NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

1	Hybridization of zirconia, zinc and iron supported on HY zeolite as solar-based
2	catalyst for rapid decolorization of various dyes
3	
4	Norzahir Sapawe
5	
6	Section of Technical Foundation, Universiti Kuala Lumpur – Malaysian Institute of Chemical
7	and Bioengineering Technology, Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah,
8	Melaka, MALAYSIA.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	*To whom correspondence should be addressed,
22	Norzahir Sapawe (Ph.D.)
23	Tel:+6013-575-7795 Fax:+606-551-2001
24	Email : norzahir@unikl.edu.my ; za_heer86@yahoo.com

25 Abstract

27	Hybridization of an electrogenerated zirconia/zinc/iron-supported on HY zeolite
28	nanocomposite catalyst (EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY) was prepared by a facile one-pot
29	electrochemical method. In this study, nanoparticles (<35 nm in size) of electrogenerated
30	zirconia oxide (EGZrO ₂), electrogenerated zinc oxide (EGZnO), and electrogenerated iron oxide
31	(EGFe ₂ O ₃) were formed and distributed on the surface of the HY support. The photoactivity of
32	the catalyst was examined in the photodecolorization of methylene blue (MB) under varying pH,
33	catalyst dosages, and initial concentrations of MB. An amount of 0.38 g L^{-1} 1 wt% EGZrO ₂ /1
34	wt% EGZnO/1 wt% EGFe ₂ O ₃ /HY was found to be the optimum dosage for 10 mg L^{-1} MB,
35	which gave complete decolorization of MB after 1 h of contact time at pH 9 under sunlight
36	irradiation. This result confirmed the high photoactivity of the catalyst compared to other single
37	or double nanometal oxide-supported HY catalysts studied. Nearly complete mineralization of
38	MB was observed, and the catalyst was still stable after six cycling runs with a negligible
39	leaching effect. Significantly, a high decolorization percentage (>80%) of other dyes such as
40	malachite green (MG), congo red (CR), disperse violet (DV), and disperse blue (DB) were
41	obtained when using this promising electrogenerated nanocomposite catalyst.
42	
43	
44	Keywords: nanocomposite catalyst, EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY, electrochemical,
45	photodecolorization, methylene blue
46	
47	
48	
49	

50 1. Introduction

51

72

52 Advanced oxidation processes (AOPs) using semiconductors such as TiO₂, ZnO, WO₃, 53 Fe₂O₃, CuO, ZrO₂, and CdS as photocatalysts are an essential technique in wastewater treatment 54 because they can convert a wide range of harmful dyes at ambient temperature into non-toxic 55 products, CO₂ and water [1-3]. The mixed metal oxides such as TiO₂-ZrO₂, Ag-ZnO, Fe₂O₃-56 TiO₂, Sn–ZnO, Ag–TiO₂, and ZnO–ZrO₂ have also been recognized to exhibit better 57 performance and enhanced photocatalytic activity [4–9]. However, few studies have been 58 reported based on the use of more than two metal oxides as the photocatalyst. 59 Intensive research using the mesoporous materials such as zeolite as a support for metal 60 oxides such as TiO_2 -HZSM5, Co-ZSM5, and CuO-X has become the focus among researchers 61 because they influence the catalytic performance through structural features [10-12]. Zeolitic 62 materials offer a high surface area, are thermally stable, eco-friendly, and also specific 63 photophysical properties in controlling the charge and electron transfer processes [13–14]. The 64 interaction between the zeolite and metal oxide also leads to an enhancement in the contact 65 between the catalyst surface and irradiation, as well as less amount of metal oxides was required 66 [15]. 67 Recently, we have reported a new preparation method for an α -Fe₂O₃, EGZrO₂, EGZnO, 68 and CuO supported HY catalyst by a simple and rapid electrochemical process, which possesses 69 high photoactivity in the decolorization of various synthetic dyes [1-3,16]. The nanosized metal 70 oxides as well as the synergistic interaction between the metal and the support were found to

71 play important roles in the enhancement of the reaction [17–18]. The introduction of several

by altering and restructuring the materials [4]. Thus, we attempted to prepare ZrO_2 , ZnO, and

metal oxides presumably could be improved and endowed extra properties to the photocatalyst

