NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Synthesis of visible-light active $V_2O_5/g-C_3N_4$ heterojunction as an efficient photocatalytic and photoelectrochemical performance

Theerthagiri Jayaraman^a, Senthil Arumugam Raja^a, Annamalai Priya^a, Madhavan Jagannathan^{a, *}, MuthupandianAshokkumar^b

s Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A new $V_2O_5/g-C_3N_4$ nanocomposite was synthesized via wet impregnation method using V_2O_5 and $g-C_3N_4$, obtained from citric acid and urea. The phase purity, crystallite size and strain were ascertained by powder x-ray diffraction (XRD) analysis. Further, the synthesized photocatalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy

¹⁰ dispersive x-ray spectroscopy (EDAX), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence spectroscopy (PL). The efficiency of the photocatalysts was evaluated from the photodegradation of direct red 81 (DR81), a target textile pollutant, under visible light irradiation. The photocatalytic experiments demonstrated that the $V_2O_5/g-C_3N_4$ composites showed much better photocatalytic degradability of DR81 than bulk V_2O_5 and g- C_3N_4 , when used individually. The enhancement of photocatalytic degradation is attributed to the efficient charge carrier separation of 15 photogenerated electron-hole pairs. PL and electrochemical impedance spectroscopic (EIS) results also support the above statement.

Different mole% ratios (1, 2 and 3%) of V_2O_5 loaded composites have been prepared and 1% loaded composite was found to show optimal efficiency. A possible mechanism has been proposed for the photocatalytic degradation using $V_2O_5/g-C_3N_4$.

1. Introduction

Visible-light driven semiconductor based photocatalytic ²⁰ materials have drawn immense attention due to their potential applications in the photodegradation of organic and inorganic pollutants, fuel and hydrogen production.¹⁻⁶ Various semiconductor materials such as metal oxides, sulphides and oxynitrides have been identified as efficient photocatalysts for the ²⁵ degradation of toxic pollutants in water.⁷⁻¹¹ Titanium oxide (TiO₂) is one of the most widely studied materials for the degradation of organic pollutants in water because of its photostability, insolubility and non-toxicity. TiO₂ is more effective only under UV light, which limits its practical ³⁰ applications.¹²⁻¹³ Therefore, enormous efforts have been made for the development of alternate visible light active photocatalysts for pollutant degradation.

Very recently, graphitic carbon nitride (g-C₃N₄) has shown great promise as a novel metal-free visible light photocatalyst due ³⁵ to its unique features, such as high chemical and thermal stability, appealing electronic and optical structures, and an appropriate band gap to absorb visible light.^{14,15} Nevertheless, the photocatalytic activity of g-C₃N₄ is limited due to the high recombination rate of photoinduced electron-hole pairs and poor ⁴⁰ quantum yield.¹⁶ In order to improve its photocatalytic performance several strategies have been adopted such as doping of metals¹⁷, combining with other semiconductors to form a composite photocatalysts^{18,19} and sensitizing with organic dyes.²⁰ Among these, coupling with other semiconductor materials is ⁴⁵ considered as the most efficient modification. The composite

photocatalysts are shown to possess rapid charge carrier separation, thereby reducing the recombination of electron-hole pairs leading to enhanced photocatalytic efficiency. A variety of composite photocatalysts have been reported, for example, Ji et ⁵⁰ al.²¹ have developed g–C₃N₄/BiVO₄ composite with enhanced visible light photocatalytic activity for the degradation of Rhodamine B. Chen et al.²² have prepared g-C₃N₄-WO₃ composite photocatalyst by ball milling method and reported high photocatalytic activity for the degradation of methylene blue. ⁵⁵ Jiang et al.²³ have developed Ag₂S modified g-C₃N₄ (Ag₂S/g-C₃N₄) composite photocatalyst and employed for the photocatalytic H₂-production. All reports suggest that g-C₃N₄

composites are highly photocatalytic than bulk g-C₃N₄.

In the present investigation, we report on the synthesis of 60 vanadium pentoxide (V2O5) - g-C3N4 nanocomposite photocatalysts by wet impregnation method. Urea was chosen as a precursor for synthesis of g-C₃N₄ because it is a low cost raw material. Citrate precursor route was employed to obtain V₂O₅, which is active in the visible region of the solar spectrum 65 and also possess a narrow band gap.²⁴ The synthesized photocatalysts were characterized by powder XRD, FT-IR, SEM, EDAX, DRS and PL studies. The photoelectrochemical and photoctalytic activities were evaluated for the photodegradation of DR81 under visible light irradiation. Direct red 81 (DR81) was 70 chosen for this study due to its harmful nature. DR81 is commonly used in textiles, leather, plastics and cosmetics industries to colour their products. The textile industry effluent carries large volume of wastewater with colored dyes and other additives which are highly toxic to the environment. A possible 75 mechanism for the photodegradation process over $V_2O_5/g-C_3N_4$ composite has been proposed.

