This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Heterometallic complexes† combining $[\text{Mn}^{\text{III}}(\text{salpn})]^+$ and $[\text{Fe(CN)}_6]^{4-}$ units as the products of reactions between $[\text{Mn}^{\text{III}}(\text{salpn})(\text{H}_2\text{O})\text{C(CN)}_3]$ and $[\text{Fe(CN)}_6]^{3-/4-}$

Vyacheslav A. Kopotkov,a* Eduard B. Yagubskii,a* Sergey V. Simonov,b Leokadiya V. Zorina,b* Denis V. Starichenko,c Alexander V. Korolyov,c Vladimir V. Ustinovc and Yurii N. Shvachkoc,d*

Reaction of $[\text{Fe}^{\text{III}}\text{(CN)}_6]^{3-}$ with neutral $[\text{Mn}^{\text{III}}(\text{salpn})(\text{H}_2\text{O})\text{C(CN)}_3]$ (salpn: N,N'-propylenebis(salicylideneiminato)) (1) produces two new heterometallic complexes $\{[\text{Mn}^{\text{III}}\text{(salpn)}(\text{H}_2\text{O})]_2[\text{Mn}^{\text{III}}\text{(salpn)}(\text{H}_2\text{O})_0.7(\text{CH}_3\text{OH})_0.3]\}_2\text{Fe}^{\text{II}}\text{(CN)}_6\}_{\text{n(H}_2\text{O/CH}_3\text{OH)}}$ (2) and $\{[\text{Mn}^{\text{III}}\text{(salpn)}]_4[\text{Mn}^{\text{III}}\text{(salpn)}(\text{H}_2\text{O})_2\text{Fe}^{\text{II}}(\text{CN})_6]\}_{\text{C(CN)}_3}_2\cdot 4\text{H}_2\text{O}$ (3), which are characterized by single-crystal X-ray diffraction. In this reaction, the $[\text{C(CN)}_3]^{-}$ ligand reduces Fe^{III} to Fe^{II}. Complex 3 can be prepared directly using hexacyanoferrate(II). One more complex containing the hexacyanoferrate(II), $\{[\text{Mn}^{\text{III}}\text{(salpn)}(\text{CH}_3\text{OH})_0.67(\text{H}_2\text{O})_0.33]\}_{\text{Fe}^{\text{II}}\text{(CN)}_6}\}_{\text{ClO}_4}_2\cdot 8\text{H}_2\text{O}$ (4) is obtained in reaction of $[\text{Fe}^{\text{II}}\text{(CN)}_6]^{4-}$ with cation complex $[\text{Mn}^{\text{II}}\text{(salpn)}_2(\text{H}_2\text{O})_2]\text{ClO}_4$. The iron(II) centers in the complexes 2 and 4 are linked via cyano-bridges with the four and six $[\text{Mn}^{\text{III}}\text{(salpn)}]^+$ fragments, respectively. The structure of 3 consists of the cyano-bridged $[\text{Mn}^{\text{III}}\text{Fe}^{\text{II}}]$ repeating units linked by double phenolate bridges into a one-dimensional polymeric chain. The magnetic properties of 3 indicate a ferromagnetic coupling between Mn^{III} centers in double-phenolate-bridged $[\text{Mn}^{\text{III}}\text{(salpn)}]$ dinuclear subunits. Quantum calculations within the Heisenberg–Van Vleck model are performed giving the exchange constant $J = 0.64 \text{ cm}^{-1}$ and zero-field splitting parameter $D = -3.4\pm 0.5 \text{ cm}^{-1}$. The ac-susceptibility obeys the Arrhenius law with the activation energy $E_a=11.89 \text{ cm}^{-1}$.

Introduction

The manganese(III) ions form high-spin complexes with the tetradentate (N$_2$O$_2$) Schiff bases (SB) of salen type 1 (salen = N,N'-ethylenebis(salicylideneiminato) dianion; Scheme 1). Depending on steric features of the Schiff base, the nature of the terminal ligands, and the solvent, the complexes can exist in monomeric or the phenoxo-bridged dimeric forms (Scheme 2) with anti-ferromagnetic2 or ferromagnetic12,3 intra-dimer interaction.

These complexes have been extensively used as building blocks for development of magnetic materials with variable dimensionality. The neutral terminal ligands were usually replaced by the paramagnetic bridging groups, in particular the hexacyanometalate anions $([\text{M(CN)}_6]_3^{3-}$, $\text{M} = \text{Fe}, \text{Cr}, \text{Mn}, \text{Ru}, \text{Os})$.3a,4

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Scheme1.pdf}
\caption{Scheme 1}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Scheme2.pdf}
\caption{Scheme 2}
\end{figure}
Self-assemblies of [Mn(SB)] and the hexacyanometalates bring forth the diverse structures (0D assemblies, 1D chains, 2D and 3D networks) showing the ferromagnetic superexchange coupling. In particular, the molecular nanomagnets such as single-molecule magnets (SMMs)\(^{4,5}\) or single-chain magnets (SCMs)\(^{6-9}\) exhibiting a slow relaxation of magnetization have been found among them.