74 Fe₂O₃ supported on HY zeolite by the corresponding method. ZrO₂ was chosen due to its

75	specific optical and electrical properties, thermal stability, and strong mechanical strength as well
76	as the presence of acid-base and redox capabilities [19,20], while ZnO has attracted much
77	attention due to its similar band gap energy to TiO_2 (3.20 eV) which possesses high
78	photosensitivity and the ability to degrade various pollutants [5,21].
79	Therefore, we report for the first time, the facile synthesis of electrogenerated nanoparticles
80	of a Zr, Zn, and Fe-supported HY (EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY) catalyst, and its remarkable
81	performance toward the photodecolorization of methylene blue (MB). The 1 wt% $EGZrO_2/1$
82	wt% EGZnO/1 wt% EGFe2O3/HY was electrosynthesized within less than 6 min. The catalysts
83	were then characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM),
84	Brunnauer-Emmett-Teller surface area analysis (BET), and inductively coupled plasma mass
85	spectrometry (ICP-MS). The performance of EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY was compared with
86	bare HY, EGZrO ₂ /HY, EGZnO/HY, EGFe ₂ O ₃ /HY, EGZrO ₂ /EGZnO/HY,
87	EGZrO ₂ /EGFe ₂ O ₃ /HY, and EGZnO/EGFe ₂ O ₃ /HY catalysts. The appropriate conditions for
88	photodecolorization were examined under varying pH, catalyst dosages, and initial
89	concentrations of MB. The kinetic behavior of the catalyst was also studied to determine the
90	surface interaction of the catalyst with MB. In this work, a new model of the
91	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY nanocomposite catalyst was prepared using a simple operation
92	within a short reaction time to give a high decolorization percentage of MB, thus endowing this
93	catalyst with the potential to be used as a promising photocatalyst.
94	
95	2. Experimental
96	

97 2.1. Materials

99	The HY zeolite had a Si/Al ratio of 80 and was purchased from Zeolyst International. N,N-
100	dimethylformamide (DMF) was purchased from Merck and naphthalene was obtained from
101	Fluka. Sodium hydroxide, hydrochloric acid, and methylene blue (C.I. 52015 for microscopy)
102	were obtained from QReC TM . The platinum (Pt), zirconia (Zr), zinc (Zn), iron (Fe) plate cells
103	were obtained from Nilaco Metal, Japan. All reagents were of analytical grade and were used as
104	received. Deionized water was used for the preparation of the pH solution and adjustments to the
105	pH were performed using a 0.1M HCl and NaOH solution.
106	
107	2.2. Catalyst preparation
108	
109	The 1 wt% EGZrO ₂ /1 wt% EGZnO/1 wt% EGFe ₂ O ₃ /HY catalyst was prepared according
110	to the previously reported procedure [2,9,16]. A 10 mL DMF solution containing 0.1 M
111	tetraethylammonium perchlorate was electrolyzed in the presence of 6 mmol naphthalene as a
112	mediator and 1.5 g HY zeolite in a normal one-compartment cell fitted with a Pt plate cathode (2
113	\times 2 cm ²) and Zr, Zn, and Fe anode plates (2 \times 2 cm ² each) at a constant current density of 120
114	mA/cm ² under a nitrogen atmosphere at 273 K. The anodes were used alternately as Zr, Zn and
115	Fe, depending on the amount required. After electrolysis the mixture was impregnated, oven
116	dried overnight at 378 K, and calcined at 823 K for 3 h to yield a brownish powder
117	$EGZrO_2/EGZnO/EGFe_2O_3/HY$ catalyst, which ready for characterization and photocatalytic
118	testing.
119	The bare nanoparticles EGZrO ₂ , EGZnO, and EGFe ₂ O ₃ were prepared using the same
120	procedure as above but in the absence of HY zeolite. The required weight percent of the
121	EGZrO ₂ , EGZnO, and EGFe ₂ O ₃ supported on HY was calculated by the time of electrolysis,
122	which is based on the Faraday's law,
123	

New Journal of Chemistry Accepted Manuscrip

$$t = \left(\frac{F}{I}\right)(z \times n) \tag{1}$$

125

where $t = \text{total time for the constant current applied (s); } F = 96486 \text{ C mol}^{-1}$, which is the Faraday constant; I = the electric current applied (mA); z = the valency number of ions of substance(electrons transferred per ion); and n = the number of moles of substance (number of moles,

129 liberated n = m/M).

130

131 **2.3. Characterization**

132

133 The crystalline structures of the catalysts were studied by XRD recorded on a D8 134 ADVANCE Bruker X–ray diffractometer using Cu K_{α} radiation at a 2 θ angle ranging from 3° to 135 90°. The particle sizes of the catalysts were calculated using the Debye–Scherrer equation, 136

$$D = \frac{k\lambda}{\beta\cos\theta}$$
(2)

138

139 where k = 0.94 is a coefficient, $\lambda = 1.5406$ Å is the X–ray wavelength, β is the full width half 140 maximum (FWHM) of the sample and θ is the diffracting angle. The phases were identified with 141 the aid of the Joint Committee on Powder Diffraction Standards (JCPDS) files.