2. Experimental section

2.1 Materials

This journal is © The Royal Society of Chemistry [year]

Ammonium vanadate (NH₄VO₃) and citric acid were purchased from Rankem India. Urea, Triton X-100, sodium sulphate and methanol were obtained from SDFCL India. Deionised water was obtained from Nice chemicals India and used for all the s experiments. Direct red 81 was purchased from Sigma-Aldrich (Cat. no.195251). All reagents were of analytical grade and were

2.2 Synthesis of photocatalysts

used without further purification.

- ¹⁰ Vanadium pentoxide (V₂O₅) was synthesized using NH₄VO₃ and citric acid. NH₄VO₃ and citric acid (1:3 mole ratio) were dissolved in deionised water and the resulting solution was continuously stirred to make homogeneous solution. The homogeneous solution was heated at 80 ⁰C on a hot plate to ¹⁵ obtain the vanadium-citrate precursor powder. The obtained
- precursor sample was calcined at 450 $^{\circ}$ C for 3 hours to get pure V₂O₅. The graphitic carbon nitride (g-C₃N₄) was prepared by thermal polycondensation of urea. In a typical synthesis, 9 g of urea was loaded in an alumina crucible with a cover to prevent
- ²⁰ sublimation of precursors and heated to 520 0 C for 2 hours at heating ramp of 15 0 C/min and the furnace was cooled to room temperature naturally. The yellow colored product was collected and ground to a powder.
- The V₂O₅/g-C₃N₄ nanocomposite photocatalysts with different ²⁵ loading of V₂O₅ were synthesized using the following procedure: 0.5 g of g-C₃N₄ and different mole ratios 1%, 2% and 3% of V₂O₅ were added to 40 mL of methanol in a beaker. Then, the beaker was placed in an ultrasonic bath for 15 min and then it was vigorously stirred at 80 $^{\circ}$ C to obtain the powder composite
- ³⁰ photocatalysts. The obtained product after evaporation of the methanol was annealed at 300 $^{\circ}$ C for 30 min. The V₂O₅/g-C₃N₄ composites with different mole ratios 1%, 2% and 3% of V₂O₅ have been denoted in this manuscript as VOCN-1, VOCN-2 and VOCN-3, respectively.

35 2.3 Characterization of photocatalysts

- The x-ray diffraction (XRD) patterns were recorded using a powder X-ray diffractometer (Mini Flex II, Japan) with Cu K α radiation (λ = 0.154 nm) at a scan speed of 3⁰/min. The phase purity was ascertained using x-ray diffraction. The crystalline
- ⁴⁰ size was analyzed using Scherrer's equation, $d=0.9\lambda/B \cos\theta$, where d is the crystallite size, λ is the wavelength of x-ray radiation, B is the full width half maximum value (FWHM) in radian and θ is the diffraction angle. The micro-strain (ε) of the photocatalysts were estimated using the $\varepsilon = B/4$ tan θ equation.
- ⁴⁵ Fourier transform infrared (FT-IR) spectra were recorded in the wavenumber range, 4000-600 cm⁻¹ using an FT-IR (JASCO 460 plus) instrument. KBr was used as a reference for FT-IR analysis. The morphology of the products was examined by scanning electron microscopy (SEM) VEGA3TESCAN model. Elemental
- ⁵⁰ analysis was examined by using EDAX-Bruker Nano GmbH, X Flash Detector (Model-5010). The high-resolution transmission electron microscope measurements were conducted on a JEOL JEM-3010 electron microscope at 200 kV. UV-visible diffuse reflectance spectra of the samples were recorded using a
- 55 Shimadzu 2100 UV-vis spectrophotometer in the range of 200-800 nm. BaSO₄ was used as the reference. The photoluminescence (PL) measurements were recorded at room temperature using Jobin Yvon Flurolog-3-11 spectroflurometer.

