dominant Gaussian shape. That is
why for levitons in magnetic fields the most natural choice is
the Gaussian shape for the wavepacket under study. Of course
the Lorentzian shape of the wavepacket is equally applicable
to study levitons. However in this case, for the Lorentzian
wavepacket, the distribution of the quantum numbers is sig-
nificantly more broadly dispersed . Therefore, packets of non-
Gaussian waveforms can create more noise at their detection
(see, Ref.2). In addition, that may hide some other leviton
features and transport characteristics. These arguments stim-
ulated us to choose the Gaussian wavepackets as the most ap-
propriate to study levitons in graphene. Here the leviton is
formed with the height and width of a Gaussian wavepacket
with initial given shape,

Ψ1 =
cosh

[
b̄
(
τ − x̄p − S̄

)]
e−χ√

(1+ i ā x̄p)
, (5)

and
Ψ2 = (1+ āȳp/(1+ iāx̄p))Ψ1, (6)

where,

χ = E
(
τ − x̄p − S̄

)
−

Eāȳ2
p

2(1+ iāx̄p)
. (7)

In the above a bar above a parameter means that it has been
made dimensionless by dividing by

√
BlB. The energy asso-
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ciated with the leviton wavepacket is E = αŪp, where α de-
notes the ratio of the electron energy to that of the potential.
The shape of the soliton is defined by ā and b̄, which give the
dimensions of the particle. In Fig. 1 (a), the leviton is de-

Fig. 1 The leviton is formed at time = 0 as a Gaussian shaped pulse.
In our numerical experiments, a potential step of size Up is located
to the right of the central line (green online). This can be seen in (a).
The colour bar denotes the value of the probability density of the
leviton |Ψ1|2. In (b) a schematic of the formation of the leviton at a
quantum point contact is given.

fined with parameters ā = 0.25 and b̄ = 2. The parameters
defining the coordinates of the Gaussian beam are given by
S = 2Lcosθ , where L characterises the initial position of the
beam; x̄p = x̄ cosθ + ȳ sinθ ; and ȳp = −x̄ sinθ + ȳ cosθ . Here
θ is the angle that the leviton would approach the step in the
absence of an applied magnetic field. In the examples that
we present, the leviton is envisaged to be formed by injecting
charge pulses2 into graphene that lies on a substrate that en-
ables transport with high Fermi velocity, e.g. quartz, that has
νquartz

F = (2.49± 0.30)× 106m/s23, at low temperature. Part
way along the quartz substrate would be a strip of material
that results in a lowering of the Fermi velocity. This mate-
rial could be SiC which has a νSiC

F ≈ 0.5νquartz
F . In analogy

with the soliton observed by Russell, where a boat suddenly
lurched to produce the phenomenon, the sudden change in ve-
locity of the wavepacket of the electron results in the propaga-
tion of a Gaussian or Lorentzian pulse. The leviton is shown
schematically in Fig. 1 (b). The band structure topology of

graphene is unusual because it consists of two surfaces that
come together at the so-called Dirac energy ED, a charge neu-
trality point24. Unperturbed, ED will coincide with the Fermi
level EF , but upon excitation these energies separate and a
massive increase in carrier density ensues25. The valence and
conduction bands of graphene are symmetrical in the unper-
turbed state, with a conical shape around the Brillouin zone
(BZ) edges. They touch at the Dirac points. Around the zero
band-gap at the Dirac points, the electrons and holes have a
linear dispersion relation, which gives rise to many peculiar
and unusual material properties. In this region, where ED = 0,
the dispersion relation is |E −ED| = h̄νF |k−K| (where K is
a corner of the BZ) from which the group velocity of excita-
tions is νF ≈ 106m/s. This is a lower effective speed of light
because the charge carriers have an effective mass of zero, giv-
ing rise to relativistic behaviour. It is important to note that in
the opposite corner of the BZ another Dirac point exists that
is denoted as K′. In graphene there are two sublattices which
are denoted A and B. Each charge carrier is localised in one of
these sublattices with the possibility of travelling from one to
the next. This creates a pseudospin, which can be thought of
as the up and down states of a spin-doublet, and so the charge
carriers in graphene behave like massless spin-1/2 particles.
Originally Wallace9, has considered a simple tight-binding
model with a single hopping integral of an electron from one
carbon atom to its first and second nearest neighbours only.
Wallace’s conclusions were stark; an electrical conductivity
should theoretically exist for 2D graphene. To elaborate; at six
positions of the BZ, Dirac points (K and K′) exist. These are
points in momentum space for which the energy E(p0) = 0,
where p0 = h̄K (or h̄K′). Here, we have denoted the momen-
tum as a vector p = (px, py) = h̄k, where k = (kx,ky) is the
wave vector6. The energy eigenvalues were found to take a
gapless form9,

