This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Graphical Abstract:

Decorating the periphery of dimeric Boranils with phenyl substituents enhanced their emission efficiency, even if the substituents are not conjugated with the boron centers.
Luminescent bi-metallic fluoroborates derivatives of bulky Salen ligands

Samuel Guieu, Francisco Cardona, João Rocha and Artur M. S. Silva

A family of hemisalen fluoroborate complexes has been prepared and characterized. These new fluorophores exhibit an intense blue emission upon irradiation with UV light. Interestingly, the introduction of bulky aromatic substituents enhanced the quantum yield considerably, up to 44%. Upon study in various solvents, it appeared that the effect of the phenyl substituents is more of electron donating nature than of restricting the intramolecular motion of the dyes.

Introduction

In the last years the investigation on fluorescence materials of organic fluorine-boron complexes has received much attention, as these compounds find potential applications, in medicinal chemistry, as anticancer agents applied to boron neutron capture therapy,1 organic synthesis,2,3 supramolecular chemistry,4 macrocyclic chemistry,5 organometallics,6 dendrimers,7 sensing and signalling,8,9,10 biological probe,11 solar cells,12 organic light-emitting diodes,13 among others. Salen [N,N'-ethylenebis(salicylideneimine)] is one of the most studied ligands, due to its versatility and capacity to complex transition metal ions. Salen-type ligands may act as a N2O2 complexing pocket, or as two N-O complexing pockets, depending on the metal ion, and on the length of the diamine linker.

In this way, boron Salen complexes14 are excellent candidates to fluorescence chemosensors.15 The boron atom forms relatively strong covalent bonds with oxygen and coordinate-covalent bonds with nitrogen atoms and, thus, this element is an excellent candidate for the study of such species.15 Boron as other compounds of group 13, aluminium, gallium, and indium, form bimetallic complexes with Salen ligands acting as two independent N-O complexing pockets.16,17,18,19

Here, we wish to report a series of hemisalen based fluoroborate complexes, so-called Boranils,20 decorated with bulky substituents (Figure 1), whose luminescence properties make them promising building blocks for luminescent devices or probes.

Results and discussion

The fluoroborates derivatives 1-4 were obtained in two steps according to Scheme 1. Imine derivatives 6-8 were synthesized by the condensation of ethylenediamine with the corresponding salicylaldehyde derivative, also in excellent yields.

Imine derivatives 6-8 were synthesized by the condensation of ethylenediamine with the corresponding salicylaldehyde derivative, also in excellent yields.

Figure 1. Structures of the fluoroboron complexes 1-4

Scheme 1. Synthesis of the fluorophores 1-4.

Boron complexation was achieved using BF3·OEt2 and dry triethylamine or diisopropylethylamine (DIPEA) in 1,2-dichloroethane at 80 °C, to afford complexes 1-4 in excellent yields.21 The structure of the complexes was confirmed by NMR, MS, and elemental analysis. In the 1H NMR spectra of dyes 1-4, the main indication of complexation are the disappearance of the OH signal, and a broadening of the signal of the singlet attributed to the imine proton. In the 19F NMR spectra, a quadruplet due to the coupling with the adjacent 11B also confirmed the complexation.

Single crystals suitable for X-ray diffraction were obtained for fluoroborate complexes 1 and 2, and for salen 7. In the crystal
structure of salen, intramolecular hydrogen bonds of salicylaldimine moieties rigidify the hemisalen core (Figure 2). These hydrogen bonds are also observed in solution, as confirmed by the chemical shift of the hydroxyl group (13.11 ppm, see Supp. Inf.). The central ethylene group adopts an eclipsed conformation, an inversion centre being located in the middle of the C-C bond.

The crystal structure of fluoroborates 1 and 2 confirmed the structure and the complexation of boron in the hemisalen pocket (Figures 3 and 4). In both cases, the imine is co-planar with the phenyl ring. The six members ring containing the boron is slightly distorted from planarity, the dihedral angle between the O-B-N plane and the C-C-C plane being ca. 11.5° and 13.5° for 1 and 2, respectively. The boron has a slightly distorted tetrahedral geometry, with angles ranging from ca. 106° to ca. 112°, which is similar to previously reported structures. The B-O and B-N distances are respectively shorter (1.44(7) Å and 1.43(7) Å for 1 and 2) and longer (1.57(7) Å and 1.56(7) Å for 1 and 2) than the ones reported, presumably reflecting the absence of substituents on the phenyl rings.

Figure 2. Single-crystal X-ray diffraction structure of ligand 7. Thermal ellipsoids are shown at the 50% probability level, hydrogen atoms are shown with an arbitrary radius (0.30Å). C, grey; O, red; N, blue; H, white.