60 2.4 Photocatalytic activity

The photocatalytic performance of the synthesized $V_2O_5/g-C_3N_4$ composites were evaluated by the photodegradation of direct red 81 (DR81) under visible light irradiation. The visible light was provided by a 100 W tungsten halogen lamp. In each experiment, c_5 known amounts of photocatalysts were mixed with 75 mL of

- 5x10⁻⁵ M solution of DR81. Prior to the irradiation, the suspension was magnetically stirred in the dark for 120 min to reach adsorption-desorption equilibrium. During irradiation, 4 mL of aliquots were collected at fixed time intervals and filtered
- $_{70}$ through a 0.45 μm membrane filter (Pall Corporation) to remove the photocatalyst particles. The concentration of aqueous DR81 was monitored by its absorbance at 563 nm using a Shimadzu UV-2450 spectrophotometer.

2.4 Photoelectrochemical studies

⁷⁵ Photoelectrochemical measurements were carried out on a CHI608E electrochemical workstation. A 100 W Xe arc lamp (OSRAM, Germany) was used as the light source. A standard three electrode cell, with a Pt-wire as counter electrode, Ag/AgCl (in saturated KCl) as a reference electrode and the composite material as working electrode was used. An aqueous solution of 0.1 M Na₂SO₄ was used as an electrolyte. The working electrode was prepared using the following procedure. 5 mg of photocatalyst was ground with 10 μL of Triton X-100 and 20 μL of deionised water to make a slurry. The slurry was spread on a 85 2.5x2.5 cm² fluorine-doped tinoxide (FTO) glass substrate with an active area of about 0.75 cm² by doctor blade method using scotch tape as spacer and then dried in hot plate for overnight.

3. Results and Discussion

90 3.1 X-ray diffraction studies

The V_2O_5 and $g-C_3N_4$ were synthesized by the citric acid and urea precursor route. The $V_2O_5/g-C_3N_4$ nanocomposites were synthesized by wet impregnation method using V₂O₅ and g-C₃N₄.The x-ray diffraction (XRD) patterns of the synthesized $_{95}$ V_2O_5, g-C_3N_4 and V_2O_5/g-C_3N_4 composites are shown in Fig. 1. The XRD of V₂O₅ exhibited several diffraction peaks corresponding to 2θ values of 15.3° , 20.2° , 21.5° , 26.1° , 30.9° , 32.3° , 37.2° , 41.2° , 45.5° , 47.4° and 51.1° . These peaks are attributed to the 200, 010, 110, 101, 310, 011, 301, 020, 411, 600 100 and 022 planes of an orthorhombic V2O5 (JCPDS card no.89-2483) and these are in good agreement with an earlier report by Gao et al.²⁵ In the case of g-C₃N₄, two distinct diffraction peaks are observed at $2\theta=13$. 06° and 27.42° which are indicated to the (100) and (002) planes of hexagonal graphitic carbon nitride $_{105}$ [JCPDS card no.87-1526]. Also, the diffraction peaks at 27.42^{\circ} and 13.04⁰ correspond to the in-plane structural peaking motif and inter layer stacking of aromatic segments of g-C₃N₄.²⁶ However, both hexagonal phase of g-C₃N₄ and orthorhombic phase of V_2O_5 are observed in V_2O_5/g - C_3N_4 composite. Also, it 110 can be seen that the peak intensity of V₂O₅ increases with an increase in V₂O₅ content, whereas the peak intensity of g-C₃N₄ decreases. The crystalline size and micro-strain of the V₂O₅ g- C_3N_4 and $V_2O_5/g-C_3N_4$ composites are calculated and summarized in Table 1. It can be observed that the average 115 crystalline size of the V_2O_5/g - C_3N_4 composite is decreased while adding V2O5 to g-C3N4 and the micro-strain value is constant (~0.042) for V_2O_5/g -C₃N₄ which indicates that there is no variations in the crystalline structure of V_2O_5/g - C_3N_4 composites.

Fig. 1 XRD patterns of the synthesized $V_2O_{5,}\,g\text{-}C_3N_4$ and $V_2O_5/g\text{-}C_3N_4$ composite photocatalysts.