ε±(kx,ky)≈±

√
1+4cos(

√
3

2
kxa)cos(

1
2

kya)+4cos2(

√
3

2
kxa)

(8)
where the plus and minus signs refer to the upper and lower
half-filled bands respectively and a is related to the separation
between carbon atoms (a ≈ 0.246nm)11,16. By expanding the
above equation in the vicinity of the K or K′ points, we obtain
the linear dispersion relation that is given by E± = νF h̄ |δk|,
where k = K +δk. These are known as Dirac cones. Here, in
the Dirac points a direct contact of the conduction and valence
bands occurs6,9,13,16, thus pertaining to a zero energy band-
gap6,9,16. However, a propagating leviton does not create a
localised electron-hole pair as there is no local hole produc-
tion. Therefore, the charge carrier dynamics in effect exist be-
tween the electronic wavefunctions of the the Dirac equations
of the sublattices of A and B.

Graphene displays several anomalous quantum phenom-
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ena, even at room temperature11,26. The Quantum Hall
Effect(QHE) has been observed for both single and bilayer
graphene27,28, in the presence of a magnetic field B. The ap-
plication of the magnetic field brings about the emergence of
Landau levels in the graphene system, taking a discrete form
that occurs above and below ED. The energies associated with
these discrete energy levels are given by26,

En = sgn(n)
h̄νF

26nm

√
2B |n|, (9)

where n = 0,±1,±2, ... is the index of a level (i.e. the Lan-
dau quantum number). The associated Hall conductivity is
σH = ge(n+1/2)/2πl2

B, where e is the electric charge and
g is the degeneracy16,17. For graphene, a fourfold degener-
acy exists - two spins, and the valley degeneracy of the K
and K′ Dirac points6–9. Additionally, the fractional QHE has
been observed for both monolayer and bilayer graphenes (cf.
for details6–9,27,28). The separation between Landau levels is
largest between n = 0 and 1. When n is large the higher en-
ergy levels are in close proximity. The Landau energies for
applied field strengths of B = 5mT and B = 2.5T are shown in
Fig. 2 (a) and (b), respectively. Landau quantisation has been
experimentally found to occur in fields below B= 5mT 29. An-
other quantum phenomenon observed is the Klein Tunnelling.
In this situation an electron can go through a barrier of any
height26–28,30. The effect is related to the nature of the gap-
less Dirac spectrum, whereby an electron can be transformed
into a hole or vice versa under an influence of any potential.
So far, a perfect transmission is demonstrated for square po-
tentials only, and is dependent upon the angle of incidence θ
relative to the barrier31,32. Confined bound states will arise
for energies close to the Dirac point31,32. Further details re-
garding how this confinement effect may relate to the special
waveguide geometry has been discussed in references33–37.

3 Leviton and anti-leviton dynamics into and
within a potential step

The leviton is formed to the left of a potential step, as is shown
in Fig. 1 (a) and Fig. 2. Transport through the potential step
is strongly dependent upon the angle of incidence. The pres-
ence of a magnetic field bends the leviton trajectory into the
step. We demonstrate some of the unusual phenomena that
occur when varying field strengths are applied to the system.
In Fig. 3, a small magnetic field of B = 5mT has been applied.
A potential step of size Up = 91meV is created and the leviton
has initial energy E = 0.4Up (corresponding to n = 322, see
Fig. 2). The leviton travels from left to right. At 13 f s it is
about to touch the boundary of the step. In Fig. 3 the con-
tact with and transition into the step is marked by two peaks
in the probability density. At 26 f s the leviton exists either
side of the boundary, rippling in its transition, but maintaining