Recently, we have synthesized a series of neutral Mn(III) salen type Schiff base complexes containing tricyanometalate ([CN])\(^3\) as terminal ligand.\(^\text{10}\) In this paper, the reactions with one of these complexes, namely, [Mn(salpn)(H\(_2\)O)(CN\(_3\))]\(^{4-}\), where salpn = \(N,N'\)-1,3-propylenebis(salicylidenediamino) diamine, with hexacyanoferrate(III) and hexacyanoferrate(II) have been studied. As a result, the complexes containing the hexacyanoferrate(II), \([\text{Mn}^{\text{II}}\text{salpn}](\text{H}_2\text{O})]_2\text{[Mn}^{\text{II}}\text{salpn}](\text{H}_2\text{O})_{0.7} (\text{CH}_3\text{OH})_{0.3}]\text{[Fe}(\text{CN})\text{3}]\cdot\text{n(H}_2\text{O/CH}_3\text{OH})\) (2) and \([\text{Mn}^{\text{II}}\text{salpn}]_{14}\text{[Mn}^{\text{II}}\text{salpn}](\text{H}_2\text{O})_4\text{[Fe}(\text{CN})\text{3}])\text{[C}(\text{CN})\text{3}]_2\cdot4\text{H}_2\text{O}\) (3), have been synthesized. For comparison we also studied the reaction of the cation complex \([\text{Mn}^{\text{II}}\text{salpn}](\text{H}_2\text{O})]_2\text{[ClO}_4]_2\) with the hexacyanoferrate(III) and have obtained one more \([\text{Fe}^{\text{III}}(\text{CN})\text{3}]^{2-}\)-bridged complex, \([\text{Mn}^{\text{II}}\text{salpn}](\text{CH}_3\text{OH})_{0.6\text{[Fe}(\text{CN})\text{3}])\text{[ClO}_4]_2\cdot8\text{H}_2\text{O}\) (4). The crystal structures of 2, 3, 4 as well as the magnetic properties of 3 are studied in current work.

Results and discussion

Synthesis

The addition of [Mn(salpn)(H\(_2\)O)(CN\(_3\))] in CH\(_2\)OH to solution of K\(_2\)Fe(CN\(_6\)) in H\(_2\)O gives rise to the formation of crystals in the process of slow evaporation of mother liquor for one week or so. An X-ray diffraction of several separated crystals shows the availability of three different phases. The compositions of two of them was determined from full X-ray analysis:

\[\text{[Mn}\text{salpn}](\text{H}_2\text{O})_2\text{[Mn}\text{salpn}](\text{H}_2\text{O})_{0.7} (\text{CH}_3\text{OH})_{0.3}]\text{[Fe}(\text{CN})\text{3}]\cdot\text{n(H}_2\text{O/CH}_3\text{OH})\text{[C}(\text{CN})\text{3}]_2\cdot4\text{H}_2\text{O}\) (2) and \([\text{Mn}^{\text{II}}\text{salpn}]_{14}\text{[Mn}^{\text{II}}\text{salpn}](\text{H}_2\text{O})_4\text{[Fe}(\text{CN})\text{3}])\text{[C}(\text{CN})\text{3}]_2\cdot4\text{H}_2\text{O}\) (3) (Scheme 3). The attempts to prepare the single-phase samples by the variation of molar ratio of starting reagents have failed. The analysis of charge balance in the compounds 2, 3 points to the presence of Fe(II) rather than Fe(III) ions. Earlier the reduction of the ferricyanide to ferrocyanide was observed in the reactions of Cu\(^{\text{II}},\) Ni\(^{\text{II}}\) and Mn\(^{\text{III}}\) complexes with \([\text{Fe}(\text{CN})\text{3}]^{2-}\).\(^\text{11}\) The reason for this reduction remains unclear. In our case the tricyanometalate ligand is likely to reduce iron(III) to iron(II). To verify this deduction, we have studied the reaction of 1 with ferricyanide (NH\(_4\))\(_2\)Fe(CN\(_6\)) and the reactions of the cation complex \([\text{Mn}^{\text{II}}\text{salpn}](\text{H}_2\text{O})_2\text{[ClO}_4]_2\) with ferricyanide and ferrocyanide. In the first reaction, the complex 3 is obtained as single-phase product at the molar ratios of 4:1 and 6:1 of the starting reagents. This was confirmed by the data of single crystal and powder X-ray diffraction and elemental analysis. The IR spectrum of 3 showed the band at 2050 cm\(^{-1}\), which corresponds to the stretching mode of the bridging CN groups attached to Fe\(^{\text{II}}\).\(^\text{12}\) In two other reactions, one more \([\text{Fe}^{\text{III}}(\text{CN})\text{3}]^{2-}\)-bridged complex, \((\text{NH}_4)_2\text{Fe}^{\text{III}}(\text{CN})\text{3}[\text{ClO}_4]_2\cdot9\text{H}_2\text{O}\) (4) is obtained in the reaction with ammonium ferrocyanide, whereas the known complex \([\text{Mn}^{\text{III}}\text{salpn}](\text{CH}_3\text{OH})_2\text{Fe}^{\text{III}}(\text{CN})\text{3}[\text{ClO}_4]_2\cdot9\text{H}_2\text{O}\) appears in the reaction with potassium ferricyanide (Scheme 4). The formation of complexes containing Fe(II) ions in the reactions of [Mn\(^{\text{III}}\)SB] with \([\text{Fe}^{\text{III}}(\text{CN})\text{3}]^{2-}\) testifies that the redox reaction between Mn\(^{\text{III}}\) and Fe(II) ions does not happen unlike the redox behavior of [Mn\(^{\text{III}}\)SB] - [W\(^{\text{IV}}\)(CN\(_3\))\(^{2+}\) system in which[W\(^{\text{IV}}\)(CN\(_3\))\(^{2+}\) anions are formed.\(^\text{5}\)
monoclinic $P2_1/c$ space group. The asymmetric unit includes 1/2 of a neutral pentanuclear complex with inversion symmetry on its central FeII ion. An ORTEP drawing of 2 is shown in Fig. 1, key bond distances and angles are listed in Table 1. Four equatorial CN-ligands of the [MnIII$(CN)_6$]$^{4-}$ octahedron coordinate axially to Mn from four [Mn(salpn)]$^{2+}$ moieties. Fe–C bond lengths vary from 1.930(3) to 1.940(3) Å. All the MnIII centers are hexacoordinated, with two N and two O atoms of the salpn ligand in the equatorial plane while two axial positions are occupied by the N atom from the bridging cyanide ligand and the oxygen atom of terminal H$_2$O or CH$_3$OH ligand. In the axial direction, the Mn–O$_{aquamethanol}$ and Mn–N$_{cyanide}$ bond distances are elongated in comparison with the equatorial bonds due to a Jahn–Teller (JT) distortion at the 3 d metal center (see Table 1). There are two independent MnIII ions in the complex. Salpn unit at Mn1 has nearly flattened geometry (Fig. 1) and its aqua ligand forms hydrogen bonds within the bc layer (Figure S1) with the phenolate oxygen of neighboring inversonally related Mn1 unit and non-bridging nitrogen atom of the Fe(CN)$_6$ core of another neighbor. Second [Mn(salpn)] unit is strongly bent and these units from adjacent bc layers are nested with each other without hydrogen bonding (Figure S2). Free space between the complexes is filled by strongly disordered water and methanol molecules.