3.2 Fourier transform infrared studies

- $_5$ FT-IR spectra of the synthesized photocatalysts V₂O₅, g-C₃N₄ and V₂O₅/g-C₃N₄ are shown in Fig. 2. Two characteristic absorption bands at 824 cm⁻¹ and 1014 cm⁻¹ are observed in V₂O₅ sample. The band at 824 cm⁻¹ is assigned to the asymmetric stretching modes of V-O-V bond and other peak at 1014 cm⁻¹ is attributed to
- ¹⁰ the stretching vibration of V=O bond.²⁷ Pure $g-C_3N_4$ shows strong band in the range of 3100-3300 cm⁻¹, which could be assigned to the stretching modes of N-H bonds of (-NH₃ and =N-H) amines.²⁸ The broad peaks in the range of 1200-1680 cm⁻¹ are assigned to the stretching vibration modes of C=N and aromatic
- ¹⁵ C-N heterocycles.¹² The absorbed peak at 812 cm⁻¹ is attributed to the characteristic ring breathing mode of triazine units. Further, the FT-IR spectra of V_2O_5/g -C₃N₄ composites represent the overlap of the V_2O_5 and g-C₃N₄ spectra. The FT-IR peak intensity of g-C₃N₄ is decreased with increase in the mole percent of V_2O_5 .

²⁰ This indicates the coexistence of the V_2O_5 and g- C_3N_4 in the composite and the XRD results also support this structure.

Fig. 2 FT-IR spectra of $V_2O_{5,}\ g\text{-}C_3N_4$ and $V_2O_5/g\text{-}C_3N_4$ photocatalysts.

²⁵ **Table 1** Crystalline size, micro-strain and band gap of synthesized materials

Sample	FWHM	Crystalline	Micro-	Band
		size	strain	gap
		(nm)		(eV)
V_2O_5	0.221	36.53	0.005	2.33
$g-C_3N_4$	2.031	4.02	0.036	2.80
VOCN-1	2.321	3.52	0.042	2.69
VOCN-2	2.374	3.44	0.042	2.76
VOCN-3	2.341	3.49	0.042	2.81

3.3 Optical absorption studies

The optical properties of the composites were measured by using ³⁰ UV-visible diffuse reflectance spectroscopy and the results are shown in Fig. 3. The corresponding band gaps of the synthesized photocatalysts are listed in Table 1. The corresponding band gap energies of pure g-C₃N₄ and V₂O₅ are 2.80 and 2.33 eV, respectively. The absorption edges of V₂O₅ added g-C₃N₄ ³⁵ composites are significantly improved in the visible region after V₂O₅ loading, which may be due to the presence of a lower bandgap semiconductor.²⁹ The red shift in absorption edges of V₂O₅/g-C₃N₄ composite by the addition of V₂O₅ may contribute to the enhancement of photocatalytic activity of the composite ⁴⁰ samples under visible light irradiation.

Fig. 3 UV-vis diffuse reflectance spectra of $V_2O_{5,}$ g-C₃N₄ and V_2O_5 /g-C₃N₄ composites.

3.4 Morphology and elemental studies

⁴⁵ The morphology of the g-C₃N₄, V₂O₅and VOCN-1 were investigated by SEM analysis. The typical SEM photographs of V₂O₅, g-C₃N₄ and VOCN-1 are presented in Fig. 4(a), (b) and (c), respectively. Pure V₂O₅ sample shows a series of particles with stacked-up flakes like morphology whereas pure g-C₃N₄ appears ⁵⁰ as aggregated particles containing a nano sheet like structure. After introducing V₂O₅, the VOCN-1 nanocomposite shows a narrower particle size distribution on the nanosheet layer. The tightly packed surface morphology of the composite particles is beneficial for the efficient charge carrier separation.²¹ Fig. 5
⁵⁵ shows the TEM images of VOCN-1 photocatalyst. Further, the TEM images of sample reveals the sheet structure of g-C₃N₄ with

an agglomeration of V_2O_5 nanoparticles on the surface of g-C₃N₄. The elemental analysis of g-C₃N₄, V₂O₅ and VOCN-1 were examined by energy dispersive x-ray spectroscopy (EDAX) and the results are shown in Fig. 6(a), (b) and (c), respectively. It is 5 clearly seen from Fig. 6 that the g-C₃N₄ is composed of carbon and nitrogen only and the V₂O₅ consists of V and O elements only and no other impurities are found. The weight and atomic percentages of species detected by EDAX are shown in Fig.6 inset. EDAX spectrum confirmed that the VOCN-1 10 nanocomposites consist of C, N, V and O elements.

Fig. 4 Typical SEM images of (a) g- C_3N_4 , (b) V_2O_5 and (c) VOCN-1.

