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Magnetic chitosan-based core-shell composites have been prepared employing 

phosphotungstic acid as layer-linker and chitosan as green reducing agent.  

 

Page 1 of 9 New Journal of Chemistry

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t



NJC RSCPublishing 

PAPER 

This journal is © The Royal Society of Chemistry 2014  New J. Chem.  , 2014, 00, 1‐8 | 1 

 Cite this: New J. Chem. , 2014, 00, 
0000 

Received 00th January 2014, 
Accepted 00th January 2014 

DOI: 10.1039/x0xx00000x 

www.rsc.org/njc 

In situ preparation of uniform Ag NPs onto 
multifunctional Fe3O4@SN/HPW@CG towards 
efficient reduction of 4-nitrophenol 

Zhenzhen Wang, Shangru Zhai,* Bin Zhai, Zuoyi Xiao, Feng Zhang, and Qingda An*a  

Novel protocol towards multifunctional magnetic organic-inorganic core-shell nanostructured 
catalysts of Fe3O4@SN/HPW@CG-Ag with tailored properties was presented in this work. 
Such designed nanocomposites congregated the properties and functions of single component 
into a whole. For instance, Fe3O4 cores protected by amino-functionalized SiO2 shell endowed 
the composites with superparamagnetism (28.6 emu g-1) and thereby facilitated the process of 
separation and recovery. Phosphotungstic acid, as a bridging agent, provided strong interaction 
for the anchoring of glutaraldehyde cross-linked chitosan onto the surface of Fe3O4@SN. More 
interestingly, chitosan could simultaneously behave as stabilizer and reductant for the in situ 
synthesis of “green” Ag NPs without addition any other reducing agent or organic solvent, and 
Ag NPs furnished the compounds with catalytic performance. Further the size, loading of Ag 
NPs and the thickness of chitosan layer were all controllable. Meaningfully, the as-synthesized 
catalyst Fe3O4@SN/HPW@CG-Ag exhibited exceptional catalytic performance for the 
reduction of 4-nitrophenol in the presence of sodium borohydride (the reaction was 
accomplished within 7 min) and could be reused at least 10 times with good stability by means 
of convenient magnetic separation. Thence, the design philosophy of the multifunctional robust 
Ag-based nanocatalysts may offer a reference for the synthesis of other catalyst systems with 
long-term stability. 
 

Introduction 

For the past few years, multifunctional organic-inorganic core-
shell nanostructured composites are burgeoning as an 
interesting family, which have received comprehensive 
attention for their applications in various realms such as 
biomedicine1,2 and catalysis,3-6 because they could integrate 
diversiform functions and features of the individual component 
within a single part. That is such nanocomposites not only have 
flexibility and varieties of functional groups from polymers, 
also have thermal stability along with mechanical strength of 
inorganic components.7,8 Especially, hierarchical organic-
inorganic core-shell nanocatalysts have received widespread 
attraction for their outstanding properties. Over the years, 
nanosized noble-metal particles have attracted extraordinary 
interest for their unexpectedly highly catalytic properties 
toward varieties of reactions,[9-13] due to their extremely high 
surface area-to-volume ratio. Amongst them, Ag NPs have been 
one of the most interesting topics in consideration of its 
relatively cheap price. Whereas, there are several drawbacks 
that greatly prohibit it from large-scale use.14 To begin with, the 
neat Ag NPs are apt to aggregation due to their higher surface 
energy, resulting in a significant reduction of their catalytic 
activity; on the side, the separation of smaller Ag NPs from the 
catalytic system is tough and could not be reused afterwards. 
Moreover, the preparation procedure of Ag NPs always 