Fig. 2 Once a leviton is formed it can propagate through the
graphene structure and devices can be designed with different
shaped potential barriers. Here we investigate the potential step. In
(a) and (b) the leviton takes form at the left of the step and tunnels
with energy, E, lower than the electostatic potential, Up. Inside the
step an anti-leviton forms. The leviton-anti-leviton propagates
through the system with Fermi velocity, νF ≈ 106m/s. The leviton
is a single electron wavepacket that surfs the Fermi sea as a soliton.
An anti-leviton forms in the valence band after the leviton meets
with the elevated potential of the step. In (a) an applied magnetic
field is B = 5mT and in (b) – B = 2.5T . The bottom plots in (a) and
(b) show Landau energies En for these values of magnetic field. The
energy levels for each quantum number n are joined as a guide for
the eye. The positive (coloured red online) energies are prior to
engagement of the leviton with the step, whereas the negative ones
are within the step (blue online). The Landau levels are measured
from ED to the left and right of the step boundary.
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Fig. 3 The magnetic field has been introduced using the Landau
gauge, A = (−By,0,0) where B = 5mT . In such a small field any
deviation of the trajectory of the leviton is almost indiscernible.
However, one can see that there emerges a very small backscattering
of the wavefunction (see the top inset). Underneath the plot of
maximum probability density |Ψ1|2 is the time evolution of the
leviton into the potential step at time increments of 13−64 f s. The
colour bars indicate the size of |Ψ1|2. The ratio of leviton energy to
step height is α = 0.4.

almost full transmission. A very small backscattering of the
wavefunction occurs, which can be visually seen in the inset
of Fig. 3 (two darker areas on the left of the step). In this in-
set the height of the probability density after 103 f s is shown,
with the transmitted form of the wavfunction to the right. On
the left one can see two “splinters” of the wavefunction, that
have propagated backwards since the collision with the step.
This is a very small and almost insignificant reflection, except
when one begins to examine what occurs to the system if the
magnetic field is increased (or as α → 1).
A magnetic field of B = 2.5T is introduced to the system that
has a potential step of Up = 2eV , thus giving a magnetic length
parameter of lB ≈ 16nm. The trajectory of the wavepacket
through the graphene layer (that lies on a quartz substrate with
vF ≈ 2× 106m/s23) can be seen in Fig. 4. Various geome-
tries of graphene islands and fabrication techniques have been
described in detail in Ref.38. Figure 4 shows the time evo-
lution of the probability density over 104 f s. At the poten-
tial step the curvature of the trajectory of the wavepacket be-
comes far more obvious than in the case of B = 5mT . The
upturn in the wavepackets trajectory as it approaches the step
boundary leads to a remarkable effect. At 26 f s one can see
in Fig. 4 that the probability density increases as the leviton
compresses its form against the step, |Ψ1|2 > 1. Part of the

Fig. 4 With a static magnetic field applied of strength B = 2.5T
negative refraction of the wavepacket occurs. This is demonstrated
in the time sequence t = 13−103 f s. A reflected ray emerges at the
step on the left hand side of the boundary, whereas inside the step a
negatively refracted transmission is seen. The maximum probability
density, |Ψ1|2 is plotted as a function of time. At the boundary the
probability density peaks. The inset of the plot shows the shape of
|Ψ1|2 at 90 f s, when there is clear negative refraction. The directions
of the trajectories are shown by arrows in this inset. In the plot at
103 f s, illustrative arrows show the curvature of the path of the
wavepacket due to the applied magnetic field. The ratio of leviton
energy to step height is α = 0.4.