The visible light photocatalytic activities of the V_2O_5 , g-C₃N₄ and V_2O_5/g -C₃N₄ materials were evaluated from the photodegradation of DR81. It can be seen that the adsorption equilibrium between the catalyst and dye was reached after 90 min in the dark for all ²⁰ photocatalysts. A blank test in the absence of any catalyst was

carried out for the dye alone $(5x10^{-5} \text{ M})$ for about 2 hours of the dye alone $(5x10^{-5} \text{ M})$ for about 2 hours of the light irradiation. There was no significant change in absorbance of DR81 indicating the photostability of the dye under light irradiation (Fig.S1 of the ESI). The 25 photodegradation

Fig. 5(a-d) TEM images of VOCN-1 photocatalyst particles.

³⁰ Fig. 6 EDAX spectra of (a) $g-C_3N_4$, (b) V_2O_5 and (c) VOCN-1.

DR81 over V₂O₅, g-C₃N₄, and V₂O₅/g-C₃N₄ with different mole percent (1%, 2%and 3%) of V₂O₅ are shown in Fig. 7(a). It can be seen that there was no significant degradation observed when ³⁵ V₂O₅ was used as a photocatalyst. The narrow band gap of V₂O₅ (2.64 eV) couldmake it active in a wide range of visible-light region but the rapid electron-hole pair recombination lowers the activity of V₂O₅ under both the ultraviolet and visible lights.^{24,30} However, pure g-C₃N₄ demonstrated a good photocatalytic ⁴⁰ activity for the degradation of DR81 that can be attributed to the moderate band gab and unique electronic structure of g-

15

30

 C_3N_4 .³¹Further, it is noted that the V_2O_5/g - C_3N_4 composite exhibited significantly higher photocatalytic activity than that of pure V_2O_5 and g- C_3N_4 , which indicates that the V_2O_5 plays an important role in the enhancement of DR81 degradation. These

- s higher photocatalytic activities of composite indicated that the trapping sites of carriers are increased in V_2O_5/g - C_3N_4 photocatalysts. The highest photocatalytic activity was obtained for the 1 mole% loaded V_2O_5 to g- C_3N_4 (VOCN-1). However, with further increase of V_2O_5 content, photodegradation rate was
- ¹⁰ decreased and it can be attributed to the fact that the excess of V_2O_5 species in the composite may act as a recombination center of electrons and holes that covers the active sites on the g-C₃N₄ surface.^{13,32} The effect of VOCN-1 quantity (0.5, 1.0 and 1.5 g/L) on the photocatalytic degradation of DR81 were also studied and the results are shown in Fig. 7(b). It can be absurded that the
- ¹⁵ the results are shown in Fig. 7(b). It can be observed that the photodegradation rate increases with an increase in the catalyst loading. The reason for the observed trend is the increased availability of surface area and as well as the active sites of the catalyst.

Fig. 7 (a)Photocatalytic degradation of DR81 over pure V₂O₅, g-C₃N₄ and V₂O₅/g-C₃N₄ photocatalysts under visible light irradiation, (b) Photocatalytic degradation of DR81 over different amounts (0.5, 1.0 and 1.5 g/L) of VOCN-1 and (c) First-order ²⁵ kinetics plots for the photodegradation of DR81 over pure V₂O₅,

 $g-C_3N_4$ and $V_2O_5/g-C_3N_4$ photocatalysts.

The photocatalytic degradation process was fitted to first-order kinetics and the rates were estimated based on the following equation.

$$\ln C_0/C = kt$$
 -----(1)

where k is the first-order rate constant (min⁻¹), t is the irradiation time (min), C_0 and C are the initial concentration and the concentration of DR81 at regular time intervals, respectively. The plot of $\ln(C_0/C)$ against the irradiation time (t) is shown in Fig. ³⁵ 7(c). The first order kinetics was confirmed from the linearity of $\ln C/C_0$ vs time plot.

The stability of the photocatalyst is very important for its practical applications. To evaluate the photocatalytic stability of VOCN-1, repeated experiments for degradation of DR81 over ⁴⁰ VOCN-1 were performed and the results are shown in Fig. 8. It could be seen after 3 cycles, that the photocatalytic activity of VOCN-1 is remained at 75% of its first cycle. This implies the stability of VOCN-1 catalyst.