The morphological properties of the EGZrO₂/EGZnO/EGFe₂O₃/HY nanocomposite
catalyst as well as the distribution of EGZrO₂/EGZnO/EGFe₂O₃ deposited on the HY surface
were examined by TEM (JEOL JEM–2100F). The textural properties (i.e., specific surface area,
pore volume, and pore diameter) were determined from nitrogen adsorption–desorption

146	isotherms at liquid nitrogen temperature using a Micromeritics ASAP 2010 instrument. The
147	surface area was calculated with the BET method, and pore distributions were determined by the
148	Barrett-Joyner-Halender (BJH) method. Prior to measurement, all the samples were degassed at
149	383 K to 0.1 Pa. The band gap energy of EGZrO ₂ , EGZnO, EGFe ₂ O ₃ ,
150	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ , and EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY was determined from plots of the
151	Kubelka–Munk (K–M) function $[f_{K-M} = (h\nu/\lambda)^{1/2}]$ as a function of the energy of the excitation
152	light [hv].
153	
154	2.4. Photocatalytic testing
155	
156	The photocatalytic activity of the prepared EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY catalyst was
157	tested for the decolorization of MB. A 0.08 g of the catalyst was dispersed in 200 mL of 10 mg
158	L^{-1} MB aqueous solution. The adsorption–desorption equilibrium was achieved under dark
159	conditions after 1 h, and the mixture was then exposed for 1 h with constant stirring under
160	sunlight (January to March 2014, between 12 NN until 3 PM). The average intensity of sunlight
161	during this period is 1.315×10^5 Lux unit. Irradiation was carried out in the open air condition.
162	However, during the illumination time, no volatility of the solvent was observed.
163	At specific time intervals, 2.5 mL of the sample solution was withdrawn and centrifuged
164	prior measurements for the remaining MB concentration by a UV-vis spectrophotometer
165	(Thermo Scientific Genesys 10 uv Scanning) using the characteristic adsorption band at 664 nm.
166	The decolorization percentage was calculated as follows,
167	
168	Decolorization (%) = $\frac{(C_0 - C_t)}{C_0} \times 100$ (3)

168

169

(3)

New Journal of Chemistry Accepted Manuscrip

170	where C_o represents the initial concentration and C_t denotes a variable concentration.
171	
172	2.5. Analyses
173	
174	The elemental analyses of Zr, Zn, and Fe in a solution during an experiment were
175	determined by ICP-MS using ELAN 6100 Perkin Elmer ICPMS. The BOD of the solution were
176	measured using YSI model 33, whereas the BOD bottles were incubated at 293 K for five days
177	and the difference in dissolved oxygen was used to calculate BOD ₅ . The HACH DR4000
178	spectrometer was used for COD measurement. In addition, the total organic carbon (TOC)
179	removal was determined using a TOC Shimadzu Vcph spectrophotometer for each run before
180	and after a 1 h reaction time for the evaluation of the mineralization of MB dye. TOC was
181	calculated as the difference between the total carbon (TC) and inorganic (IC) in the liquid
182	sample.
183	
184	3. Results and Discussion
185	
186	3.1. Characterization
187	
188	3.1.1 Crystallinity, phase and structural studies
189	
190	The XRD pattern of the prepared catalysts was compared, and the results are shown in Fig.
191	1. According to Fig. 1a, the peak intensity of HY decreased as the EGZrO ₂ , EGZnO, and
192	EGFe ₂ O ₃ were loaded onto HY, suggesting that the presence of foreign substances affected the
193	morphology of the supported HY fingerprint. Almost all of the peaks corresponding to EGZrO ₂ ,

- 194 EGZnO, and EGFe₂O₃ were detected in EGZrO₂/EGZnO/EGFe₂O₃ nanocomposite, indicating
- 195 that the prepared catalysts were well-mixed (Fig. 1b).

New Journal of Chemistry Accepted Manuscript

198	A series of peaks were observed for EGZrO ₂ , EGZnO, and EGFe ₂ O ₃ , which are consistent
199	with the tetragonal and monoclinic phase of ZrO_2 (JCPDS 36–1541), the hexagonal wurtzite
200	structure of ZnO (JCPDS 36–1541), and the hematite phase of α -Fe ₂ O ₃ with rhombohedral
201	symmetry (JCPDS 33-0664), respectively, with no other diffraction peaks being detected,
202	indicating the purity of the prepared catalysts [1,16,21,22].
203	Fig. 1c shows the enlargement of a selected area of the XRD pattern from 22° to 72° for
204	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ , EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY, and bare HY. There were several
205	peaks detected corresponding to ZrO ₂ , ZnO, and Fe ₂ O ₃ , verifying the presence of EGZrO ₂ ,
206	EGZnO, and EGFe ₂ O ₃ metals on the HY support.
207	The average crystallite size of the catalysts was estimated by the Debye-Scherrer equation
208	on the basis of the major peaks of EGZrO ₂ (101), EGZnO (101), and EGFe ₂ O ₃ (104), which
209	were 11.7 nm, 30.2 nm, and 26.5 nm, respectively. However, this crystallite size was increased
210	to 13.6 nm, 32.8 nm, and 28.5 nm, respectively, upon the formation of the nanocomposite
211	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ catalyst. This may be due to agglomeration and the interaction
212	between the zirconia, zinc, and iron species [23].
213	
214	3.1.2 Morphological properties
215	
216	The morphological properties of the EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY catalysts were
217	examined by HR-TEM, and the images are presented in Fig. 2. The inset image shows the fast
218	Fourier transform patterns (FFT), and magnification of the selected area in the FFT patterns
219	showed the atomic arrangement in the crystal, and allowed the estimation of the interplanar
220	distances. Figs. 2a, 2b, and 2c illustrate that the EGZrO ₂ , EGZnO, and EGFe ₂ O ₃ nanoparticles
221	were successfully prepared with well-defined boundaries and no connecting necks, which
222	indicates the absence of a sintering effect between the particles.