1–10 | 5

Page 5 of 10 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



wavefunction slides up the step, before beginning to split into
a reflected “ray”, in analogy to an optical beam. The transmit-
ted ray moves downwards at an angle into the step, exhibiting
clear negative refraction (previous studies have demonstrated
graphene as a Veselago lens, e.g.19). The beginning of this
can be seen at 32 f s. Due to the magnetic field the trajectory
curves, as is indicated in Fig. 4 at 103 f s. Thus, we can con-
trol the negative refraction using the strength of the magnetic
field. Using larger magnetic fields increases the curvature of
the trajectory too. Eventually, with larger magnetic fields, the
maximum probability density is always higher on the left hand
side of the step after collision and another remarkable occur-
rence is seen. For example, at B = 6.5T the majority of the
probability density of the reflected ray far exceeds that of the
transmitted one. The transmitted ray slides down the internal
wall of the step. However, the reflected ray begins to swirl.
This is shown in Fig. 5, where the emergence of a vortex state
can be seen. The reflected wavepacket forms a closed trajec-
tory that moves backwards, spiralling anti-clockwise in close
proximity to the step boundary (in the supporting information,
animations of the graphene system discussed can be found).
We call this new excitation the levity vortex. In addition to
the translational and rotational motion of the wavepacket, very
fast periodic oscillations occur. This trembling motion occurs
even with the application of very small magnetic fields. The
maximum probability density fluctuates as the electron prop-
agates along its trajectory. In Fig. 6 (a) the maximum proba-
bility density either side of the step boundary is shown as the
leviton propagates into it as a function of time (for a step of
91meV and magnetic field of B = 5mT ). Each curve is repre-
sentative of a different value of α . These values of α strongly
affect the durability of the excitation, with the greatest propen-
sity for almost unhindered propagation happening deep below
the height of the potential step, α < 0.28 (Fig.6 (a) and (b)).
Beyond α = 0.28, to the right of the step boundary, the maxi-
mum probability density rapidly decreases as α approaches 1,
i.e. when the leviton energy matches the height of the poten-
tial. One can see in Fig. 7 (a) that when α = 1 the reflected
wavefunction forms as the characteristic two “rays” moving
back from the step (see the inset of Fig. 3 for a comparison).
The maximum probability density is far higher than that of
the transmitted ray. In Fig. 7 (b) , α = 0.9 is shown and
the opposite is true - the transmitted beam contains a higher
probability density. In the range α = 0.9 to 0.93 there be-
gins to emerge plateaus in the maximum probability density
after about 65 f s (shown in Fig.6 (a) and (d)). These small
maximum probability densities belong to the reflected pulse
until the energy of the leviton exceeds the height of the poten-
tial. This can be seen in Fig. 8 where the maximum proba-
bility density to the left of the step (shown by light coloured
lines - pink online) and in the step (darker lines, red online)
are shown as a function of time. In Fig. 8 (a), at α = 0.16,

Fig. 5 A system of graphene, laid upon a quartz substrate, with a
leviton/potential step energy ratio of α = E/Up = 0.4 is shown. The
graphene layer is coloured black and the leviton propagates across
its surface till it meets the potential at t ≈ 19 f s. The colour bar
under each time iteration of the evolution indicates the maximum
probability density, |Ψ1|2. Upon striking the step, a the
wavefunction is reflected to produce a vortex state. In (a) its
evolutionary shape is shown at (1) 13ps, (2) 26ps, (3) 45ps, (4)
64ps, (5) 77ps, (6) 103ps, and (7) 107ps, as it circulates close to
the step boundary. The vortex moves anti-clockwise, as is indicated
by the large arrow in the top right of (a). In (b) snap-shots of the
evolution of the development of the vortex are shown from t = 13 f s
to 90 f s. The applied magnetic field is B = 6.5T .