Figure 3. Single-crystal X-ray diffraction structure of fluoroborate 1. Thermal ellipsoids are shown at the 50% probability level, hydrogen atoms are shown with an arbitrary radius (0.30Å). C, grey; O, red; N, blue; H, white; B, pink; F, yellow.

Figure 4: Single-crystal X-ray diffraction structure of difluoroborate 2. Thermal ellipsoids are shown at the 50% probability level, hydrogen atoms are shown with an arbitrary radius (0.30Å). C, grey; O, red; N, blue; H, white; B, pink; F, yellow.

The absorption, excitation and emission spectra of boranlyls 1-4 were recorded in various solvents (Table 1 and Figure 5 in dichloromethane, see Supporting Information for the other spectra). All compounds present two absorption bands centred ca. 280 and 350 nm, the first one attributed to π-π* transition and the second one to intraligand band. The absorption is slightly red shifted from boranyl 1 to 4, probably due to the electron donating properties of the substituents, but the effect is very small. The molar extinction coefficient does not vary in a clear way between the different dyes, nor between the different solvents.

Figure 5. Absorption (at ca. 10⁻⁵ mol.L⁻¹) and emission (at ca. 10⁻³ mol.L⁻¹, excitation at 360 nm) spectra in dichloromethane. Fluorophores 1-4 emit in the blue region of the visible spectrum, with quantum yields ranging from 8% to 44%, larger than those previously reported for bimetallic salen boron complexes, making them promising dyes for optoelectronic applications. Compound 2 may be considered a dimer of dye 1, two boron complexes being linked by a flexible carbon chain. The two boron complexes in 2 are not conjugated and, therefore, the differences between 1 and 2 may only be ascribed to the fact that 2 has twice the number of boron centres, the distance between these centres, or their relative orientation. The Stokes shifts increased when the dyes are decorated with phenyl substituents, but not significantly. This moderate Stokes shift, together with the fact that oxygen does not quench the emission, is consistent with a fluorescent emissive process. The shapes of the absorption and emission bands are similar and seem symmetric, supposing the absence of a strong intramolecular charge transfer. This is consistent with the absence of influence from the polarity of the solvent on the emission wavelength and on the quantum yield for all dyes 1-4 (table 1 and Supporting Information).

Adding bulky groups at the periphery of the dye induced small bathochromic shifts in the absorption and emission wavelengths, and increased the quantum yield in non-viscous solvents. These bulky groups probably do not restrict the intramolecular rotations of the dyes, because their quantum yields drop when the viscosity of the solvent increased, for example from methanol to ethylene glycol (table 1). This lower quantum yield could also be attributed to aggregation of the dyes 2-4 in ethylene glycol, as the absorption bands dramatically enlarged (see Supporting Information) to almost vanish, thus favouring self-quenching of the emission. This
Ligand 8 = 2,2′-(1E, 1′E)- (ethane-1,2-diylbis(azanylylidene) bis(methanylylidene)) bis(4-tritylphenol)

90 mg, yield quant. mp 282-284 °C. 1H NMR (300 MHz, CDCl$_3$, 25 ºC): δ 13.18 (s, 2H, OH), 8.21 (s, 2H, CHN), 7.27-7.09 (m, 34H, aromatic CH), 6.84 (d, 3J$_{HH}$ 4.8 Hz, 2H, aromatic CH), 3.84 (s, 4H, CH$_2$). 13C NMR (75 MHz, CDCl$_3$, 25 ºC): δ 166.7 (CH=N), 159.2 (COH), 146.6 (3 X Cqat), 137.1 (C-H), 135.8 (C-H), 133.2 (C-H), 131.0 (6 X C-H), 127.5 (6 X C-H), 126.0 (3 X C-H), 117.4 (Cqat), 116.1 (Cqat), 64.1 (Cqat), 59.7 (CH$_2$), ESI(+)-MS: 753.3 [M+H]$^+$. Anal. Calcld for C$_{39}$H$_{40}$N$_2$O$_2$: C 83.97, H 6.04, N 4.66. Found: C 84.13, H 5.97, N 4.61%.

Procedure for the synthesis of Boron complexes 1-4:

The ligand (1 equiv.) was dissolved in dry 1,2-dichloroethane (ca. 2 mL). N,N-diisopropylethylamine (5 equiv. per hemisalen) was added, and the resulting mixture was stirred for 10 min at 80 °C after which boron trifluoride diethyl etherate (9 equiv. per hemisalen) was added dropwise. The final mixture was stirred for 30 min at 80 °C under nitrogen atmosphere and then cooled to room temperature. CH$_2$Cl$_2$ (4 mL) was added and the crude mixture was washed with water (3 x 2 mL). The organic layer was separated, dried over Na$_2$SO$_4$ and evaporated to dryness. The residue was purified by flash chromatography [petroleum ether:EtOAc (8:2)].