45 Fig. 8 Recyclability test of VOCN-1 for the degradation of DR81 under visible light irradiation.

3.6 Photoluminescence studies

The photoluminescence (PL) spectra of the synthesized 50 photocatalysts are shown in Fig. 9. It can be seen that the PL intensity was increased on introducing of V₂O₅ to g-C₃N₄. The PL intensity of VOCN-1 catalyst increased and this enhancement may be attributed to the promotion of base functionalities ing-C₃N₄.^{14,33} Generally, the lower PL intensity of photocatalysts 55 corresponds to the higher photocatalytic efficiency because of efficient charge carrier separation and lower recombination rate. But V₂O₅/g-C₃N₄ composites showed special properties of enhanced photoluminescence due to the strong coupling of V_2O_5 with g-C₃N₄, which suggests that the V_2O_5/g -C₃N₄ composite 60 may be a good candidate for potential applications such as luminescence and phosphorescence materials. The main emission peak is centered at 462 nm for the pure g-C₃N₄ and the peak position of the composite photocatalysts was similar to g-C₃N₄. However, the intensity of emission peak for V2O5/g-C3N4 65 composite was significantly increased. The VOCN-1 sample showed the strongest intensity. This result clearly reveals the

strong coupling of V₂O₅ and g-C₃N₄. However, the actual reason for the observed PL trend needs further investigation.

Fig. **9** Photoluminescence spectra of the synthesized photocatalysts.

3.7 Transient photocurrent and EIS study

The photoelectrochemical study was carried out for the bulk g-C₃N₄ and VOCN-1 to understand the electronic interaction ¹⁰ between V_2O_5 and g-C₃N₄. The transient photocurrent response is recorded for light on-off cycles under visible light irradiation and the results are shown in Fig. 10(a). It should be noted that the photocurrent of VOCN-1 is much higher than that of g-C₃N₄. This result reveals that the VOCN-1 composite shows a better

15 electron transfer rate than $g-C_3N_4$ and this may be the reason for the higher photocatalytic activity of VOCN-1 than the pure V_2O_5 and g-C₃N₄.

Electrochemical impedance spectroscopy (EIS) of the bulk g-C₃N₄ and VOCN-1 was investigated to know the interfacial 20 electron transfer rate. The EIS data is presented as Nyquist plots for the $g-C_3N_4$ and VOCN-1 (Fig. 10(b)). The reaction rate occurring on the surface of the electrode is reflected by the radius of the arc on the Nyquist plots.³⁴ It was found that the arc radius of VOCN-1 is smaller than that of bulk g-C₃N₄. The smaller arc 25 radius on Nyquist impedance plot of VOCN-1 indicates a more effective separation efficiency of photoinduced electron hole pairs and a faster interfacial charge transfer. Thus EIS study gives further support for the higher photocatalytic activity of VOCN-1.

30 3.8 Photocatalytic degradation mechanism

Based on the above experimental results, a possible photocatalytic mechanism has been proposed to explain the enhanced photocatalytic activity of the as-synthesized V₂O₅/g-35 C₃N₄ for the photocatalytic degradation of DR81. The visiblelight driven electron-hole separation and the transport of photogenerated charge carriers on V2O5/g-C3N4 nanocomposite are illustrated in Fig. 11. Theconduction band (CB) and valance band (VB) potentials of g-C $_3N_4$ and V $_2O_5$ were calculated using

Fig. 10(a) Transient photocurrents of pure $g-C_3N_4$ and VOCN-1 under visible light irradiation, (b) Nyquist plots of pure g-C₃N₄ and VOCN-1 photocatalysts with and without visible light 45 illumination.

$$E_{VB} = X \cdot E^{e} + 0.5E_{g}$$
 (2)
 $E_{CB} = E_{VB} \cdot E_{g}$ (3)

Where E_{VB} and E_{CB} are valance and conduction band potentials. $_{50}$ X is the electronegativity of the semiconductor, E^{e} is the energy of free electrons on the hydrogen scale (~4.5 eV) and E_g is the energy of semiconductor. The band-gap absolute electronegativity of g-C_3N_4 and V_2O_5 is 4.73 and 6.10 eV. 35,36 The calculated CB and VB of $g-C_3N_4$ is -1.17 and 1.63 eV, 55 whereas CB and VB of V₂O₅is 0.43 and 2.76 eV, respectively. The conduction band (CB) of g-C₃N₄ (-1.17) is more negative than that of V_2O_5 (0.43). Thus, the photogenerated electrons transfer from CB of g-C₃N₄ into that of V₂O₅, while the holes remain in the VB of g-C₃N₄. The photogenerated electrons 60 and holes are easily separated in the transfer process, thereby enhancing the activity of photocatalyst for the degradation of DR81. The electron would subsequently transfer to the photocatalyst surface to react with water and oxygen to generate some active species such as hydroxyl radicals (OH), superoxide $_{65}$ radicals (O_2). These radicals are able to oxidize the pollutant due to their high oxidative capacities.³⁷⁻

The possible photocatalytic reactions (2-6) are similar to the reports available in the literature³² and Fig. 11 shows the schematic illustration of the photocatalytic degradation of DR81 ⁷⁰ over V₂O₅-g-C₃N₄ photocatalyst under visible light irradiation.