The [MnIIIFeII]$^+$ units in 2 are discrete. Previously the similar pentanuclear units were found in the cationic complex [MnIIII$(salpn)$CH$_3$OH$_2$FeIII$(CN)_6$]$^-$ (5), containing ferricyanide fragment.9 Although 2 and 5 have similar molecular structures, their crystal packings differ essentially. Furthermore, two polymeric structures containing [MnIIIFeII]$^+$ motifs connected into 2D networks through biphenolate Mn(saltnem)–(μ-O)$_2$–Mn(saltnem) bridges or common [MnIIIsalen]$^+$ fragments were synthesized with the [FeIII$(CN)_3$]$^-$ building block.10

![Fig. 1. ORTEP drawing of a pentanuclear unit in 2 with 50% probability ellipsoids and partial atom numbering scheme (only major part of disordered groups is shown). Fe1 is at an inversion centre, symmetry code: * (x, -1+y, z).](image)

![Fig. 2. ORTEP drawing of unique atoms of a heptanuclear unit in 3 with 50% probability ellipsoids and partial atom numbering scheme. Fe1 is at an inversion centre, symmetry codes: * (x, y, -1+z), ** (x, 1+y, z).](image)

The Mn(2) ions form double phenolate bridges [Mn(salpn)] between the neighboring [MnIIIFeII]$^+$ units (Fig. 2) linking them into one-dimensional polymeric chain along the a direction (Fig. 3).

Within the connecting (MnIII)$_2$ dimers, Mn(2) centers are surrounded by two N and two O atoms of the salpn ligand in the equatorial plane, one axial N atom from the cyanide bridge and one axial O atom from the neighboring [MnIIIsalpn]$^+$ moiety. The Jahn–Teller elongation axis in the Mn(2) octahedron lies along the axial direction with Mn–N$_{cyanide}$ and Mn–O$_{aqon}$ bonds of 2.167(3) and 2.697(2) Å. The MnIII–MnIII distance in the dimeric moiety is 3.491(1) Å, while the Mn–O–Mn and

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(1)–N(1)</td>
<td>2.041(3)</td>
</tr>
<tr>
<td>Mn(1)–N(2)</td>
<td>2.040(3)</td>
</tr>
<tr>
<td>Mn(1)–O(1)</td>
<td>1.898(3)</td>
</tr>
<tr>
<td>Mn(1)–O(2)</td>
<td>1.876(2)</td>
</tr>
<tr>
<td>Mn(1)–N(01)</td>
<td>2.279(3)</td>
</tr>
<tr>
<td>Mn(1)–O(3)</td>
<td>2.241(2)</td>
</tr>
<tr>
<td>Mn(2)–N(3)</td>
<td>2.045(5)</td>
</tr>
<tr>
<td>Mn(2)–N(4)</td>
<td>2.019(6)</td>
</tr>
<tr>
<td>Mn(2)–O(4)</td>
<td>1.882(5)</td>
</tr>
<tr>
<td>Mn(2)–O(5)</td>
<td>1.866(5)</td>
</tr>
<tr>
<td>Mn(2)–N(02)</td>
<td>2.179(5)</td>
</tr>
<tr>
<td>Mn(2)–O(6)</td>
<td>2.337(6)</td>
</tr>
<tr>
<td>N(01)–Mn(1)–O(3)</td>
<td>172.2(1)</td>
</tr>
<tr>
<td>N(01)–(C01)–Fe(1)</td>
<td>178.7(3)</td>
</tr>
<tr>
<td>N(02)–Mn(2)–O(6)</td>
<td>171.6(2)</td>
</tr>
<tr>
<td>N(02)–(C02)–Fe(1)</td>
<td>175.6(3)</td>
</tr>
</tbody>
</table>

Table 1. Selected bond lengths (Å) and angles (°) in 2
O–Mn–O angles are 97.32(9)° and 82.68°, respectively. The FeIII–MnIII intramolecular distances in the complex 3 are shorter along the direction of the infinite dimeric chains (4.969(2), 5.066(1) and 5.188(1) Å for Mn(2), Mn(3) and Mn(1), respectively) due to smaller Mn(2)−N≡C angle (Table 2).

The Mn(3) ion has a distorted square pyramidal coordination geometry in which apical site is occupied by the nitrogen atom of the bridging CN group. Mn(3) moieties are hydrogen bonded to Mn(1) moieties through oxygen atoms of phenolate and aqua ligand along two directions, [1 1 1] and [1 1 0], to generate a 2D layer framework parallel to the (1 0 1) plane (Figure S3); the Mn(1)–Mn(3) distance in this contact is 5.695(1) Å. The \{C(CN)\}_{6}3− anions are linked by N\textsubscript{union}−H−O−H−N\textsubscript{union} bonding through one of the free water molecules into infinite chains along the b-axis and additionally to the aqua ligand of the complex through the same water molecule. Another water molecule forms a bridge between the anion and the phenolate oxygen atom of the Mn(2) moiety. Some heptanuclear complexes [FeIII(CN)\textsubscript{6}MnIII(SB)]\textsubscript{1/6} (SB= salen and its derivatives) with similar coordination but different valent state of the central Fe ion (paramagnetic FeIII instead of diamagnetic FeIII in 3) were reported earlier. In most of these compounds the heptanuclear complexes are discrete and only in one compound two types of chain motifs are found.