Fig. 2. HR-TEM micrographs of (a) EGZrO₂ (b) EGZnO (c) EGFe₂O₃ (d, e, and f)

EGZrO₂/EGZnO/EGFe₂O₃/HY in low and high magnification and the insert of Fig. 2 are its

- 226 corresponding FFT
- 227

The average particle size for EGZrO₂, EGZnO, and EGFe₂O₃ varied in a narrow range from 5–35 nm. The theoretical values of the particle sizes (*D*) were found to be 19.2 nm, 17.5 nm, and 22.9 nm, respectively, which were estimated by the following equation:

New Journal of Chemistry Accepted Manuscript

231

$$D = \frac{6}{\rho S} \tag{4}$$

233

234 where ρ is the theoretical density of the electrogenerated metal oxide powder and S is the surface 235 area determined by N₂ adsorption-desorption isotherms, assuming that the particles are spherical 236 in shape [24]. 237 However, the micrographs show particles with an elliptical and irregular shape, which may 238 be due to the particles overlapping [19]. The value of the interplanar distance (d-spacing) of the 239 lattice fringes estimated from this image was consistent with the value of the lattice spacing of 240 EGZrO₂, EGZnO, and EGFe₂O₃ which is available in the XRD database. Based on this result, it 241 was confirmed that EGZrO₂, EGZnO, and EGFe₂O₃ existed in the HY support (Figs. 2d, 2e, and 242 2f). 243 244 3.1.3 Study of textural properties 245 246 The surface area analysis data obtained from the BET method as well as the pore volume 247 and pore diameter determined by the Barret-Joyner-Halenda (BJH) desorption isotherms 248 method were tabulated in Table 1. The addition of EGZrO₂/EGZnO/EGFe₂O₃ onto HY increased 249 the surface area, pore diameter, and pore volume, which may have been due to the existence of

250 electrogenerated metal oxide nanoparticles. The improvement in the surface contact of the

251 catalyst enhanced the light irradiation, thereby increasing the photodecolorization of MB. A

similar observation was also reported for the photoreduction of methyl orange by TiO₂ supported
on a zeolite matrix [25].

254

Table 1. The textural properties of the catalysts

	Catalysts	Surface area	Average pore	Pore volume
		(m^2g^{-1})	diameter [*] (nm)	$(cm^{3}g^{-1})$
	EGZrO ₂	54.9	11.1	0.153
	EGZnO	61.3	6.37	0.263
	EGFe ₂ O ₃	50.1	3.81	0.053
	EGZrO ₂ /EGZnO/EGFe ₂ O ₃	163	5.13	0.352
	HY	557	2.70	0.376
	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY	636	2.90	0.462
256	*adsorption average pore diameter	er $(4V/V \text{ by BE})$	()	
257				
238				
259	3.2. Photocatalytic testing for the decol	orization of MI	3	
260				
261	3.2.1. Catalyst performance			
262				
263	The photoactivity of the prepared E	GZrO ₂ /EGZnO/	EGFe ₂ O ₃ /HY cata	lyst was tested and
264	compared with bare HY, Degussa P25 Ti	O ₂ , EGZrO ₂ /HY	, EGZnO/HY, EG	Fe ₂ O ₃ /HY,
265	EGZrO ₂ /EGZnO/HY, EGZrO ₂ /EGFe ₂ O ₃ /	HY, and EGZn	D/EGFe ₂ O ₃ /HY ca	talysts on the
266	decolorization of MB; the results are show	wn in Fig. 3. Foi	comparison, a co	ntrolled experiment
267	(known as photolysis) was also carried or	ut without the pr	esence of any cata	lyst. Each experiment
268	was performed in the dark to achieve ads	orption-desorpti	on equilibrium be	fore exposure to
269	sunlight for 1 h with constant stirring. Th	e results show the	nat almost complet	te decolorization of
270	MB was achieved within a short period (1 h) of contact ti	me when using	
271	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY, compare	d with the other	examined catalyst	s, indicating the high
272	photoactivity of the prepared nanocompo	site catalyst und	er sunlight irradia	tion. Under photolysis
273	conditions, only 3% MB was decolorized	because of the	degradation of the	substance after long
274	exposure to sunlight. The mixed metal ox	kides (EGZrO ₂ /E	GZnO/EGFe ₂ O ₃ /I	HY) photocatalyst
275	exhibit better performance with enhance	photocatalytic ad	ctivity. It might be	due to the catalytic
276	performance through structural features a	and the interaction	on between the ma	terials leads to the

enhancement of the contact between the surface and irradiation, as well as active species of
mixed metal oxides. In addition, the formation of nanosized photocatalyst increase in surface
area (porosity) and give the quantum effect, thus enhancing their photoreactivity properties.