55

60

65

70

75

80

85

90

95

100

Fig. 11 Schematic illustration of the photocatalytic degradation mechanism of DR81 over V_2O_5/g - C_3N_4 under visible light s irradiation.

4. Conclusions

- ¹⁵ New visible-light induced V₂O₅/g-C₃N₄ nanocomposite photocatalysts were successfully synthesized via wetimpregnation method using V₂O₅ and g-C₃N₄. The bulk V₂O₅ and g-C₃N₄ were synthesized from the heat treatment of citratevanadium complex and urea, respectively. A series of V₂O₅/g-
- $_{20}$ C₃N₄ composites with different mole percent of V₂O₅ were synthesized. The phase purity interaction between the V₂O₅ and g-C₃N₄ in the composite was confirmed by various techniques, such as powder XRD, FT-IR, SEM, HRTEM and EDAX studies. The optical properties of photocatalysts with different mole% of
- $_{25}$ V₂O₅ were examined by DRS and PL studies. The photocatalytic activity of V₂O₅/g-C₃N₄ nanocomposites is much higher than that of bulk V₂O₅ and g-C₃N₄ photocatalyst for the photodegradation of DR81. The enhancement of photocatalytic degradation is attributed to the efficient charge carrier separation of
- $_{30}$ photoinduced electron and hole pairs. The optimal V₂O₅ content in the composite was found to be 1 mole%. The photoelectrochemical studies also confirmed the higher photocatalytic activity of VOCN-1. A possible photocatalytic mechanism has been proposed based on the photodegradation
- $_{35}$ results. This work demonstrates that the V₂O₅/g-C₃N₄ composites are promising photocatalytic materials for efficient utilization of solar energy in environmental remediation applications.

Acknowledgements

⁴⁰ We gratefully acknowledge the financial support received from Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS), Mumbai and Department of Science and Technology (DST), New Delhi, India.

45 Notes and references

^a Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore-632 115, India. Fax: +91 416 2274748; Tel: +91 416 2274747; E-mail: jagan.madhavan@gmail.com(J. Madhavan)

^bSchool of Chemistry, University of Melbourne, Parkville campus,

- 50 Melbourne, VIC 3010, Australia.
 - Y.F. Li, W.P. Zhang, X. Li, Y. Yu, J. Phys. Chem. Solids 2014, 75, 86-93.
 - 2 M.M. Mahlambi, O.T. Mahlangu, G.D. Vilakati, B.B. Mamba, *Ind. Eng. Chem. Res.*, 2014, **53**,5709–5717.
 - 3 J. Theerthagiri, R.A. Senthil, A. Priya, J. Madhavan, R.J.V. Michael, Muthupandian Ashokkumar, *RSC Adv.*, 2014, **4**, 38222-38229.
 - 4 M. Aslam, I.M.I. Ismail, S. Chandrasekaran, A. Hameed, J. Hazard. Mater., 2014, 276, 120–128.
 - 5 C. Zhao, H. Luo, F. Chen, P. Zhang, L. Yi, K. You, *Energy Environ. Sci.*, 2014, 7, 1700-1707.
 - 6 H. Zhou, I. Ding, T. Fan, J. Ding, D. Zhang, Q. Guo, Appl. Catal. B: Environmental 2014, 147, 221-228.
 - 7 S.K. Kansal, P. Kundu, S. Sood, R. Lamba, A. Umar, S.K. Mehta, New J. Chem., 2014, 38, 3220-3226.
 - 8 S. Ma, J. Xue, Y. Zhou, Z. Zhang, J. Mater. Chem. A 2014, 2, 7272-7280.
 - 9 N. Soltani, E. Saion, W.M.M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh, K. Rezaee, *Appl. Surf. Sci.*, 2014, **290**, 440-447.
 - 10 X.H. Guan, P. Qu, X. Guan, G.S. Wang, RSC. Adv., 2014, 4, 15579-15585.
 - 11 Y. Du, L. Zhao, Y. Zhang, J. Hazard. Mater., 2014, 267, 55-61.
 - 12 Y. He, L. Zhang, X. Wang, Y. Wu, H. Lin, L. Zhao, W. Weng, H. Wan, M. Fan, *RSC Adv.*, 2014, **4**, 13610-13619.
 - 13 C. Han, L. Ge, C. Chen, Y. Li, X. Xiao, Y. Zhang, L. Guo, *Appl. Catal. B: Environmental* 2014, 147, 546-553.
 - J. Shen, H. Yang, Q. Shen, Y. Feng, Q. Cai, *CystEngComm.*, 2014, 16, 1868-1872.
 - 15 F. Chang, Y. Xie, C. Li, J. Chen, J. Luo, X. Hu, J. Shen, *Appl. Surf. Sci.*, 2013, 280, 967-974.
 - 16 L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Catal. Sci. Technol., 2014, 4, 758-765.
 - 17 J. Zhang, M. Zhang, S. Lin, X. Fu, X. Wang, J. Catal., 2014, 310, 24-30.
 - 18 S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shankar, B. Sreedhar, *Nanoscale* 2014, 6, 4830-4842.
 - 19 M. Shaloma, S. Inalb, D. Neherb, M. Antoniettia, *Catal. Today* 2014, **225**, 185-190.
 - 20 K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, *Phys. Chem. Chem. Phys.*, 2010, 12, 13020-13025.
 - 21 Y. Ji, J. Cao, L. Jiang, Y. Zhang, Z. Yi, J. Alloys Compd., 2014, 590, 9–14.
 - 22 S. Chen, Y. Hu, S. Meng, X. Fu, *Appl. Catal. B:* Environmental 2014, **150-151**, 564-573.
 - 23 D. Jiang, L. Chen, J. Xie, M. Chen, *Dalton Trans.*, 2014, 43, 4878-4885.
 - 24 A.A. Taha, A.A. Hriez, Y.N. Wu, H. Wang, F. Li, J. Colloid Interface Sci., 2014, 417,199-205.
 - 25 L. Gao, X. Wang, L. Fei, M. Ji, H. Zheng, H. Zhang, T. Shen, K. Yang, J. Cryst. Growth 2005, 281, 463-467.

