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ABSTRACT 

A theory presented enables calculating the cohesive energy and line energy (the work of formation 

of the unit border line length) of graphene from the first principles, which also yields estimating the 

line tension of graphene at zero temperature. Contributions from chemical bonds and dispersion 

forces have been estimated separately to give the summary value 16.7×10–10 J m–1 for the line en-

ergy of graphene. The significance of line energy and line tension for the nanotube formation is dis-

cussed. 
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 In spite of the popularity of graphene, not all its properties have been discussed in the literature. 

This article acquaints with the line energy of graphene and exhibits how to calculate it. For three-

dimensional crystalline solids possessing both faces and edges, line energy is typically of secondary 

importance as compared with surface energy. By contrast, for such a two-dimensional structure as 

graphene, line energy is a physical quantity of the same significance as surface energy for three-

dimensional bodies. Surface energy (as an excess energy at the surface after formation a new sur-

face) is simply deduced from cohesive energy in a condensed medium as half (because two surfaces 

appear after the rupture of a body) of cohesive energy per unit surface area. Similarly, turning to 

graphene, we can define line energy as half of the work of rupture of a graphene sheet along a 

straight line per unit line length in a vacuum at zero temperature. This is the same as half of cohe-

sive energy between two half-planes of a graphene sheet per unit line length. The rupture of a two-

dimensional solid in two parts includes two stages: the rupture of chemical bonds (if any) between 

adjacent particles along the rupture line and disjoining the two solid parts against long-ranged at-

tractive forces beyond the limit of their action. If n is the number of chemical bonds per unit line 

length and bu is the bond energy (the work needed for rupturing a bond), cohesive energy  and 

line energy ε are defined as 

cu

l
c bu nu u= + c

)/2

 (1) 

l
b c(nu uε = +  (2) 

where is the line cohesive energy (i.e. cohesive energy per unit line length) of long-ranged for-

ces. Below, we consider the chemical bond and long-range contributions separately. 

l
cu

 We begin with the contribution of chemical bonds, which is evident to be determined by the 

number of bonds ruptured per unit length of a rupture line. However, this number depends on the 

line direction within the graphene plane. This is exhibited in Fig. 1 where the net of graphene σ-

bonds is depicted with the choice of three different directions. Lines 1, 2, and 3 are of the same 

length, but line 1 intersects 9 bonds, line 2 intersects 10 bonds, and line 3 even 17 bonds. Corre- 
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Fig. 1 Dependence of the chemical bond 

component of line energy on the line di-

rection in the graphene plane: lines 1, 2, 3 

of the same length intersect different 

numbers of chemical bonds. 

 

 

spondingly, the chemical bond contribution to line energy will be largest for line 3. The direction 

corresponding to line 1 seems to be most favorable energetically and, if so, should be realized in 

nature. The fact that line 1 corresponds to the real graphene boundary has been recently confirmed 

by Z.-L. Li et al.1 For the whole above reason, we choose the direction of line 1 for our calculations. 

In the honeycomb lattice of graphene (Fig. 1), the hexagon side length (we denote it as b) is b = 

0.142 nm. As it follows from the geometry of Fig. 1, the distance between σ-bonds in the direction 

chosen is 0.246 nm. Hence, the number of σ-bonds per unit length is  Of course, 

the rupture of σ-bonds (which are simply more convenient for depicting in drawings) is always ac-

companied by rupturing π-bonds with accounting for the delocalization energy. So we need the total 

bond energy for our calculations. To find the bond energy 

9 14.065 10 m .n −≈ ×

bu , we note that, since the σ-bond length 

for graphene (0.142 nm) and for benzene (0.140 nm) is almost the same, we can simply use the 

well-known total bond energy of benzene bu =  490 kJ mole–1 = 8.135×10–19 J for estimating the 

cohesive energy of graphene. Taking these numerical values for n and bu , we obtain the chemical 

bond contribution to cohesive energy  

10
b 33.069 10nu −= × J m–1.    