280

281

Fig. 3. Photocatalyts performance on decolorization of MB [$C_{MB} = 10 \text{ mg L}^{-1}$, pH = 9, W = 0.38 g L⁻¹, t = 1 h, under sunlight irradiation]

284

```
285 3.2.2. Effect of pH
```

286

The effect of pH on the decolorization of MB using the EGZrO₂/EGZnO/EGFe₂O₃/HY catalyst was studied in the pH range of 3–11 under sunlight conditions. An increase in decolorization was observed from pH 3 to pH 9, but a further increase to pH 11 resulted in a decrease in decolorization. The highest decolorization was obtained at pH 9 with a total decolorization of 99.5%, whereas the other conditions gave 91.3%, 82.8%, 36.8%, and 21.3% decolorization at pH 11, pH 7, pH 5, and pH 3, respectively. In alkaline medium, the MB cations are easily attracted to the catalyst surface because of the low competition given by the abundance 14

294	of hydroxyl anions in the solution. Thus, exposure of this state to sunlight increased the
295	formation of hydroxyl radicals and the photocatalytic reaction rate, which led to an increase in
296	MB decolorization up to 99.5% after 1 h of contact time. However, in acidic conditions,
297	competition between the MB cations and H^+ ions occurred, which inhibited the dyes from
298	approaching the catalyst surface, thereby reducing the efficiency of the reaction, resulting in
299	reduced MB decolorization. Similar results were reported in the literature regarding the
300	photodecolorization of MB using a TiO ₂ /ZnS nanocomposite [26].
301	
302	3.2.3. Effect of catalyst dosage
303	
304	The effect of catalyst dosage was carried out with different dosages at a fixed MB
305	concentration. An increase in decolorization was observed when the catalyst dosage was
306	increased from 0.05 to 0.38 g L^{-1} (40.0% up to 99.5%). The increase in decolorization was most
307	likely due to an increase in the number of active sites with higher catalyst loading contributing to
308	an increase in the number of photons and dye molecules absorbed [23]. The most effective
309	decolorization of MB was achieved with a catalyst dosage of 0.38 g L^{-1} , and a further increase in
310	catalyst dosage to 1.50 g L^{-1} resulted in a decrease in decolorization (99.5% down to 47.6%). A
311	higher particle concentration leads to greater turbidity of the suspension, which reduces light
312	penetration and inhibits photodecolorization [27].
313	
314	3.3. Investigation into biodegradability
315	
316	The chemical oxygen demand (COD), total organic carbon (TOC), and five-day
317	biochemical oxygen demand (BOD ₅) for the MB solution were measured and the results are
318	shown in Fig. 4. COD was used to investigate the amount of organic compounds that present in

New Journal of Chemistry Accepted Manuscript

the aqueous solution where the initial COD value was measured as 144 mg L^{-1} . However, this 319 value was significantly reduced to 3 mg L^{-1} after sunlight irradiation for 1 h. The graph shows 320 321 that the percentage of COD rapidly increased during the first 30 min of the reaction, which may 322 have resulted from to the degradation of MB into two different compounds of hydroxylated and 323 amine substituent products. The graph continuously increased until the reaction was completed 324 to form the final products of CO_2 and H_2O [12,28]. Next, the ratio of total organic carbon 325 (TOC/TOC_0) showed a significant decrease (0.03), which may be attributed to the fact that 326 structured dye molecules were fragmented and converted into small organic molecules, thus 327 enhancing mineralization during the irradiation process [29].

328

329 Fig. 4. The COD removal and TOC reduction levels. Insert table are its corresponding BOD₅.

330 $[C_0 = 10 \text{ mg L}^{-1}, \text{pH} = 9, \text{W} = 0.38 \text{ g L}^{-1}, \text{t} = 1 \text{ h}, \text{EGZrO}_2/\text{EGZnO}/\text{EGFe}_2\text{O}_3/\text{HY}, \text{under sunlight}]$

331 irradiation]

332

333 The five-day (BOD_5) was evaluated to measure the amount of oxygen consumed by a

357

New Journal of Chemistry

335	used as a biodegradability index for an aqueous dye solution, and a ratio value of 0.26 was
336	observed for the non-irradiated dye solution, indicating that the dye solution was non-
337	biodegradable [30]. This ratio value increased up to 17.7 after irradiation for 1 h, signifying the
338	formation of more biodegradable intermediates following photodegradation. A higher value of
339	the BOD ₅ /COD ratio indicates better biodegradability [31]. In addition, the changes of the pH
340	solution before and after the reaction were monitored. This shows that the solution reaction at pH
341	9 was shifted to pH 6, indicating that the MB dye was oxidized and decomposed to some extent
342	as CO ₂ and H ₂ O [32].
343	
344	3.4. Stability of photocatalyst
345	
346	To study the effect of zirconia-zinc-iron leaching into the solution, the samples were kept
347	in the dark for 1 h, and then exposed to sunlight for 1 h before being subjected to ICP-MS. It
348	was confirmed that photocatalysis was mainly due to the Zr, Zn, and/or Fe that exists on the
349	catalyst surface, as the results show that no Zr, Zn, and/or Fe ions were detected (Table 2). The
350	only trace amount of leached Zn and Fe ions (less than 1%) presence as tabulated in the table
351	was ignored due to below the permissible level which is also reported in other studies [1,2,9,16].
352	
353	Table 2. Percentage of metal detected in the solution after experimental determined by ICP–MS.
	Catalysts % metal detected in the solution
	Zr Zn Fe
35/	$EGZrO_2/EGZnO/EGFe_2O_3/HY - 0.12 0.34$
355	Six cycling runs for MB decolorization were also performed to evaluate the photocatalytic