\begin{table}
\centering
\caption{Selected bond lengths (Å) and angles (°) in 3}
\begin{tabular}{|c|c|c|c|}
\hline
 & Mn(1)−N(1) & 2.043(3) & Mn(2)−N(1) & 1.994(3) \\
Mn(1)−N(2) & 2.029(3) & Mn(2)−N(2A) & 2.024(3) \\
Mn(1)−O(1) & 1.883(2) & Mn(2)−O(1A) & 1.891(2) \\
Mn(1)−O(2) & 1.900(2) & Mn(2)−O(2A) & 1.900(2) \\
Mn(1)−N(1F) & 2.183(3) & Mn(2)−N(2F) & 2.167(3) \\
Mn(1)−O(1W) & 2.300(2) & Mn(2)−O(2A**) & 2.317(2) \\
\hline
N(1F)−Mn(1)−O(1W) & 174.2(1) & N(2F)−Mn(2)−O(2A**) & 178.4(1) \\
Mn(1)−N(1F)−C(1F) & 162.2(3) & Mn(2)−N(2F)−C(2F) & 144.6(3) \\
N(1F)−C(1F)−Fe(1) & 177.5(3) & N(2F)−C(2F)−Fe(1) & 173.9(3) \\
Mn(3)−N(1F) & 2.030(3) & Mn(2)−O(2A)−Mn(2**) & 97.32(9) \\
Mn(3)−N(2B) & 2.031(3) & Mn(3)−N(3F)−C(3F) & 157.9(3) \\
Mn(3)−O(1B) & 1.893(2) & N(3F)−C(3F)−Fe(1) & 175.8(3) \\
Mn(3)−O(2B) & 1.873(2) & \\
Mn(3)−N(3F) & 2.078(3) & \\
\hline
\end{tabular}
\end{table}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{A fragment of 1D polymeric chain running along the a-axis in the structure 3. Mn(2)μ-O bridges between the [MnFe]2+ units are shown by red dashed lines.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{ORTEP drawing of unique atoms of a heptanuclear unit in 4 with 50% probability ellipsoids and atom numbering scheme. Fe1 is at \(1/3\) position, symmetry codes: a (1−z, x−0.5, 0.5−y), b (y+0.5, 0.5−z, 1−x), c (0.5−y, z−0.5, x), d (z, 0.5−x, y+0.5), e (x−1−z, y, 1−z).
}
\end{figure}

All six CN-ligands of the [FeIII(CN)\textsubscript{6}]4− octahedron (Fe−C = 1.904(1) Å) are bridged axially to Mn from six surrounding [Mn(salpn)]4− moieties. The sole independent MnIII ion has distorted octahedral coordination geometry, the trans position to the cyan bridge is occupied with methanol or aqua ligand in 0.67/0.33 ratio. Axial Mn−N\textsubscript{cyanido} and Mn−O\textsubscript{methanol/aqua} bonds of 2.168(1) and 2.294(1) Å, respectively, are elongated due to

\begin{equation}
\left[\text{Mn(salpn)}(CH\textsubscript{3}OH)\textsubscript{3.67}H\textsubscript{2}O\textsubscript{3.33}Fe(CN)\textsubscript{6}\right]\cdot\text{ClO}\textsubscript{4}\cdot2\cdot8H\textsubscript{2}O \ (4)
\end{equation}
the Jahn–Teller distortion. The $[\text{Mn}_x\text{Fe}]^{2+}$ complexes in 4 are isolated and interact only with anions [(C)Hsalpn…O$_{\text{anion}}$ 2.44 Å] and free water molecules (O–H$_{\text{methanol/aqua}}$…O$_{\text{water}}$ 1.85 Å, O–H$_{\text{water}}$…O$_{\text{salpn}}$ 2.03 and 2.44 Å).

Table 3. Selected bond lengths (Å) and angles (º) in 4

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(1)-N(1)</td>
<td>2.045(1)</td>
</tr>
<tr>
<td>Mn(1)-N(2)</td>
<td>2.036(1)</td>
</tr>
<tr>
<td>Mn(1)-O(1)</td>
<td>1.900(1)</td>
</tr>
<tr>
<td>Mn(1)-O(2)</td>
<td>1.896(1)</td>
</tr>
<tr>
<td>Mn(1)-N(3)</td>
<td>2.168(1)</td>
</tr>
<tr>
<td>Mn(1)-O(3)</td>
<td>2.294(1)</td>
</tr>
<tr>
<td>N(3)-Mn(1)-O(3)</td>
<td>168.16(6)</td>
</tr>
<tr>
<td>Mn(1)-N(3)-C(18)</td>
<td>148.2(1)</td>
</tr>
<tr>
<td>N(3)-C(18)-Fe(1)</td>
<td>177.6(1)</td>
</tr>
</tbody>
</table>

Magnetic properties of complex 3

Temperature dependences of the magnetic susceptibility, $\chi(T)$, $T=2$–300 K were measured on a polycrystalline sample of 3 in the external magnetic fields $H=4$ kOe and 40 kOe. The product χT is depicted on Fig. 5. The room-temperature χT value of 17.0 cm3 K mol$^{-1}$ (11.7 μ_B) is in good agreement with the paramagnetic response of the six MnIII cations with $S=2$, and $g=1.94$. Hence, the FeII cation does not contribute to the magnetic susceptibility, i.e. it has low spin electronic configuration with $S=0$. The χT curve measured in cooling regime at the field 4 kOe remains nearly temperature independent in the range 300–24 K, then slightly (~2%) increases reaching maximum of 18.4 cm3 K mol$^{-1}$ (12.1 μ_B) at 5.9 K, and returns to 14.4 cm3 K mol$^{-1}$ at 2.0 K. The χT curve measured in the high field of 40 kOe while heating demonstrates a pronounced depression in the range 2–15 K starting from 16.6 cm3 K mol$^{-1}$ at 15 K and reaching 4.5 cm3 K mol$^{-1}$ (6.0 μ_B) at 2.0 K. In the interval 15–300 K the χT value remains nearly temperature independent within the range 17.1–16.4 cm3 K mol$^{-1}$. Temperature behavior of the reciprocal magnetic susceptibility $\chi^{-1}(T)$ is shown on the inset. Fitting the data with the Curie-Weiss law (solid line) gives the Curie constant of 16.8 cm3 K mol$^{-1}$ (4 kOe) and the Weiss constant of $\theta=+1.2$ K (R-factor=0.9999), indicating a presence of weak ferromagnetic interactions. The low temperature descent of the χT points at 40 kOe correlates with the field dependence and has different nature.