involved in various reagents such as sodium borohydride, 
hydrazine hydrate, which are hazardous, toxic to both 
environment and organism. As remarked above, it still remains 
a bottleneck problem to design and synthesis “green” NPs15,16 
with long-term stability and reusability. 
     In the first place, to overcome the separation and recovering 
problems, magnetic nanoparticles are generally used for 
inorganic supports in the synthesis of organic-inorganic 
composite materials in view of their distinct physical properties 
and superparamagnetic nature. Speaking of which, Fe3O4 NPs 
have attracted much attention because they could be 
expediently separated from reaction system by applying an 
external magnetic field and recovered for iterative use.17-22 
Hence, it is possible to control reactions on or off and 
accordingly reduce the operational costs. However, Fe3O4 NPs 
are liable to conglobation, thus the surface modification or 
coating seems to be of prime importance. As is known to all, 
silica is one of the most ideal materials to inhibit Fe3O4 NPs 
from damage and aggregation and endows the magnetic 
nanoparticles with functionality. Hereafter, silica shell could be 
functionalized by 3-aminopropyltrimethoxysilane (APTMS) 
through the saline coupling reaction23 for further application 
(denoted as Fe3O4@SN).  
     During the past decade, to prevent Ag NPs from 
aggregation, the most effective approach is to immobilize them 
on various supports such as activated carbon, silica, 
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CS (1.0 g CS in 100 mL 2% HOAc) was added to the mixture, 
GLA aqueous solution (10, 20, 30 mL, 5 wt%) was added drop 
wise subsequently and the reaction was continued for another 
1.5 h. Afterwards, the resultant products were rinsed and dried 
for further application. 

Preparation of multifunctional Fe3O4@SN/HPW@CG-Ag  

To prepare Fe3O4@SN/HPW@CG-Ag, in a typical procedure, 
Fe3O4@SN/HPW@CG (0.5 g) was dispersed into AgNO3 
aqueous solution (60 mL). After continuing stirring at 80 oC for 
4 h, the reaction product was cooled naturally to room 
temperature and separated with a magnet. The precipitate was 
then washed with deionized water to remove those free Ag NPs 
that were not embedded into the CG layer. Finally, the as-
prepared Fe3O4@SN/HPW@CG-Ag was dried. Furthermore, 
the relationship between the size and quantity of Ag NPs 
stabilized by CG layer and the feeding concentration of AgNO3 
was studied. When the concentration of AgNO3 was X × 10-3 
M, the as-prepared catalyst was denoted as 
Fe3O4@SN/HPW@CG-AgX. The Fe3O4@SN/HPW@CG-Ag 
in the article refers to Fe3O4@SN/HPW@CG-Ag10, unless 
otherwise noted. 

Catalytic reduction of 4-NP in aqueous medium  

For purpose of assessing the catalytic properties of the as-
prepared multifunctional catalyst Fe3O4@SN/HPW@CG-Ag, 
the reduction of 4-NP with NaBH4 at room temperature in 
aqueous solution was conducted as a model reaction. Typically, 
4-NP aqueous solution (0.7 mL, 5 mM), deionized water (17 
mL), and  freshly prepared NaBH4 aqueous solution (1.3 mL, 
0.2 M) were mixed in three-necked flask under nitrogen 
atmosphere, followed by the addition of 
Fe3O4@SN/HPW@CG-Ag aqueous solution (1.0 mL, 1 mg 
mL−1). As the catalytic reaction proceeded, the bright yellow 
color of the solution faded gradually and the catalytic activity 
was monitored by a UV-vis spectrophotometer at a time 
interval of 1 min.  
     The reusability of the catalyst Fe3O4@SN/HPW@CG-Ag 
was also studied. After the reduction of 4-NP was completed, 
the catalysts were separated from the mixture with a magnet 
and washed with deionized water, then reused in the next cycle. 
This procedure was repeated for 11 times. 