activity of EGZrO₂/EGZnO/EGFe₂O₃/HY (Fig. 5). The initial concentration of MB was held

constant (10 mg L^{-1}) at pH 9 for the 1 h of irradiation time, and the catalyst was recycled after

- 358 filtration and calcination at 823 K for 3 h at every cycle. High MB decolorization (>90 %) could
- be maintained after six cycling runs and there was no obvious catalyst deactivation [1–3,16,33-
- 360 35].

Fig. 5. Reusability of EGZrO₂/EGZnO/EGFe₂O₃/HY on photocatalytic decolorization of MB $[C_0 = 10 \text{ mg L}^{-1}, \text{ pH} = 9, \text{ W} = 0.38 \text{ g L}^{-1}, \text{ t} = 1 \text{ h, under sunlight irradiation}]$

364

365 **3.5. Application to other dyes**

```
In order to study the proficiency of the EGZrO<sub>2</sub>/EGZnO/EGFe<sub>2</sub>O<sub>3</sub>/HY nanocomposite
catalyst, various types of dyes such as malachite green (MB), congo red (CR), disperse violet
(DV), and disperse blue (DB) were tested; the results are shown in Fig. 6. The initial
concentration of the respective dye was held constant (10 mg L^{-1}) and was prepared using
laboratory tab water, then irradiated under sunlight for 1 h of contact time. A high decolorization
percentage (>80%) of various types of dye was obtained, showing the potential of these
electrogenerated nanocomposite catalyst.
```


 $\label{eq:starses} 375 \qquad \mbox{Fig. 6. Application of EGZrO_2/EGZnO/EGFe_2O_3/HY on photocatalytic decolorization of various}$

376 type of dyes [$C_0 = 10 \text{ mg L}^{-1}$, pH = 9, W = 0.38 g L⁻¹, t = 1 h, under sunlight irradiation]

377

378 **3.6. Principle of band gap energy**

379

Modification of semiconductor metal species can increase the efficiency of photoactivity the material due to improved light sensitivity. The preparation of the triple metal via electrochemical method was performed, and the results show an enhanced and extendable response to the visible light region (Fig. 7a). The band gap in a semiconductor material is related to the absorbed wavelength range; the higher the absorption wavelength, the shorter the band gap energy [36]. Therefore, the addition of more metal oxide can lower the band gap energy, and consequently allow the photocatalyst to be activated by weaker energy.

Fig. 7. (a) Schematic energy level diagram of single, double, and triple metal oxide catalyst (b) the ($f_{\text{K-M}}$) vs. (hv) spectra of catalysts plot

390

Semiconductors such as ZrO_2 , ZnO, and Fe_2O_3 can be excited by photons with appropriate energy to produce the photogenerated electron or hole pairs. Electron and hole separation may take place between ZrO_2 , ZnO, and Fe_2O_3 in the ternary oxide, since the energy level of ZnO and Fe_2O_3 , both for the valence band (VB) and the conduction band (CB), correspond well within the band gap of ZrO_2 . When the electrons are excited, most of the electrons from the CB of ZrO_2 can easily transfer to the CB of ZnO or Fe_2O_3 ; by this means, electron hole recombination may be prevented as well [37]. According to Fig. 7b, it was verified that the band gap energy changed

398	significantly between EGZrO ₂ , EGZnO, EGFe ₂ O ₃ , EGZrO ₂ /EGZnO/EGFe ₂ O ₃ , and
399	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY, at 5.16 eV, 3.20 eV, 2.00 eV, 1.56 eV, and 1.40 eV,
400	respectively. The band gap energy was determined using the plotted Kubelka–Munk (K–M)
401	spectrum.
402	The band gap energy of metal oxide semiconductors in this study is in agreement with the
403	literature values [38]. It was found that the combination of metal oxides caused a decrease in the
404	band gap (red shift). Similar phenomenon was also reported in the literature [39,40]. The
405	outcome of modification showed that the band gap energy of the triple metal oxide
406	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ (1.56 eV) and EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY (1.40 eV) was reduced
407	compared to single metal oxide catalyst which were 5.16 eV, 3.20 eV and 2.00 eV for EGZrO ₂ ,
408	EGZnO and EGFe ₂ O ₃ catalyst, respectively.
409	Similar results were also reported in the literature regarding the enhancement of optical
410	properties of photocatalysts by combination of several metal oxides [39,40]. In addition, the
411	combination of the three metal oxides caused the reduction in total band gap (red shift) and
412	synergistic effect that led to the enhancement of the photocatalytic performance [4-8,39,40]. The
413	presence of Si in zeolite material might also influence the reduction of band gap of
414	EGZrO ₂ /EGZnO/EGFe ₂ O ₃ /HY photocatalyst to 1.40 eV.
415	
416	4. Conclusions
417	
418	In this study, a new synthesis method was introduced for highly photoactive
419	electrogenerated zirconia/zinc/iron-supported on HY zeolite (EGZrO2/EGZnO/EGFe2O3/HY)
420	nanocomposite catalyst for efficient degradation of methylene blue (MB). The excellent
421	photoresponse of the prepared catalysts under sunlight conditions was also advantageous. An