The isothermal magnetization curve $\mathbf{M}(H/T)$, $T=2.0$ K is shown in Fig. 6. In the plot the applied magnetic field was slowly reversed from +50 to −50 and back to +50 kOe. The experimental points at the same fields coincide. The magnetization value at 50 kOe is 17.1 μ_B, which is approximately 2/3 of the theoretical value of 24 μ_B for 6 independent moments $S=2$ in the complex 3. The Brillouin curves for six and four paramagnetic spin moments $S=2$ are depicted as blue and red solid lines respectively. The inset shows in a greater scale the interval −2.5 to +2.5 kOe.

The magnetic behavior in smaller magnetic fields, $H<2.5$ kOe is qualitatively different compare to that in higher fields. While in low fields all six MnIII spin moments contribute to the magnetization, in higher fields the experimental points appears to follow the Brillouin curve for 4 MnIII moments. Such “S”-type curvature looks opposite to that observed for superparamagnetic systems. This unusual field dependence may indicate strong anisotropy for specific pair of MnIII moments.

The structure of 3 contains 1D chains. They are stabilized by π-stacking of the lateral salpn ligands co-ordinating Mn(2) and Mn(2**) ions on adjacent $\{[\text{Mn(salpn)}]_4[\text{Mn(salpn)}(\text{H}_2\text{O})]_2\text{Fe(CN)}_6\}$ units (Fig. 3, 7). The distance Mn(2)–Mn(2**), $d=3.491(1)$ Å, is short enough to assume magnetic coupling in the MnIII dimer. The Mn(2) and Mn(2**) positions are located within the elongated octahedra with antiparallel long axes [N(2F), O(2A**)] and [N(2F**), O(2A)] (see Fig. 7C).

The position of Mn(2)/Mn(2**) is strongly displaced on the axis from the center towards N(2F)/N(2F**) of the CN-ligand (difference between Mn(2)–N(2F) and Mn(2)–O(2A**) distances is 0.53 Å or 24% of the first bond distance, see Table 2). In this sense, these axes are “antiparallel”. The distance [Mn(2), N(2F)]= 2.167 Å is close to the equatorial one [Mn(2),
N(2A)= 2.024 Å with the difference of 0.14 Å or 6.5%. These specific distortions are lowering the symmetry and may induce mixing between the low-lying d-states. The oxygen O(2A**) remains considerably remote, 2.697 Å, because the C(12A) atom belongs to the rigid [C(12A), O(2A), Mn(2)] covalent claw. The claw is fixated by the π-stacking (see Fig. 7B). Thus, the π-stacking of the peripheral aromatic groups plays important role by inducing specific distortions in the co-ordination octahedra. In turn they may strongly affect the energy spectrum of d-orbitals and single ion magnetic anisotropy, causing unusual field dependence of the magnetization.

In the following analysis of the low-field curve $\chi(T)$ the low-symmetry distortions were not taken into consideration. The elongation ratio, i.e. the ratio of the distances [N(2F), O(2A**)] to [O(1A), N(2A)] (see Fig. 7C), is 1.25. Formally, this allows considering the Jahn–Teller energy diagram $t_{2g}^2e_{g}^1$ for the Mn III d-levels at Mn(2) sites. Note, that the elongated axes ([N(2F), O(2A**)], [N(2F**), O(2A)]) lay in the “super-exchange plane”, [Mn(2), O(2A), Mn(2**)].

In the numerical simulations, we considered two contributions to the total magnetic susceptibility χ_T:

$$\chi_T = (4 + 2\alpha) \cdot \chi_P + (1 - \alpha) \cdot \chi_{dimer}$$

(1)

where χ_P and χ_{dimer} are paramagnetic susceptibilities of individual non-interacting spin moment $S=2$, and exchange coupled pair respectively; $(4 + 2\alpha)$ and $(1 - \alpha)$ are weight coefficients. In the ideal case of infinite chain, $\alpha = 0$. Due to defects in real structure, some dimers can be broken. Respectively, the weight coefficients would vary resulting in $\alpha > 0$. In the “no coupling” case, $\alpha = 1$, i.e. six non-interacting Mn III moments are observed.

For paramagnetic contribution, χ_P, we took the Curie–Weiss dependence, with the fixed parameters $S=2$, $g=1.94$, and variable D constant. For simulation of the dimer contribution we used the Heisenberg–Van Vleck model and the following spin Hamiltonian:

$$H = H_{\text{ex}} + H_{\text{ZFS}} + H_Z$$

(2)

where

$$H_{\text{ex}} = -2J \sum_{i} \mathbf{S}_i \cdot \mathbf{S}_{i+1}$$

(3)

is the Heisenberg exchange Hamiltonian,

$$H_{\text{ZFS}} = D_1 \left[\frac{1}{3} \mathbf{S}_z^2 \cdot \mathbf{S}_{z+1} \right] + D_2 \left[\frac{1}{3} \mathbf{S}_{z+1}^2 \cdot \mathbf{S}_z + 1 \right]$$

(4)

takes into account zero-field splitting (ZFS),

$$H_{\text{Z}} = \mathbf{g} \cdot \mathbf{B} \cdot \mathbf{S}$$

(5)

is the Zeeman interactions.

The intra-dimer exchange coupling between Mn III moments in Mn2 and Mn2** positions was characterized by the parameter J_{22}. Due to asymmetry, the axial ZFS constants D_2, D_2' were taken as a single parameter $D = D_2 = D_2'$, as well as the g-factors g_2, g_2', $g_2''=g_2'$. Rhombic ZFS constants E_1 were not taken into fitting, suggesting $E_1/D << 1$. Simulations of the experimental data were performed by using the julX program involving full diagonalization of the spin Hamiltonian.

The weight coefficients and g-value were determined at 300 K. The balance between the experimental and the model was reached at $g=1.94$ giving $a=0$ – infinite alternating chains.