It remains to calculate the contribution of long-ranged forces. In the case of graphene, the long-

ranged forces are dispersion forces. Their significance for graphene systems have been multiply dis-

cussed in the literature,2–5 but estimations made concerned the interaction of parallel layers of gra-
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 5

phene and substrates. By contrast, we consider two in-plane parts of a single graphene layer. We 

perform calculations using the Lennard-Jones pair potential6–8  

12 6
1CC CC

CC CC CC( ) 4 ,  = 0.4396 kJ mol ,  = 0.3851 nmR
R R
σ σε ε σ−

⎡ ⎤⎛ ⎞ ⎛ ⎞∅ = −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

       (3) 

where R is the distance between two interacting carbon atoms. Summing up over all interacting 

pairs can be replaced by integration, and, assuming the matter density to be constant, one proceeds 

to a continuum model as an approximation for a real solid where matter is distributed discretely. 

The possibility and validity of such approximation was lively discussed when formulating a theory 

of graphite,9–11 and Brennan was first to state that that the interaction between graphite layers should 

be estimated only by discrete summation, whereas each layer  taken separately (i.e. graphene) can 

be considered as a continuum.  We follow this approach and this approximation. 

 

x

y

a
δ

M

1

2

 

 

 

Fig. 2 The interaction between a single molecule at point M in the 

half-plane 2 and the half-plane 1 as a whole; δ is a minimum possible 

distance for dispersion forces taken as the initial gap between the two 

half-planes and a is the distance from point M to the gap. 

 

Using the Lennard-Jones potential, the energy MU  of interaction between a single molecule lo-

cated at point M at a distance a from the edge of half-plane 2  (Fig. 2) and half-plane 1 as a whole is  

12 6 6 6
CC CC CC CC CC

CC 2 2 6 2 2 3 4 6

3 214 1
( ) ( ) 8( ) 80( )M

a

U dy dx
x y x y a aδ

σ σ πρε σ σε ρ
δ δ

∞ ∞

+ −∞

⎡ ⎤ ⎡
= − − = −⎢ ⎥ ⎢+ + + +⎣ ⎦ ⎣

∫ ∫
⎤
⎥
⎦

 (4) 

where ρ is the number of carbon atoms per unit area; x and y are Cartesian coordinates with the ori-

gin at point M, x being directed along and y across the gap between the half-planes. Computing the 

whole interaction energy for the two half-planes per unit gap length (the layer of unit length and 

thickness da of half-plane 1 containing ρda molecules), we obtain  

6 2 6
CC CC

M 9 3
0

7 1
8 80

U U da πε σ ρ σρ
δ δ

∞ ⎡ ⎤
= = −⎢

⎣ ⎦
∫ ⎥ . (5) 

Page 5 of 10 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



 6

 This is not a final result because the length δ  is not yet determined. Indeed, we cannot set δ = 

0.142 nm since this quantity refers to σ-bonds and not to dispersion forces. Moreover, this length 

falls into the repulsive region for dispersion forces, so that, just after the rupture of σ-bonds, the 

system instantaneously passes (with increasing δ) to a stable state corresponding to dispersion 

forces. This stable state is obvious to correspond to a minimum of U, and the δ-value needed is 

found from the condition / 0.dU dδ = This yields 

1/6

CC

21 0.800181,
80

δ
σ

⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

 0.308 nm.δ ≈  (6) 

 Substituting this result in Eqn (5), we arrive at the expression for the interaction energy 

1/2
3

CC CC
80

12 21
U π 2ε σ ρ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
. (7) 

Cohesive energy per unit line length only differs in sign from Eqn (7), so we have 

1/2
l 3 2
c CC CC CC CC

80 0.511
12 21

u π 3 2ε σ ρ ε σ ρ⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

. (8) 

With the above numerical values 23 10 18 2
CC CC72.99 10 J,  3.851 10 m,  38.177 10 m ,ε σ ρ− − −≈ × = × = ×  

this yields which makes about only 1% for the contribution of dispersion 

forces as compared with the contribution of chemical bonds. The total line cohesive energy of gra-

phene looks numerically as 33.4  J m

l 11
c 3.1 10 J m ,u − −= × 1

1010−× –1. Correspondingly, we have for the line energy of gra-

phene analytically 

1/2
3

b C
1 80
2 24 21

nu π ⎛ ⎞ε = + ε σ ρ⎜ ⎟
⎝ ⎠

2
C CC  (9) 

and numerically  10 116.7 10 J m .ε − −= ×

To comment this result, we have, first of all, to caution a reader against confusing two important 

notions: line energy ε and line tension κ (line free energy). Since energy and free energy become 

equal at zero temperature, we can say that we have also calculated the line tension of graphene at 

zero temperature (when ε = κ). The temperature dependence of line tension is mainly induced by 
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entropy, and this effect is significant with respect to the contribution of long-ranged forces. How-

ever, in our case, the contribution of long-ranged forces turns to be negligible as compared with 

chemical bonds, and this allows us to hope that the effect of chemical bonds is also great with re-

spect to the influence of temperature. In other words, we can hope that the result obtained for line 

energy could be also valid for the line tension of graphene within a more or less wide temperature 

range.    