Characterization 

The morphology of the as-prepared multifunctional 
nanoparticles was observed by JSM-6460LV scanning electron 
microscopy (SEM, JEOL, Japan) and JEM-2000EX 
transmission electron microcopy (TEM, JEOL, Japan). The 
elemental composition of Fe3O4@SN/HPW@CG-Ag 
composites was analyzed by X-MaxN energy dispersive X-ray 
analyzer (EDX, OXFORD, UK). X-ray diffraction (XRD) 
patterns were conducted by Shimadzu XRD-6100 
diffractometer using CuKα radiation (λ = 1.54060 Å) for a 2θ 
range of 10o to 80o at the scanning speed of 8o min−1. Fourier 
transform infrared (FTIR) spectra were recorded on One-B 
FTIR spectrometer over KBr pressed pellets. The magnetization 
curve of the catalyst was measured through Lake Shore 7410 
vibrating sample magnetometer (VSM) at room temperature. X-
Ray photoelectron spectroscopy (XPS) measurements were 
performed by applying Thermo Scientific ESCALAB250 
spectrometer (Thermo VG, USA) with monochromatic AlKa 

radiation (1486.6 eV). UV-vis absorption spectra were recorded 
by a MAPADA UV-1600PC spectrometer. 

Results and discussion 

The morphology and structure of the as-prepared samples at 
different stages were characterized by SEM and TEM. Firstly, 
the magnetic Fe3O4 NPs were synthesized by solvothermal 
method via high temperature reduction of Fe3+ salts with 
ethylene glycol.43 As revealed in Fig. 1A, the Fe3O4 NPs are 
evidently spherical, uniform (~ 200 nm) and monodisperse. 
Then, amino-functionalized SiO2 (SN) was coated on the 
surface of Fe3O4 through one-pot sol-gel method to form 
Fe3O4@SN core-shell structured composites. From Fig. 1B, 
Fe3O4@SN composite kept up the morphological properties of 
pure Fe3O4 and at the same time a slightly larger in size about 
240 nm was observed, thus the thickness of SN is 
approximately 20 nm.  
 

 
Fig. 1 SEM images of (A) Fe3O4, (B) Fe3O4@SN, (C) 
Fe3O4@SN/HPW@CG and (D) TEM image of 
Fe3O4@SN/HPW@CG. 
 

 
Fig. 2 TEM images of Fe3O4@SN/HPW@CG obtained with 
different HPW amounts: (A) 0 g, (B) 0.1 g, (C) 0.25 g and (D) 
0.35 g. 
 
     To effectively introduce and three-dimensionally stabilize 
CG, we choose HPW to play the role of a bridging layer to 
strengthen the interaction between Fe3O4@SN cores and 
polymeric CS macromolecules, taking into account that CS 
layers would be swelled and accordingly leached away from 
preformed Fe3O4@SN. Meanwhile, because the surface of both 
Fe3O4@SN and CG are all positively charged under mild acidic 
conditions, it is difficult for the direct integration of CG onto 
the surface of Fe3O4@SN due to the electrostatic repulsion. As 
shown in Fig. 2A, CG is prone to self polymerization instead of 
coating/deposition on the surface of Fe3O4@SN in the absence 
of HPW. Conversely, the addition of HPW, as a typical 
polyanion, is found to be an effective method to reverse the 
surface positive charge of Fe3O4@SN to negative charge; 
whereby, the electrostatic attachment for negatively charged 
Fe3O4@SN/HPW with positively charged CG is favorable. 
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structure. The facts aforementioned also confirm the formation 
of multifunctional hierarchical nanocatalysts.  

 
Fig. 5 Wide-angle XRD patterns of as-prepared Fe3O4 (a), 
Fe3O4@SN (b), Fe3O4@SN/HPW (c), Fe3O4@SN/HPW@CG 
(d) and Fe3O4@SN/HPW@CG-Ag (e), respectively. 
 
     Fig. 6 shows the FT-IR spectra of sample prepared at 
various stages. For all the samples studied, the peak at 567 cm–1 
is assigned to the Fe–O stretching vibration of Fe3O4,