422 amount of 0.38 g L^{-1} 1 wt% EGZrO₂/1 wt% EGZnO/1 wt% EGFe₂O₃/HY was found to be the

423	optimum dosage for 10 mg L^{-1} MB, which gave 99.5% decolorization of MB after 1 h of contact
424	time at pH 9 under sunlight irradiation. The mineralization of MB was measured by COD
425	removal as well as BOD_5/COD and TOC/TOC_0 ratio analyses, which were found to be 97.9%,
426	17.7, and 0.03, respectively, after 1 h of contact time. The catalyst was still stable after six
427	cycling runs and the leaching test showed negligible leaching effects. A high decolorization
428	percentage (>80%) was obtained using other dyes such as malachite green (MG), congo red
429	(CR), disperse violet (DV), and disperse blue (DB). Significantly, the simple operation, short
430	synthesis time, high decolorization percentage of MB, and above all, may make this synthesis
431	method an obvious choice for the preparation of various catalysts for a variety of applications.
432	
433	Acknowledgement
434	
435	The authors are grateful for the financial support by the Research University Grant from
436	Universiti Teknologi Malaysia (Grant No. 01H59), the awards of UTM-RMC Postdoctoral
437	Fellowship and UTM Zamalah Scholarship (Norzahir Sapawe), and special thanks to Associate
438	Professor Dr Aishah Abdul Jalil and Professor Dr Sugeng Triwahyono for their supports, help
439	and guidance throughout the research.
440	
441	References
442	
443	[1] N.F. Jaafar, A.A. Jalil, S. Triwahyono, M.N.M. Muhid, N. Sapawe, M.A.H. Satar, H.
444	Asaari, Chem. Eng. J., 2012, 191, 112–122.
445	[2] N. Sapawe, A.A. Jalil, S. Triwahyono, R.N.R.A. Sah, N.W.C. Jusoh, N.H.H. Hairom, J.
446	Efendi, Appl. Catal. A: Gen., 2013, 456, 144-158.

- 447 [3] A.A. Jalil, M.A.H. Satar, S. Triwahyono, H.D. Setiabudi, N.H.N. Kamarudin, N.F. Jaafar,
- 448 N. Sapawe, R. Ahamad, J. Electroanal. Chem., 2013, 701, 50–58.
- 449 [4] W. Zhou, K. Liu, H. Fu, K. Pan, L. Zhang, L. Wang, C.C. Sun, *Nanotechnol.*, 2008, 19, 1–
 450 7.
- 451 [5] M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, *Appl. Catal. B:*452 *Environ.*, 2006, 63, 305–312.
- 453 [6] X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, L. Klabunde, *Appl. Catal. B:*454 *Environ.*, 2009, **91**, 657–662.
- 455 [7] J.H. Sun, S.Y. Dong, J.L. Feng, X.J. Yin, X.C. Zhao, *J. Mol. Catal. A: Chem.*, 2011, 335,
 456 145–150.
- 457 [8] W. Zhao, L. Feng, R. Yang, J. Zheng, X. Li, Appl. Catal. B: Environ., 2011, 103, 181–189.
- 458 [9] N. Sapawe, A.A. Jalil, S. Triwahyono, *Chem. Eng. J.*, 2013, 225, 254–265.
- 459 [10] W. Zhang, K. Wang, Y. Yu, H. He, Chem. Eng. J., 2010, 163, 62–67.
- 460 [11] Z.M. El–Bahy, M.M. Mohamed, F.I. Zidan, M.S. Thabet, *J. Hazard. Mater.*, 2008, 153,
 461 364–371.
- 462 [12] A. Nezamzadeh–Ejhieh, S. Hushmandrad, Appl. Catal. A: Gen., 2010, 388, 149–159.
- 463 [13] H. Chen, A. Matsumoto, N. Nishimiya, K. Tsutsumi, *Colloids Surf. A*, 1999, **157**, 295–305.
- 464 [14] X. Liu, K.K. Iu, J.K. Thomas, J. Chem. Soc., Faraday Trans., 1993, 89, 1861–1865.
- 465 [15] M. Aleksic, H. Kusic, N. Koprivanac, D. Leszczynska, A. L. Bozic, *Desalination*, 2010,
 466 **257**, 22–29.
- 467 [16] N. Sapawe, A.A. Jalil, S. Triwahyono, S.H. Adam, N.F. Jaafar, M.A.H. Satar, *Appl. Catal.*468 *B: Environ.*, 2012, **125**, 311–323.
- 469 [17] Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li, X. Du, Appl. Catal. B: Environ.,
- 470 2014, **144**, 730–738.