 The practical significance of line energy and line tension is evinced, for example, in the process 

of transition graphene sheet/nanotube. At the formation of a nanotube out of a graphene sheet, two 

sheet edges disappear, which yields energy gain (per unit nanotube length) 2ε under adiabatic and 

2κ under isothermal conditions for the process. Taking into account that the bending stiffness of 

graphene is very small,12 we can say that both line energy and line tension practically play the role 

of a driving force for the nanotube formation.  At the same time, chemisorption and, largely, chemi-

cal doping of the graphene sheet edges13 are direct methods of influencing line energy and line ten-

sion and can lead to a significant change or even to reversal of the situation when nanotubes roll out 

into a sheet.14 Remembering the said above about the direction dependence of line energy, we can 

add that the choice of direction at cutting a graphene sheet, is also a method of influencing line en-

ergy and line tension. 

 In conclusion, let us discuss in short some points not taken into account in our calculations. The 

first is a the possible role of the zero vibrational energy. This quantity refers to each carbon atom at 

zero temperature and is defined as hν/2 where h is the Planck constant andν is vibrational fre-

quency. This factor was not taken into account in our theory, but it does exist because the rupture of 

a chemical bond inevitably changes the oscillation frequency. The problem of the influence of 

boundary condition on the zero energy has already been brought up in the modern physics.15 How-

ever, in the absence of numerical results, we can use only general arguments. Except the case of he-

lium, the zero energy is generally accepted to be considerably smaller than the energy of intera-

tomic interaction because the zero energy does not prevent solidification. This is also valid for mo-
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lecular crystals when interatomic interactions are reduced to dispersion forces, and this means that 

the energy of dispersion forces overcounts the zero energy. In addition, not the zero energy itself 

but only its increment is to be compared with the interatomic interaction energy. Thus, speaking 

about the influence of the zero energy on the line energy value, we can expect a correction smaller 

than that estimated for van der Waals forces. 

  The second point that was not touched upon in our calculations is the process of relaxation of a 

graphene sheet after its rupture. The rupture of chemical bonds leads to a small shift of the bound-

ary atoms location (boundary reconstruction) and, therefore, to a change in line energy. Generally, 

the degree of boundary reconstruction of matter depends on the matter compressibility. The stan-

dard procedure of estimating surface or line energy as halve of cohesive energy implies the relaxa-

tion stage to be inessential. Strictly speaking, this corresponds to the case of a rigid body. So we can 

say that we have calculated the chemical bonds and dispersion forces contributions to the line en-

ergy of graphene within the model of a rigid two-dimensional solid. Proceeding to real graphene 

needs a certain relaxation correction. A priori, a relaxation correction for graphene should be 

smaller than for three-dimensional solids for two reasons. First, graphene is the most rigid among 

all solids, and, as was already mentioned, increasing rigidity lowers the effect of relaxation. Second, 

graphene is a two-dimensional solid. The boundary force field is much weaker for two-dimensional 

solids as compared with three-dimensional solids of the same nature, and this should lead to lower-

ing the boundary relaxation effect in two-dimensional bodies. Indeed, ab initio quantum mechanical 

calculations of the boundary relaxation for graphene sheets16 yielded only small effects for symmet-

rical sheets of hexagonal symmetry. At a finite temperature, rectangular sheets exhibited some 

boundary reconstrucrion only at the sheet corners and practically no effect for a smooth boundary. 

Especially noticeable effect was attained for sheets of irregular shape, with buckling at the edge, 

which means deviations from the two-dimensional structure (this can be related to puckering aro-

matic rings in the energy-gradient field17). It is hard to say what was the relaxation effect for the 

graphene line energy in the latter case. However, we dealt with an infinite rectilinear graphene 
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boundary with no corners and at zero temperature to say that the unrelaxed line energy calculated 

above practically coincides with the relaxed one. 
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