there is almost complete transmission through the boundary
into the step. This is also true for the case shown in Fig. 8 (b),
at α = 0.4. When the potential of the step approaches α = 1
there is a far larger reflected component of the wavefunction
and this can be seen in Fig. 8 (c) for α = 1.0. When E ex-
ceeds the potential the transmission takes place without much
impedance, as is demonstrated by the plot in Fig. 8 (d). In
Fig. 9, for the cases of α = 0.16, 0.40, 0.94, 1.00, and 1.6 the
percentage of probability density of the wavefunction in the
step with respect to outside it is given as the system evolves in
time. When α = 0.16, this percentage of wavefunction proba-
bility density either side of the potential boundary is 100% for
a duration of 1 f s from t = 52.6 f s. At this moment in time,
the wavepacket is equally poised between the two sides of the
step (see Fig. 8 (c) and Fig. 9). From this time onwards there
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Fig. 6 In (a) we show the maximum probability density as a
function of time as the leviton meets the step for different values of
α = E/Up. There is very little depreciation of |Ψ1|2 within the
range α < 0.28, as is shown in (b) (red lines online). In (c) one can
see |Ψ1|2 drops rapidly for α = 0.32 to 0.88 within the step, tending
towards zero. In (d) at the ratio of leviton energy to step height
α ≥ 0.90 the system exhibits a phase change whereby |Ψ1|2 tends
towards a continuous level. In(e) this trend has stabilised and
plateaus (shown in purple online) emerge in the |Ψ1|2 evolution.
These plateaus exist from α = 0.94 to 1.08. Beyond these values the
quasiparticle lifetime begins to extend again (when the leviton
energy is above that of the step), shown in ( f ). The colours of (a)
are correlated with those of (b)-( f ). In (d)-( f ), the probability
densities are shown from the right of the peaks of (a). The applied
field is B = 5mT .

is only a small backscattering and most of the quasiparticle is
transmitted. This is demonstrated in Fig. 9. This transitory
period when the wavefunction is split equally over the inter-
face is more fleeting when α = 0.4, and occurs from 53.6 f s to
54 f s. Once again nearly perfect transmission ensues, as can
be seen in Fig.9. When E = Up there is a high degree of re-
flection from the step and the maximum probability densities
either side of the boundary never become exactly equal. Even
when the maximum probability densities are close to equality
on either side, this is not similar to the cases of α = 0.16 and
0.4 when the maximum probability densities are the same. In
these cases the reflected pulse always has higher maximum
probability density (see Fig. 8 (c)). In Fig. 9 one can see
that there is a large dip in the |Ψ1|2step / |Ψ1|2le f t ratio when
α = 1.6. This is due to a longer waiting time for the Gaussian
wavepacket to cross the step interface. The peak has already
passed but the tail is still in transition and rupturing into two

Fig. 7 The propagation through the step at 91 f s is shown at (a)
α = E/Up = 1 and (b) α = 0.9. The colour bar indicates the level
of |Ψ1|2. As α tends towards zero, the amplitude of the backscatter
becomes smaller and smaller in the field of B = 5mT .

backscattering wavepackets. The event whereby the wave-
function splits into these smaller reflective pulses, leaving the
larger pulse and moving off the step boundary, occurs at 82 f s.
At 92.7 f s, the coupling between the transmitted and reflected
pulse reaches a critical level and their hold on one another is
mostly relinquished, with the tails leaving the interface. When
E is very close to the potential Up, the tails of the reflected and
transmitted pulses remain connected for a large duration. We
can see this even at 91 f s in Fig. 7 (a) for α = 1. Indeed
this remains true for ≈ 250 f s. In a confined geometry where
the wavefunction will impinge upon the edges of the sample,
this connection remains until dissipation due to the edges oc-
curs (akin to the transmission of the soliton down the Union
canal in Scott Russell’s time when the canal boundary acted
as a dissipative waveguide). There is a striking juxtaposition
of reflected and transmitted elements of the wavefunction that
diminishes as one reduces the α . Indeed, instead of appearing
like a transmitted ripple (like when one drops a stone into a
pond) for α ≈ 1, for smaller α the propagation into the step
resembles more the continuous soliton. Figure 9 also exhibits
a smaller dip for tunneling into the potential step for α = 0.16
for the duration of 84− 92 f s whilst the transmitted and re-
flected pulses sever. We define the tunneling time into the step
by the time scale of first contact of the leviton with the step
to when separation of the reflected and transmitted wavefunc-
tions is complete or at least indiscernible. The transmission
into the step is thus usually followed by some degree of back-
scattering. For α = 1.6 this is clearly seen through the snap-
shots in time of the leviton propagating into the step in Fig.10.
The leviton riding the Fermi-sea in graphene behaves in many
remarkable ways as we have shown, and has great potential
for exploitation in future electronic devices.
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Fig. 8 The maximum probability densities before and in the step as
a function of time are shown (pink and red lines, respectively) for
(a) α = 0.16, (b) α = 0.4, (c) α = 1.0, and (d) α = 1.6 (for
B = 5mT ). In (e) the wavepacket at α = 0.4 for 26 f s, 52 f s, and
78 f s can be seen. Likewise, in ( f ) snapshots of the evolution of the
wavefunction at 26 f s, 65 f s, and 104 f s at α = 1 are given.