14 
confirming the existence of Fe3O4 in all the materials. Those 
prominent peaks at 1081 cm–1, 808 cm–1, 955 cm–1, and 461 
cm–1 are corresponded to the asymmetric stretching vibration of 
Si−O−Si, symmetric stretching vibration of Si−O−Si, the 
stretching modes of surface Si–OH and the bending vibration of 
O–Si–O, respectively.[47,48] In addition, the typical peaks at 
2940 cm–1 is attributed to the –CH2– stretching vibrations from 
APTMS component and the enhanced wide band at around 
3400 cm–1 is attributed to the vibration of overlapping –OH and 
–NH2 groups. These results suggest that the Fe3O4 NPs were 
successfully coated with SN layer. In Fig. 6(b), the detection of 
weak fingerprint bands of the Keggin structure in 800–1100 
cm–1 region also indicate the introduction of HPW onto the 
surface of Fe3O4@SN. After the incorporation of CG on the 
surface of Fe3O4@SN/HPW (Fig. 6(c)), new peaks appeared at 
1550 cm–1 and 1415 cm–1 belong to bending vibrations of –NH2 
and secondary alcoholic –OH, respectively, and the wide band 
at around 3400 cm–1 is further enhanced due to –NH2 groups 
from CG, all these results highlight the successful conjugation 
of CG. At the same time, the disappearance of the fingerprint 
bands of HPW proves strong interaction between CG and the 
heteropolyacids, which is in good agreement with 
aforementioned XRD analysis results. However, the 
characteristic peaks of CG aforementioned considerably 
weaken in intensities and undergo position migrations after the 
immobilization of Ag NPs (Fig. 6(d)), it is easy to perceive that 
the amino groups and hydroxyl groups of CG have participated 
in the reduction and stability of Ag NPs, as expected. 
 

 
Fig. 6 FTIR spectra of Fe3O4@SN (a), Fe3O4@SN/HPW (b), 
Fe3O4@SN/ HPW@CG (c) and Fe3O4@SN/HPW@CG-Ag (d), 
respectively. 
 

To further confirm the combination of CG and the formation 
of Ag NPs, the wide scan survey XPS of 

Fe3O4@SN/HPW@CG-Ag and the high resolution core level 
spectrum of the Ag element were carried out. According to the 
survey scan spectrum (Fig. 7A), we could only observe the 
signals of C, N, O, and Ag element indicating the successful 
modification of Fe3O4@SN/HPW by CG. Using the binding 
energy of C1s (284.6 eV) as a reference, the high resolution 
spectrum of Ag element was analyzed. It is clearly seen from 
Fig. 7B that the signals of Ag 3d are composed of doublet 
peaks at 367.8 and 373.8 eV corresponding to Ag 3d5/2 and Ag 
3d3/2, respectively, which exhibit no obvious shift in 
comparison with those of bulk Ag (368.3 eV for Ag 3d5/2 and 
374.3 eV for Ag 3d3/2).

[49] Moreover, the gap between the two 
states is 6.0 eV. All the results demonstrate unambiguously that 
Ag in the composite is zero-valent and further testify that 
AgNO3 has been reduced to Ag NPs by CG. The results are in 
accordance with the TEM, EDX, XRD and FTIR 
characterization results. 
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Fig. 7 (A) XPS survey spectra of Fe3O4@SN/HPW@CG-Ag 
catalysts and (B) high resolution core level spectra of Ag 3d . 
 
     The magnetic properties of Fe3O4@SN/HPW@CG-Ag 
catalysts were characterized through a vibrating sample 
magnetometer (VSM) at room temperature. Neither hysteresis 
loops nor remanence is detected in the magnetization curve 
(Fig. 8), suggesting that Fe3O4@SN/HPW@CG-Ag composites 
are superparamagnetic and the saturation magnetization value is 
measured to be 28.6 emu g-1. Thus the as-prepared catalyst is 
capable of magnetic separation and recovery. As soon as the 
placement of a magnet beside the cuvette (Fig. 8, inset), 
Fe3O4@SN/HPW@CG-Ag in aqueous solution are attracted to 
the side of the cuvette leaving the solution transparent, which is 
the intuitive proof of their magnetic nature. 
 

 
Fig. 8 Room temperature magnetization curve of 
Fe3O4@SN/HPW@CG-Ag catalysts .The inset photograph is 
the recovery process of Fe3O4@SN/HPW@CG-Ag aqueous 
solution by a magnet. 
 