In general, the D-parameters have to be assigned to all MnIII cations in the complex, including those at Mn(1), Mn(1**), Mn(3), Mn(3**) positions. However, they have distorted square pyramidal Mn(3), Mn(3**), and distorted octahedral Mn(1), Mn(1**) co-ordinations. Therefore, their ZFS parameters, D_{PM}, have to be smaller (or negligible) compare to D values of the Jahn-Teller cations in the dimer. We built a series of $\chi_D(T)$ curves for $D=0$ to -2.0 cm$^{-1}$ and subtracted them from the experimental data. Thus, we extracted the dimer contributions $\chi_{\text{dim.}} = \chi - 4\chi_P(D_{PM})$ for fitting, where D_{PM} determined a confidence interval. The fitting procedure is described in the supplementary materials.

The best-fit curve is shown in Fig. 5 as solid line with the parameters $J_{22} = -0.64$ cm$^{-1}$ and $D = -3.5 \pm 0.5$ cm$^{-1}$. The result of simulations is in good agreement with the experimental data down to 5 K for D_{PM} values from 0 to 0.5 cm$^{-1}$. The value of the parameter D is close to that published for the dimeric complex [Mn$_2$(salpn)$_2$(H$_2$O)$_2$(ClO$_4$)$_2$], $D = -3.1$ cm$^{-1}$ and several other similar complexes. We have also found, that the best-fit curve for the high field (40 kOe) data is less sensitive to the D value, whereas for the low field (4 kOe) data the deviation of $AD = 0.2$ cm$^{-1}$ is essential for the agreement. Ferromagnetic intra-dimer coupling was also reported for a series of dimeric Mn III compounds with saltmen2 and naphtmen2 ligands. A positive sign of the coupling constant is qualitatively associated with superexchange between the orthogonal $(d_{xy})^j$ and the d_{xy} orbitals $(d_{xy})^j, (d_{xy})^j$ and $(d_{xy})^j$ orbitals via p-orbitals of the co-ordinating oxygen atom O^* corresponding to O(2A)/O(2A**) in 3. The empirical correlation between the Mn–O* distance and the magnetic exchange parameter J_F was evaluated for the bond range of 2.4–3.7 Å. Applying this evaluation to the dimer in the structure 3 one can obtain an estimate of -0.96 cm$^{-1}$, which is approximately 4 times smaller than the calculated J_{22} value. The later work also
reports the tetradeionate Schiff base complex of similar type, within which the two Mn^{II} ions interact antiferromagnetically despite of relatively short Mn−O* distance.

The alternating current (ac) magnetic susceptibility of 3 in the form of the out-of-phase component of the ac magnetic susceptibility, χ″, versus frequency f (Hz) plots was investigated in the temperature range 1.8 – 3.0 K. In zero dc magnetic field, χ″ curves demonstrate maximum that moves from the highest frequency f=10 kHz at 2.25 K down to 190 Hz at 1.80 K as shown in Fig. 8. The values of the relaxation time, which are calculated from the maximum of χ″ at a given frequency f, follow the Arrhenius law characteristic of a thermally activated mechanism (τ_r=τ₀exp(E_a/k_BT)), k_B-Boltzman constant); solid line in the Fig. 9. The calculated values of the pre-exponential factor and the activation energy τ₀=6.9·10⁻⁴ s and E_a=11.89 cm⁻¹ (17.1 K) are close. Then the values of the relaxation time, ln(τ), vs temperature, 1/T, for a polycrystalline sample 3 determined from ac χ″ data. The solid line represents the Arrhenius fit with parameters: E_a=11.9 cm⁻¹, τ₀=6.9·10⁻⁸ s (see text).

Although a ferromagnetic coupling in the compound 3 is in agreement similar dimeric complexes, its nature remains unclear. According to the Goodenough-Kanamori-Anderson rules^{16a}, a superexchange between single occupied t_{2g}c_y d-orbitals is expected to be antiferromagnetic. Ferromagnetic coupling arises when virtual electron hopping is allowed from p-orbitals of O(2A) to one empty d-orbital of Mn(2) and one of the single occupied d-orbitals of Mn(2**) or vice versa. The oxygen O(2A) has three sp² orbitals, two of which are involved in covalent σ bonding with Mn(2) and C(12A). Their energies are located well below (approx. 5 eV) Fermi level ε_F, so they do not contribute to superexchange. There is only one double occupied p-orbital available. It is orthogonal to the plane [Mn(2), O(2A), C(12A)], which is formed by the sp² orbitals.

The above assumption in application to Mn^{II} complexes with saltmen[−] and naphtmen[−] ligands requires a detailed study of the symmetry of their low-lying states and second-order spin-orbit coupling effects.

Fig. 8. Plot of the out-of-phase ac magnetic susceptibility, χ″, vs. frequency, f, for a polycrystalline sample 3 at the temperatures 1.8 K < T < 3.0 K and a 4.0 G oscillating field.

Fig. 9. Plot of relaxation time, ln(τ), vs temperature, 1/T, for a polycrystalline sample 3 determined from ac χ″ data. The solid line represents the Arrhenius fit with parameters: E_a=11.9 cm⁻¹, τ₀=6.9·10⁻⁸ s (see text).

compound 3 this orbital is not collinear to the octahedral basis and declines 40.3(2)[°] to the respective JT axis. The angle between atoms in the bridge Mn(2)−O(2A)−Mn(2**) is close. Then the p-orbital of O(2A) inclining nearly 45[°] to the [O(2A),Mn(2),N(2F)] plane is able to mediate the ferromagnetic superexchange between d_z² of Mn(2) and d_z² of Mn(2**) (and vice versa). For example, splitting of the spectroscopic terms of the high-spin 3d Mn^{III} ion when lowering the symmetry from O(2A) − C₂ with the elongation axis perpendicular to the C₂ axis leads to the inversion of the e_y and e_x orbitals. So that the d_{xy} orbital has the highest energy and remains empty. The six-coordinated octahedral Mn^{III} ion has an orbitally degenerate E_g ground electronic term that is split by the Jahn–Teller effect into 3A_{1g} and 3B_{1g} orbital singlet low-lying states.