4 Discussion and conclusions

The leviton has been realised experimentally in the conven-
tional two-dimensional electron gas (2DEG)2. The 2DEG
that was realised in a GaAs/AlGaAs interface and studied by
Dubnois and co-workers2 has a very high mobility and high
electron density. The mobility in the samples they used is
equal to µ = 2× 106cm2/V s and density ≈ 1.4× 1011cm−2.
At such conditions in the 2DEG the Fermi liquid fixed point
is well established. There levitons can be created due to an or-
thogonality catastrophe. As indeed they have been produced
by Lorentzian-shaped voltage pulses applied on one of two
electrodes located on the sides of the 2DEG. These pulses
generate levitons that travel from the source electrode through
the quantum conductor made of the 2DEG to the other elec-
trode.
To directly reproduce the high mobilities found in a 2DEG
an alternative method to those discussed within for produc-

Fig. 9 The maximum probability densities either side of the step are
presented as a ratio of the probability density in the step divided by
that incident to the step. The result is found with a magnetic flux
density of B = 5mT .

Fig. 10 The maximum probability densities either side of the step
(central, green line) with α = 1.6 at 82 f s, 92.7 f s, and 104 f s.

ing levitons in graphene could be to use suspended graphene
(see, the Review39). Recently it was also indicated that epi-
taxial graphene bubbles may also have a very large mobility
that is comparable to that of suspended graphene40. There
are a number of reasons for choosing to use graphene over a
2DEG, with the main difference between the two being that
the electron transport in the graphene is relativistic41.So, the
levitons created in graphene also have a relativistic character-
they are moving with a constant velocity - “the speed of light”.
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Another important difference is that graphene has a quan-
tum capacitance39,40,42–46. It is related to the property of the
graphene layer to accommodate the charge carriers. The quan-
tum capacitance originates due to the strong dependence of
graphene electron density N on chemical potential, µ . The
density of states (DoS) in two-dimensional graphene depends
linearly on the Fermi energy39–42. Taking this into account
one may obtain that the quantum capacitance is equal to39–42:

CQ = Ae2 dN
dEF

=
2Ae2 |EF |

h̄πν2
F

(10)

where A is the surface area of the graphene layer. At low tem-
peratures, the dependence of the chemical potential (i.e. the
Fermi energy EF ) upon the electron density N has the very
simple form:

µ = EF = h̄νF

√
πN
2

(11)

Thus, the quantum capacitance remains proportional to the
chemical potential µ , or to the gate voltage V (t), applied to
the graphene layer. This means that when we apply voltage
pulses to the graphene layer to create levitons we will change
its capacitance (see the equation (10), where in this case the
value EF should be replaced by EF +V (t) ). For graphene, the
DoS on Fermi energy depends on the electron density N. This
property differs to the conventional 2D systems where the DoS
is constant. The quantum capacitance might have a significant
impact on the creation and detection of levitons, which can be
readily noticeable as arising with an additional capacitance ef-
fect on top of a constant electrostatic capacitance, when mea-
surements of the differential capacitance subjected to different
gate voltage pulses will be performed. We expect that levitons
may also contribute to quantum compressibility, which was
discussed recently for graphene in Refs42–46.