     Catalytic test of Fe3O4@SN/HPW@CG-Ag NPs for 4-NP 
reduction. In order to assess the catalytic capability of 
Fe3O4@SN/HPW@CG-Ag nanocomposites, the reduction of 4-
NP by NaBH4 at room temperature was chosen as a model 
reaction, which is widely used as evaluation criteria of catalytic 
activity of metal nanoparticles.  
     The pure 4-NP solution exhibited a maximum absorption at 
317 nm, no sooner than the addition of freshly prepared NaBH4 
solution, the absorption peak red shifted to 400 nm owing to the 
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formation of 4-nitrophenolate ion in alkaline condition (Fig. 
9A). Meanwhile, the change occurring in the solution could 
also be observed visually (Fig. 9A, inset,), the light yellow 
color of 4-NP aqueous solution changed to bright yellow after 
adding NaBH4 solution. It is noteworthy that, without suitable 
catalysts, the reduction of 4-NP with an excess amount of 
NaBH4 could not occur even if it is thermodynamically 
favorable (E0 for 4-NP/4-AP and H3BO3/BH4

- are -0.76 and -
1.33 V, respectively). 
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Fig. 9 (A) UV-vis absorption spectra of 4-NP with and without 
NaBH4 solution. (B) Time-dependent UV-vis absorption 
spectra during the catalytic reduction of 4-NP by 
Fe3O4@SiO2/HPW@CS-Ag at room temperature. (C) UV-vis 
absorption spectra of 4-NP with the addition of 
Fe3O4@SiO2/HPW@CS after 20 min. The relationship between 
ln(Ct/C0) and the reaction time for Fe3O4@SiO2/HPW@CS-Ag 
with different AgNO3 concentrations (D) and different GLA 
volumes (E). (F) The reusability of Fe3O4@SN/HPW@CG-Ag 
catalysts for the reduction of 4-NP by NaBH4. 

     However, on introducing small amount of 
Fe3O4@SN/HPW@CG-Ag nanoparticles (1 mL, 1.0 mg mL-1), 
the reaction was performed. As shown in Fig. 9B, time-
dependent UV-vis spectra of this catalytic reaction system 
displayed explicitly that the intensity of the characteristic 
absorption peak at 400 nm markedly decreased over time and 
nearly disappeared within 7 min coupled with the appearance of 
new peaks at 298 nm and 231 nm, which are the characteristic 
peaks of 4-AP, revealing the reduction of 4-NP to 4-AP. At the 
same time, the reduction of 4-NP could also be visually 
witnessed the bright yellow reaction solution gradually became 
colorless within 7 min (Fig. 9B, inset). Besides, bare 
Fe3O4@SN/HPW@CG instead of Fe3O4@SN/HPW@CG-Ag 
as catalyst was also studied  as a control experiment. 
From Fig. 9C, no obvious change in the intensity of the 
absorption at 400 nm could be detected even after 20 min, 
undoubtedly confirming that the reduction of 4-NP by NaBH4 

is solely catalyzed by Ag NPs stabilized on 
Fe3O4@SN/HPW@CG. These results indicated that 
Fe3O4@SN/HPW@CG-protected Ag NPs indeed could 
catalyze the reduction process and the catalytic property is 
extremely high. Simply put, Ag NPs in the reaction system play 
the role of electronic transfer station between BH4

- ions and 4-
nitrophenolate ions. It was worth mentioning here that the 
reaction started immediately after the addition of catalysts, that 
is to say, there was no induction time needed, which might 
greatly facilitate the practical applications. 