Although a ferromagnetic coupling in the compound 3 is in agreement similar dimeric complexes, its nature remains unclear. According to the Goodenough-Kanamori-Anderson rules^{16a}, a superexchange between single occupied t_{2g}c_y d-orbitals is expected to be antiferromagnetic. Ferromagnetic coupling arises when virtual electron hopping is allowed from p-orbitals of O(2A) to one empty d-orbital of Mn(2) and one of the single occupied d-orbitals of Mn(2**) or vice versa. The oxygen O(2A) has three sp² orbitals, two of which are involved in covalent σ bonding with Mn(2) and C(12A). Their energies are located well below (approx. 5 eV) Fermi level ε_F, so they do not contribute to superexchange. There is only one double occupied p-orbital available. It is orthogonal to the plane [Mn(2), O(2A), C(12A)], which is formed by the sp² orbitals. We believe that the key factors influencing both sign and magnitude of the magnetic coupling are in-plane configuration of the JT axes and orientation of the p-orbital of the O(2A) oxygen relatively to the [Mn(2), O(2A), Mn(2**)] plane. In the
Conclusions

To summarize, we have synthesized three new heterometallic Mn(III)-Fe(II) complexes containing the [Mn(salpn)] and [Fe(CN)] fragments: [{Mn(salpn)(H₂O)}₂·{Mn(salpn)H₂O}]_2(C₂H₄O)₃·Fe(CN)₃·n(H₂O/CH₃OH) (1), [{Mn(salpn)}₂·{Mn(salpn)H₂O}]_2·Fe(CN)₃·n(H₂O/CH₃OH) (2), [{Mn(salpn)}₄·{Mn(salpn)H₂O}]_2·Fe(CN)₃·n(C₂H₄O)₃·4H₂O (3) and [{Mn(salpn)·(CH₃OH)₀.₆₇·H₂O₀.₃₃}·Fe(CN)₃·n(C₂H₄O)₃·4H₂O] (4). The complexes 2, 3 and 4 are products of the reaction between [Mn(salpn)(H₂O)C(CN)₆] and K₃[Fe(CN)₆] and 4 forms in the reaction of [Mn₂(salpn)(H₂O)₃]ClO₄·2H₂O with (NH₄)₂[Fe(CN)₆]. Interestingly, that the tricyanometanide ligand reduces Fe(III) to Fe(II). 3 has also been obtained in the reaction of [Mn(salpn)(H₂O)C(CN)₆] with ferrocyanide. The complexes 2 and 4 comprise discrete pentanuclear [Mn(III)Fe²⁺] and heptanuclear [Mn(III)Fe²⁺] units, respectively. In contrast, the heptanuclear [Mn(III)Fe²⁺] units in 3 are linked into one-dimensional polymeric chains by double phenolate bridges [{Mn(NC)(salpn)}·(μ-O phenolate)]₂·{Mn(NC)(salpn)} between the Mn(II) and Mn(III) centers (Fig. 2). The Mn₃-Mn₃ distance in the dimer is 3.491(1) Å. The Jahn–Teller elongation along the Mn₃-Mn₃-Mn₃ [Mn(II)Fe²⁺] octahedrons lie along the Mn₃-Mn₃-Mn₃ [Mn(II)Fe²⁺] octahedrons in the Mn₃-Mn₃ octahedrons. The exchange coupling constant Jₑₑ ≈ 0.64 cm⁻¹ and zero-field splitting parameter Dₑₑ ≈ −3.4±0.5 cm⁻¹ are determined by numerical simulations of the magnetic susceptibility data within the Heisenberg–Vann Vleck model. The magnetization data at 2.0 K also speaks in favor of large axial magnetic anisotropy in the dimer moments. The ac- susceptibility data indicate slow-relaxation processes obeying Arrhenius law with the activation energy Eₑₑ ≈ 11.89 cm⁻¹ (17.1 K). The enhancement of single ion anisotropy of Mn(III) spin moment is explained in terms of specific distortions caused and stabilized by γ-stacking of the salpn ligands. By lowering symmetry, the distortions may mix the low-lying d-states promoting the ferromagnetic coupling. Numerical simulation of the partial spin contributions to the total magnetic susceptibility confirms the infinite chains ferromagnetically coupled dimers in 3.

Experimental

Materials

All chemicals and solvents used in synthesis were reagent grade and were used without further purification. The precursors, [Mn₆(salpn)(H₂O)₅](ClO₄)₂ and [Mn(salpn)C(CN)₆(H₂O)], were prepared according to the literature procedures.⁶,⁷

Caution: Cyanides are highly toxic and should be handled with great caution. We worked at the mmol scale and all the preparations were performed in a well ventilated hood.

Preparations

1. [{Mn(salpn)}₄·{Mn(salpn)(H₂O)}₂·Fe(CN)₃]·n(C₂H₄O)₃·4H₂O (3). A solution of (NH₄)₂[Fe(CN)₆] (8.33 mg, 0.029 mmol) in 5 ml of water was added to a solution of [Mn(salpn)C(CN)₆(H₂O)] (78 mg, 0.174 mmol) in 10 ml of methanol. The mixture was heated to 50 °C. After stirring for 30 min, the resulting brown solution was filtered. The filtrate was left undisturbed at room temperature for one week to produce dark brown single crystals suitable for X-ray analysis. The crystals were collected by suction filtration, washed with water, and air-dried. Yield: 65% based on [Mn(salpn)C(CN)₆(H₂O)]. Anal. found: C, 54.84; H, 4.38; N, 13.35%. Caled for C31H18FeMn₃N₁₂O₁₆: C, 55.46; H, 4.30; N, 13.39%. Characteristic IR data (cm⁻¹): ν(C≡N): 2159 (tricyanometanide-ν), ν(C≡N): 2050 (bridge); ν(C≡N): 1613 (imine).