We have shown that the leviton formed in single layers of
graphene has many unique properties viable for applications.
Electrons in graphene travel with an effective speed of light
and high enough lifetime to see many new phenomena. There
is an obvious analogy between tunnelling in graphene and re-
fraction in optics34,47. The Fermi energy level defines an ef-
fective index of refraction, which can be modified with the ap-
plication of an applied magnetic field. In graphene, the height
of the step modulates the transmission of the leviton and a
curving of the trajectory occurs in the applied field. The de-
gree of curvature increases with the field strength. We have
demonstrated the behaviour of the leviton in small to moder-
ate applied magnetic fields at various ratios of leviton energy
divided by step potential . When the leviton approaches the
potential with relatively small energy, and the step is large,
there is nearly complete transmission. At an intermediate level
of leviton energy/potential ratio there is also almost complete
transmission, except one can see a larger backscattering off

the step. This backscatter is universal below the height of the
step and can exist even for low leviton Landau energies. In-
deed, for these Gaussian types of soliton, transmission may
be interpreted as Klein tunnelling26,48 in many cases, so low
is the probability density of the backscattered wavefunction.
Thus, it is highly likely that experiments would miss these
reflected pulses. Closer to the top of the barrier, the backscat-
tering is large and unmistakable. In this paper we have inves-
tigated a generalised step height that is constant as we have
changed the energy of the encroaching soliton. In this ap-
proach, the Gaussian pulse changes as a function of the levi-
ton energy. Alternatively, one can investigate starting with a
constant energy and varying the height of the potential. The
results for this are shown in the supporting information. The
trajectory of the electron cannot be traced out over a well de-
fined path49, it is after all a wave. Thus, we have focused
on the probability density of the wavefunction, which allows
us to chart the movement of the electron through the step in
greater clarity. We have plotted the maximum probability
densities either side of the step and found the characteristic
behaviour of leviton-anti-levition transition through the step.
We found that a Gaussian shaped soliton evolves as it trav-
els, spreading and lowering its probability density naturally.
When it encounters a potential step it will behave as though
there is little obstacle in its path, quantum mechanically tun-
nelling with very little backscatter, when α < 0.28. In the
range 0.28 < α < 0.90 the backscatter becomes increasingly
large, until when α > 0.90 the backscatter, in a small mag-
netic field such as B = 5mT , becomes optimum. In the small
magnetic field there is never complete reflection from the step
when the trajectory begins at incidence. However, at larger
magnetic fields this is not the case and almost complete reflec-
tion does occur (also see the supplementary animations). For
larger magnetic fields the leviton slides up the potential step
and forms a vortex: the levity vortex. Above the step, with
small magnetic field applied, the backscattering also occurs
when the leviton passes over in proximity to the maximum
of the step potential. Therefore, in addition to controlling the
leviton with the magnetic field we have extended the analysis
to a complete picture of the propagation through the step in
small magnetic fields. Klein tunnelling can be controlled by
the strength of the magnetic field. Experimentally, the char-
acteristic electronic relaxation time in mono-layer graphene
was found by Carbone et al to be 200 f s50. We have demon-
strated the leviton dynamics over a duration of 100 f s and be-
yond indicating that levitons formed in graphene have the po-
tential to be used in radical new designs of waveguides and
electronic devices. The studies of levitons in graphene may
shed light on many-body Coulomb interactions between elec-
trons. In general it was discussed that due to this interaction
the value of the Fermi velocity is renormalized. Thus, the sci-
ence of the leviton transport may be linked with understanding
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the Coulomb interaction in graphene. Moreover, levitons and
levity vortices represent new quasiparticles. They may consist
of even or odd numbers of fermions. Thus, the leviton may
have the capability to satisfy either the Fermi or Bose statis-
tics. Also, nothing prohibits levitons from having fractional
statistics such as those for semions or anyons. But the most
intriguing prospect is perhaps the possibility for levitons to
form Majorana fermions: the particles which may themselves
be their own anti-particles. Moving with the Fermi velocity
in graphene, the value of which does not depend on doping,
the leviton trajectory is a well defined path along which they
may transmit coherently for very large distances. This may be
used, for example, for establishing the quantum coherence or
entanglement between qubits (the elements of quantum infor-
mation), which can be embedded on graphene.
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nanoblade technology”. They would also like to thank Dr V.
Zalipaev for stimulating discussions.
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