Complex 1 = 2,2-difluoro-3-propyl-2H-benzo[e][1,3,2]oxazaborin-3-ium-2-uide

126 mg, yield 60%. mp 109-111 °C. 1H NMR (300 MHz, CDCl$_3$, 25 ºC): δ 8.22 (d, 3J$_{HH}$ 3.6 Hz, 1H, CHN), 7.59 (dd, 3J$_{HH}$ 7.2, 3J$_{HH}$ 8.5 Hz, 1H, aromatic CH), 7.40 (d, 3J$_{HH}$ 7.5 Hz, 1H, aromatic CH), 7.10 (dd, 3J$_{HH}$ 8.5 Hz, 1H, aromatic CH), 6.98 (dd, 3J$_{HH}$ 7.2, 3J$_{HH}$ 7.5 Hz, 1H, aromatic CH), 3.75 (t, 3J$_{HH}$ 6.8 Hz, 2H, N-CH$_2$), 2.00-1.88 (m, 2H, N-CH$_2$-CH$_2$), 1.02 (t, 3J$_{HH}$ 7.4 Hz, 3H, CH$_3$). 13C NMR (75 MHz, CDCl$_3$, 25 ºC): δ 164.0 (C-O), 159.0 (C=N), 138.0 (C-H), 131.3 (C-H), 120.0 (C-H), 119.2 (C-H), 115.2 (Cqat), 36.0 (CH$_2$), 23.2 (CH$_3$), 11.1 (CH$_3$). 19F NMR (282 MHz, CDCl$_3$) δ -161.48 (q, J = 15.5 Hz). ESI(+)-MS: 192.1 [M-F$^+$], 234.1 [M+Na]$^+$.

Complex 2 = 3,3′-(ethane-1,2-diyl)bis(2,2-difluoro-2H-benzo[e][1,3,2]oxazaborin-3-ium-2-uide)

10 mg, yield 37%. mp 263-265 °C. 1H NMR (300 MHz, CDCl$_3$, 25 ºC) δ 8.38 (s, 2H, CHN), 7.60 (t, 3J$_{HH}$ 7.6 Hz, 2H, aromatic CH), 7.34 (d, 3J$_{HH}$ 7.6 Hz, 1H, aromatic CH), 7.09 (d, 3J$_{HH}$ 7.6 Hz, 2H, aromatic CH), 6.94 (t, 3J$_{HH}$ 7.6 Hz, 2H, aromatic CH), 4.37 (s, 4H, CH$_2$). 13C NMR (75 MHz, DMSO, 25 ºC): δ

Conclusions

A family of new Schiff base boron complexes has been synthesized and characterized. Compared to the parent compound 1 containing a single boron centre, the dimers 2-4 exhibited larger quantum yields. Decorating the periphery of the dye with bulky phenyl substituents slightly improved the quantum yields up to 44%, probably not by restricting the internal rotations but rather through their small electron donating properties. The introduction of these new fluorophores into emitting devices, such as organic light-emitting diodes, will be the next step and is currently under consideration in our laboratory.

Experimental

Procedure for the synthesis of Schiff-base ligands 5-8:

Ligands 525 and 626 were prepared according to the literature. Salicylaldehyde derivatives (2 mmol) and ethylenediamine (67 µL, 1 mmol) were dissolved in ethanol (10 mL) and the resulting solution was refluxed for one hour. After standing at room temperature for 12 h, the yellow solid was collected by filtration, washed with light petroleum (10 mL) and dried in air.

Ligand 7 = 2,2′-(1E, 1′E)- (ethane-1,2-diylbis(azanylylidene) bis(methanylylidene)) bis(4-benzhydrylphenol)

485 mg, yield 81%. mp 225-227 °C. 1H NMR (300 MHz, CDCl$_3$, 25 ºC): δ 13.11 (s, 2H, OH), 8.25 (s, 2H, CHN), 7.31-7.18 (m, 14H, aromatic CH), 7.11-7.05 (m, 8H, aromatic CH), 6.93 (d, 3J$_{HH}$ 2.1 Hz, 2H, aromatic CH), 6.87 (d, 3J$_{HH}$ 8.4 Hz, 2H, aromatic CH), 5.48 (s, 2H, CH$_3$), 3.86 (s, 4H, CH$_2$). 13C NMR (75 MHz, CDCl$_3$, 25 ºC): δ 166.5 (C=N), 159.5 (C=O), 143.8 (C-H), 134.1 (C-H), 133.5 (2 X Cqat), 129.3 (4 X C-H), 128.3 (4 X C-H), 126.3 (2 X C-H), 118.2 (Cqat), 116.9 (Cqat), 59.8 (C-H), 55.8 (C-H$_2$). ESI(+)-MS: 603.1 [M+H]$^+$, 623.3 [M+Na]$^+$. Anal. Calcld for C$_{39}$H$_{40}$N$_2$O$_2$: C 83.97, H 6.04, N 4.66. Found: C 84.13, H 5.97, N 4.61%.