- 471 [18] N.W.C. Jusoh, A.A. Jalil, S. Triwahyono, H.D. Setiabudi, N. Sapawe, M.A.H. Satar, A.H.
- 472 Karim, N.H.N. Kamarudin, R. Jusoh, N.F. Jaafar, N. Salamun, J. Efendi, *Appl. Catal. A:*
- 473 *Gen.*, 2013, **468**, 276–287.
- 474 [19] N. Chandra, D.K. Singh, M. Sharma, R.K. Upadhyay, S.S. Amritphale, S.K. Sanghi, J.
 475 *Colloid Interface Sci.*, 2010, 342, 327–332.
- 476 [20] L.Y. Zhu, X.Q. Wang, G.H. Zhang, Q. Ren, D. Xu, *Appl. Catal. B: Environ.*, 2011, 103,
 477 428–435.
- 478 [21] K. Hayat, M.A. Gondal, M.M. Khaled, S. Ahmed, A.M. Shemsi, *Appl. Catal. A: Gen.*,
 479 2011, **393**, 122–129.
- 480 [22] Q. Chang, J.E. Zhou, Y. Wang, G. Meng, Adv. Powder Technol., 2009, 20, 371–374.
- 481 [23] D.P. Das, N. Baliarsingh, K.M. Parida, J. Mol. Catal. A: Chem., 2007, 261, 254–261.
- 482 [24] C.J. Lucio–Ortiz, J.R. De la Rosa, A. Hernandez–Ramirez, E.M. Lopez–Cuellar, G.
- 483 Beltran–Perez, R.D.C.M. Guardiola, C.D. Pedroza–Solis, *Colloids Surf. A: Physicochem.*
- 484 *Eng. Asp.*, 2010, **371**, 81–90.
- 485 [25] R. Chatti, S.S. Rayalu, N. Dubey, N. Labhsetwar, S. Devotta, *Sol. Energy Mater. Sol.*
- 486 *Cells*, 2007, **91**, 180–190.
- 487 [26] A. Franco, M.C. Neves, M.M.L. Mobteiro, J. Hazard. Mater., 2009, 161, 545–550.
- 488 [27] E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, J. Hazard. Mater., 2006, 136, 85–94.
- 489 [28] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, *Appl. Catal. B:*490 *Environ.*, 2001, **31**, 145–157.
- 491 [29] J. Paul, K.P. Rawat, K.S.S. Sarma, S. Sabharwal, *Appl. Radiat. Isot.*, 2011, **69**, 982–987.
- 492 [30] H. Chun, W. Yizhong, *Chemosphere*, 1999, **39**, 2107–2115.
- 493 [31] K. Swaminathan, K. Pachhade, S. Sandhya, *Desalination*, 2005, 186, 155–164.
- 494 [32] X. Li, K. Lv, K. Deng, J. Tang, R. Su, J. Sun, L. Chen, Mater. Sci. Eng. B, 2009, 158, 40-
- 495 47.

- 496 [33] N. Sapawe, A.A. Jalil, S. Triwahyono, M.I.A. Shah, R. Jusoh, N.F.M. Salleh, B.H.
- 497 Hameed, A.H. Karim, *Chem. Eng. J.*, 2013, **229**, 388–398.
- 498 [34] R. Jusoh, A.A. Jalil, S. Triwahyono, A. Idris, S. Haron, N. Sapawe, N.F. Jaafar, N.W.C.
 499 Jusoh, *Appl. Catal. A: Gen.*, 2014, **469**, 33–44.
- 500 [35] A.A. Jalil, S. Triwahyono, N. Sapawe, I.H. Ahmed, M.A.A. Aziz, Desalin. Water Treat.,
- 501 2014, 1–15.
- 502 [36] Y. Kim, J. Lee, H. Jeong, Y. Lee, M.H. Um, K.M. Jeong, M.K. Yeo, M. Kang, *J. Ind. Eng.*503 *Chem.*, 2008, 14, 396–400.
- 504 [37] B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl. Catal. A: Gen., 2007, 333, 264–271.
- 505 [38] J. Portier, H.S. Hilal, I. Saadeddin, S.J. Hwang, M.A. Subramanian, G. Campet, *Prog. Solid*506 *State Chem.*, 2004, **32**, 207–217.
- 507 [39] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop,
- 508 J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, *Appl. Catal. B:*
- *Environ.*, 2012, **125**, 331–349.
- 510 [40] C. Han, M. Pelaez, V. Likodimos, A.G. Kontos, P. Falaras, K. O'Shea, D.D. Dionysiou,
- 511 *Appl. Catal. B: Environ.*, 2011, **107**, 77–87.