Considering the concentration of NaBH4 is higher than that 
of 4-NP, the reaction rate constant could be assumed to be 
independent of the concentration of NaBH4, thus the rate 
constant for the reduction of 4-NP could be evaluated by the 
pseudo-first-order kinetics. The ratios of Ct (the concentration 
of 4-NP at time t) to C0 (the initial concentration of 4-NP) were 
calculated from the standard curve of absorbance versus 
concentration of 4-NP at 400 nm. As shown in Fig. 9D and e, a 
good linear relationship between ln(Ct/C0) and reaction time is 
displayed, which is well consistent with the first-order kinetics. 
The kinetic reaction rate constants k calculated from the slope 
of the straight line in Fig. 9D are 0.3211, 0.4205, 0.5309 and 
0.3321 min−1 for Fe3O4@SN/HPW@CG-Ag5, 
Fe3O4@SN/HPW@CG-Ag8, Fe3O4@SN/HPW@CG-Ag and 
Fe3O4@SN/HPW@CG-Ag12, respectively. These results clearly 
indicated that Fe3O4@SN/HPW@CG-Ag possessed much 
higher catalytic activity than others, which is in good agreement 
with the result of TEM. This should be mainly attributed to the 
relatively uniform size and high density effects of Ag NPs in 
the composites. In contrast with the other three, 
Fe3O4@SN/HPW@CG-Ag posses more and much smaller Ag 
NPs as discussed above (Fig. 3C), which would significantly 
expedite the accessibility of 4-NP to active sites, therefore 
enhanced the catalytic activity. In other words, the amount of 
AgNO3 plays an important role in the formation of Ag NPs and 
subsequent catalytic performance. 
     On the other hand, to investigate the impact of GLA on Ag+ 
adsorption capacity, we have made a comparison of their 
catalytic reaction rates for 4-NP. As shown in Fig. 9E, when the 
volume of GLA were 10, 20, 30 mL (the concentration of 
AgNO3 was set to 10 × 10-3 M), the corresponding rate 
constants k were calculated to be 0.3332, 0.5309 and 0.4725 
min–1, respectively. This could be explained that, when the 
volume of GLA was increased from 10 to 20 mL, more amino 
and hydroxyl active groups were released to adsorb more Ag+. 
However, as the volume further increased to 30 ml, the 
adsorption capacity decreased slightly because the higher 
mechanical strength of CG layer affect the diffusion of Ag+ into 
Fe3O4@SN/HPW@CG, which were supported by the results 
from EDX (Table 1) datum that the mass fraction of Ag were 
5.96, 7.92, 7.46 for 10, 20, 30 mL, respectively. 
     Given the ability of practical or industrial applications, the 
regeneration capacity of catalytic activity seems to be 
extremely important. Hence, the reusability of 
Fe3O4@SN/HPW@CG-Ag was investigated via the reduction 
of 4-NP in this article. After each run of catalysis, the catalysts 
were separated from the reaction mixture rapidly and 
conveniently with an external magnetic field, rinsed with 
deionized water, and then reused in the next cycle. As shown in 
Fig. 9F, the nanocatalysts were successfully recycled and 
reused ten times with a conversation of ≥ 97%, which certified 
that Fe3O4@SN/HPW@CG could serve as a robust support for 
the deposition of Ag NPs, expectedly leading to high-
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performance nanocatalyst towards the reduction of 4-NP under 
aqueous reaction conditions. 

Conclusions 

In summary, the magnetic recyclability of Fe3O4, the protective 
effect of SiO2, the adsorption, stability, and green reduction 
ability of chitosan as well as the catalytic activity of Ag NPs 
were successfully integrated into a whole with a sturdy 
construction through the introduction of polyanion 
phosphotungstic acid. During this process, Ag NPs were in-situ 
green synthesized in aqueous solution and stabilized by 
chitosan in the absence of any other reducing agent or organic 
solvent, which were environmentally benign. In addition, the 
size and amount of the Ag NPs embedded in the chitosan shell 
could be readily controlled through varying the concentration of 
AgNO3 and the volume of glutaraldehyde. Besides, the 
thickness of chitosan shell could be easily controlled by varying 
the addition amount of phosphotungstic acid. And above all, the 
as-prepared Fe3O4@SN/HPW@CG-Ag NPs exhibited excellent 
catalytic performance (e.g. completed within 7 min) and 
reusability (reused at least 10 times without significant loss of 
activity) for the reduction of 4-nitrophenol in the presence of 
sodium borohydride. Furthermore, the design strategy based on 
Fe3O4@SN/HPW@CG-Ag may provide a novel platform for 
the preparation of other multifunctional organic-inorganic 
hybrid nanocatalyst systems with long-term stability. 
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