A family of new Schiff base boron complexes has been synthesized and characterized. Compared to the parent compound 1 containing a single boron centre, the dimers 2-4 exhibited larger quantum yields. Decorating the periphery of the dye with bulky phenyl substituents slightly improved the quantum yields up to 44%, probably not by restricting the internal rotations but rather through their small electron donating properties. The introduction of these new fluorophores into emitting devices, such as organic light-emitting diodes, will be the next step and is currently under consideration in our laboratory.
168.5 (C=N), 157.8 (C-OH), 151.3 (Cquat), 138.4 (C-H), 132.6 (C-H), 120.1 (C-H), 118.1 (C-H), 52.2 (C-H). 19F NMR (282 MHz, DMSO) δ -158.15 (q, J = 14.1 Hz). ESI(+)-MS: 387.1 [M+Na]+.

Complex 3 = 3,3’-(ethane-1,2-diyl)bis(2,2-difluoro-6-benzhydryl-2H-benzo[e][1,3,2]oxazaborinin-3-ium-2-uide)

42 mg, yield quant. mp 185-187 ºC. 1H NMR (300 MHz, CDCl3, 25 ºC): δ 8.25 (s, 2H, CHN), 7.40 (dd, 3J_{H,H} 8.7, 4J_{H,H} 2.1 Hz, aromatic CH), 7.34-7.16 (m, 12H, aromatic CH), 7.12-6.90 (m, 12H, aromatic CH), 5.45 (s, 2H, CH), 4.29 (s, 4H, CH2). 13C NMR (75 MHz, CDCl3) δ 167.5 (C=O), 142.3 (2 X C-H), 140.5 (C-H), 136.4 (C-H), 132.0 (C-H), 129.2 (4 X C-H), 128.6 (4 X C-H), 126.80 (2 X C-H), 119.3 (Cquat), 114.9 (Cquat), 55.6 (C-H), 54.1 (C-H). 19F NMR (282 MHz,) δ -158.56 (bs). ESI(+)-MS: 677.3 [M+Na]+, 719.2 [M+Na]+.

Complex 4 = 3,3’-(ethane-1,2-diyl)bis(2,2-difluoro-6-trityl-2H-benzo[e][1,3,2]oxazaborinin-3-ium-2-uide)

21 mg, yield 95%. mp > 300 ºC. 1H NMR (300 MHz, CDCl3, 25 ºC): δ 8.23 (s, 2H, CHN), 7.40 (dd, 3J_{H,H} 8.9, 4J_{H,H} 2.2 Hz, 2H, aromatic CH), 7.33-7.15 (m, 20H, aromatic CH), 7.16-7.06 (m, 12H, aromatic CH), 6.97 (d, 3J_{H,H} 8.9 Hz, 2H, aromatic CH), 4.29 (s, 4H, CH2). 13C NMR (75 MHz, CDCl3, 25ºC): δ 167.5 (C=N), 157.9 (C-OH), 145.8 (3 X Cquat), 143.5 (C-H), 139.4 (C-H), 132.3 (C-H), 130.8 (6 X C-H), 127.8 (6 X C-H), 126.4 (3 X C-H), 118.4 (Cquat), 114.0 (Cquat), 64.0 (Cquat), 54.1 (C-H). 19F NMR (282 MHz, CDCl3) δ -158.10 (bs). ESI(+)-MS: 829.3 [M+2F]+, 871.3 [M+Na]+.

Acknowledgements

Thanks are due to the University of Aveiro and the Portuguese Fundação para a Ciência e a Tecnologia (FCT), EU, QREN, FEDER and COMPETE for funding the Organic Chemistry Research Unit (project PEst-C/QUI/UI0062/2013), the CICECO Associate Laboratory (PEst-C/CTM/LA0011/2013) and the Portuguese National NMR Network (RNNRMN). SG also thanks the FCT for a postdoctoral grant (SFRH/BPD/70702/2010).

Notes and references

* Corresponding authors; e-mail: sgueiu@ua.pt, artur.silva@ua.pt
* QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
* CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
* CCDC-1006070, 1006071 and 1017586 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK. Fax: C44 1223 336 033. E-mail: deposit@ccdc.cam.ac.uk).

Electronic Supplementary Information (ESI) available: [Experimental procedures, compound characterization data and NMR spectra of the new compounds]. See DOI: 10.1039/c000000c.