2. [{Mn(salpn)(CH₃OH)₀.₆₇·H₂O₀.₃₃}·Fe(CN)₆]·n(C₂H₄O)₃·4H₂O (4). The procedure was the same as for 3 except that [Mn(salpn)(CN)₆(H₂O)]_2·Fe(CN)₆ was replaced by [Mn(salpn)(CH₃OH)₀.₆₇·H₂O₀.₃₃]·Fe(CN)₆ (3 eq., 0.087 mmol). Yield: 42% based on [Mn₂(salpn)(H₂O)₃]ClO₄·2H₂O. Anal. found: C, 49.18; H, 4.69; N, 9.43%. Caled for C₃₁H₂₅Cl₂FeMn₃N₁₂O₁₆·C, 49.25; H, 4.84; N, 9.23%. Characteristic IR data (cm⁻¹): ν(C≡N): 2048 (bridge); ν(C≡N): 1611 (imine); ν(C≡N): 1084 (ClO₄).

Physical measurements

Elemental analyses for C, H and N were performed on a vario MICRO cube analyzing device. The IR spectra were recorded in the range of 500-4000 cm⁻¹ using Varian 3100 FTIR Excalibur Series spectrophotometer.

Variable-temperature magnetic susceptibility measurement of 3 was performed with a Quantum Design MPMS SQUID magnetometer.

X-ray single crystal diffraction data were collected at different temperatures on an Oxford Diffraction Gemini-R diffractometer (for 2 and 4) and on a Bruker SMART APEX II diffractometer (for 3) using MoKα radiation [λ(MoKα) = 0.71073 Å, graphite monochromator, ω-scans]. Single crystals of 2-4 were taken from the mother liquid using nylon loop and immediately transferred into cold nitrogen stream of the diffractometer. Data reduction with empirical absorption correction of experimental intensities was made with the CrysalisPro software and Bruker SAINT Plus program package.¹⁹

The structures were solved by direct methods and refined by a full-matrix least squares method using SHELX97 program.¹⁹

Non-hydrogen atoms were refined anisotropically except for oxygen atoms of free water molecules. Hydrogen atoms were placed in the idealized positions. The hydrogen atoms of coordinated water molecules and part of free water molecules were found from difference Fourier maps. Hydrogen atoms of other non-coordinated water molecules and disordered water ligands were not localized but included into the composition of 2-4. Main crystal data and the X-ray data collection and refinement statistics for 2-4 are listed in Table 4. Additional structure refinement details for 2 are given in Supporting Information.

Acknowledgments

This work was supported by the RFBR grant 13-03-12418 and Presidium of the Russian Academy of Sciences, project No. 12M-23-2054, grant for support of the leading scientific schools No. 1540.2014.2. We thank P.Yu. Barzilovich and K.A. Lyssenko for an X-ray experiment on a Bruker APEX II diffractometer. Y.N. Sh thanks Alex Mogilner and UC Davis for providing the visiting scholar position and computational resources.
Table 4. Crystal data and structural refinement parameters for the complexes 2-4

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${74}$H${69.8}$FeMn2N${14.6}$O$_{15.6}$</td>
<td>C${116}$H${109}$FeMn2N${24}$O$_{18}$</td>
<td>C${112}$H${121}$Cl2FeMn2N${18}$O${34}$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1662.31</td>
<td>2511.75</td>
<td>2750.75</td>
</tr>
<tr>
<td>Cell setting</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>cubic</td>
</tr>
<tr>
<td>Space group, Z</td>
<td>P2$_1$/c, 2</td>
<td>P2$_2$/c, 2</td>
<td>P ̅4</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>150(2)</td>
<td>100(2)</td>
<td>120(2)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>19.64(4)</td>
<td>13.39(2)</td>
<td>22.965(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>14.87(2)</td>
<td>17.41(7)</td>
<td>22.965(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.93(8)</td>
<td>24.34(7)</td>
<td>22.965(4)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>110.31(2)</td>
<td>102.55(7)</td>
<td>90</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Cell volume (Å3)</td>
<td>4093(1)</td>
<td>5542(3)</td>
<td>12112.3(4)</td>
</tr>
<tr>
<td>ρ (Mg/m3)</td>
<td>1.349</td>
<td>1.505</td>
<td>1.497</td>
</tr>
<tr>
<td>µ, cm$^{-1}$</td>
<td>8.40</td>
<td>8.68</td>
<td>8.52</td>
</tr>
<tr>
<td>Refls collected/unique</td>
<td>26171 / 11460</td>
<td>51647 / 14691</td>
<td>58343 / 6117</td>
</tr>
<tr>
<td>R$_{int}$</td>
<td>0.0645</td>
<td>0.0951</td>
<td>0.0384</td>
</tr>
<tr>
<td>θ$_{max}$ (°)</td>
<td>31.14</td>
<td>29.00</td>
<td>31.16</td>
</tr>
<tr>
<td>Parameters refined</td>
<td>732</td>
<td>754</td>
<td>267</td>
</tr>
<tr>
<td>Final R$_1$, wR$_2$[1>2σ(I)]</td>
<td>0.0722, 0.1455</td>
<td>0.0491, 0.1020</td>
<td>0.0394, 0.1044</td>
</tr>
<tr>
<td>Goodness-of-fit</td>
<td>1.004</td>
<td>1.011</td>
<td>1.008</td>
</tr>
</tbody>
</table>

Notes and references

This journal is © The Royal Society of Chemistry 2014

The tricyanomethanide-ligand reduces Fe(III) to Fe(II) yielding the discrete
\[\{\text{Mn(salpn)}(\text{H}_2\text{O})\}_{2}\{\text{Mn(salpn)}(\text{H}_2\text{O})_{0.7}(\text{CH}_3\text{OH})_{0.3}\}_{2}\text{Fe(CN)}_6\}_{n}(\text{H}_2\text{O}/\text{CH}_3\text{OH}) \] and chain
\[\{\text{Mn(salpn)}\}_{4}\{\text{Mn(salpn)}(\text{H}_2\text{O})\}_{2}\text{Fe(CN)}_6\}_{2}\text{Fe(CN)}_6\}_{2}\text{4H}_2\text{O} \] complexes.