- 26 Y. Tian, B. Chang, J. Fu, B. Zhou, j. Liu, F. Xi, X. Dong, J. Solid State Chem., 2014, 212, 1-6.
- 27 R. Abazari, S. Sanati, L.A. Saghatforoush, *Chem. Eng. J.*, 2014, **236**, 82-90.
- 28 F. Yang, V. Kuznietsov, M. Lublow, C. Merschjann, A. Steigert, J. Klaer, A. Thomas, T.S. Niedrig, J. Mater. Chem. A 2013, 1, 6407-6415.
- 29 R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, *Mater. Sci. Eng. C* 2013, 33, 4725-4731.
- 30 F. Chen, T.h. Wu, X.P. Zhou, *Catal. Commun.*, 2008, **9**, 1698-1703.
 - 31 T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, *Appl. Catal. B: Environmental* 2013, **129**, 255-263.
- 32 S. Ye, L.G. Qiu, Y.P. Yuan, Y.J. Zhu, J. Xia, J.F. Zhu, J. Mater. Chem. A 2013, 1, 3008-3015.
- 33 C.W. Zou, W. Gao, *Trans. Electr. Electron. Mater.*, 2010, **11**, 1-10.
- 34 H. Xu, J. Yan, X. She, L. Xu, J. Xia, Y. Xu, Y. Song, L. Huang, H. Li, *Nanoscale* 2014, 6, 1406-1415.
- 35 W. Zhang, Y. Sun, F. Dong, W. Zhang, S. Duand, Q. Zhang, *Dalton Trans.*, 2014, 43, 12026–12036.
 - 36 F. Dong, Y. Sun, M. Fu, Int. J. Photoenergy, 2002, 569716, 10.
- 37 F.T. Li, Y. Zhao, Q. Wang, X.J. Wang, Y.J. Hao, R.H. Liu, D. Zhao, *J. Hazard. Mater.*, 2015, **283**, 371-381.
- 38 Y. Cui, J. Huang, X. Fu, X. Wang, *Catal. Sci. Technol.*, 2012, 2, 1396-1402.
- 39 S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 2010, 26, 3894-3901
- 30

5

10

15

20

25

Synthesis of visible-light active $V_2O_5/g-C_3N_4$ heterojunction as an efficient photocatalytic and photoelectrochemical performance

Theerthagiri Jayaraman, Senthil Arumugam Raja, Annamalai Priya, Madhavan Jagannathan*, Muthupandian Ashokkumar

Synergistic enhancement in photocatalytic degradation of V₂O₅/g-C₃N₄ due to an increase in visible-light absorption efficiency and rapid photoinduced charge separation.