
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

MedChemComm

www.rsc.org/medchemcomm

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Journal Name RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 1  

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 

Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Relating Caco-2 permeability to molecular 

properties using block relevance analysis   

T. Pottera, G. Ermondib, G. Newburya and G. Caronb 

 

 

 

 

Here we describe a new approach for facilitating a 

mechanistic understanding of high throughput Caco-2 

permeability data.  A large, uniform set of permeability data 

is reported, generated under two pH conditions.  We found 

that this data could be successfully modelled, and that a 

mechanistic understanding of apparent permeability could be 

gained. 

Introduction 

The Caco-2 cell model is widely used in drug discovery and 

development for the determination of permeability characteristics of 

potential drug candidates.  Reports have demonstrated its utility in 

the prediction of oral absorption of drugs in man based on 

permeability across Caco-2 monolayers
1
.  

Several previous studies of the modelling of permeability across Caco-

2 monolayers have been reported
2,3,4,5,6,7,8,9

. The main purpose of such 

modelling was to successfully predict the screening result, and in 

some cases to act as a pre-screen prior to the measurement. Typically, 

researchers found that physicochemical properties are essential to 

define Caco-2 permeability, but often the relative contribution of each 

property was not explored. 

High throughput (HT) Caco-2 methods are now available for testing of 

high numbers of compounds in discovery phases, often replacing 

PAMPA as the screening method of choice.  We have developed a HT 

Caco-2 permeability assay capable of running 96 samples in a single 

experiment, using simultaneous quantification of samples from A-B 

and B-A directions.  A large dataset of apparent permeability 

coefficient (Papp) values have been generated, in order to validate the 

assay, and to compare against reported human intestinal absorption 

measurements
1
.  

A critical analysis of the relative contribution of molecular properties 

governing the permeability process could be used as a tool for 

comparing methods set-up in different labs, as well as for helping to 

guide medicinal chemistry programs.  For the aforementioned 

reasons we were interested in mining this dataset to understand 

further the fundamental drivers and their relative contribution of 

permeability in HT Caco-2 assays.  Following recent guidance for 

QSAR modelling
10

, we set out to find a mechanistic interpretation, 

with clear relation to physicochemical properties. 

Block Relevance (BR) analysis is a new tool that produces an easy-to-

read mechanistic interpretation of PLS models based on VolSurf+ 

(VS+) descriptors.
11, 12, 13

 The basic concept of VolSurf is to extract the 

information present in 3D molecular field maps into a few quantitative 

numerical descriptors which are easy to understand and to interpret. 

We have successfully applied the technique to distinguish 

chromatographic indexes
11,12

  and to characterize the dominant effect 

of Hydrogen Bond Donor (HBD) solute properties in the difference 

between log P measurements in two different systems (log Poct-tol)
13

. 

BR analysis mandates the organization of the VS+ descriptors into six 

blocks (namely, Size, Water, DRY, N1, O and Others) which enable a 

straightforward understanding of the investigated phenomenon, in 

this case cell-based permeability. We sought to investigate from BR 

outputs, whether permeability across Caco-2 monolayers is driven 

predominantly by a compounds hydrophobicity or hydrogen bonding 

properties. 

This paper reports a large and uniform set of original apical to 

basolateral permeability data across Caco-2 monolayers and 

highlights which intermolecular forces drive permeability. These 

results could be used to aid medicinal chemistry design, and also 

provide an additional validation criteria to evaluate HT Caco-2 

permeability assays, based on the balance of the intermolecular forces 

governing the system.  

Results and Discussion 
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Papp was determined in Caco-2 cells from equation 1, where dQ/dt is 

the rate of permeation of the drug across the cells, C0 is the donor 

compartment concentration at time zero and A is the area of the cell 

monolayer.   

���� =	���/�
��	×�� 
Equation 1. 

Two different pH conditions for the donor compartment (6.5 and 7.4) 

were used, producing two sets of data; Papp 6.5/7.4 (n = 85) and Papp 

7.4/7.4 (n = 54), respectively. These represent two of the most 

commonly screened conditions for Caco-2 permeability. An acidic 

apical compartment can be used to model the upper small intestine, 

for which the pH6.5/7.4 screening condition is employed.  However 

many researchers prefer to use pH7.4 in both chambers to eliminate 

the effect of a pH gradient.  Test compound permeability was 

assessed in duplicate, and the mean Papp values, along with standard 

deviations are reported in the supporting information.   

The dataset was checked for its chemical diversity through the 

analysis of some physicochemical properties (see supporting 

information). Results showed that a broad range of physicochemical 

properties was covered. 

The Papp 6.5/7.4 dataset was split in a training (n = 54) and a test set (n 

= 31). The training set was designed to include drugs for which both 

Papp 6.5/7.4 and Papp 7.4/7.4 were available.  We verified the 

relationship between the two series of data (Papp 6.5/7.4 and Papp 

7.4/7.4), and found a very good correlation (R
2
 = 0.93, not shown), with 

no significant outliers. 

Before proceeding with modeling we made an assumption regarding 

molecular flexibility. When VS+ processes the data, it associates each 

compound to the lipophilicity value of an “average” conformer built 

internally by an ad-hoc algorithm. In general terms this is a suitable 

protocol because one can assume that the “average” conformer 

represents all conformers energetically accessible. However this 

assumption no longer holds when the molecule in question has strong 

propensity to form intra-molecular hydrogen bonds, since the 

molecule is then forced into a specific conformation. In this case a 

very different profile of VolSurf+ descriptors could be obtained from 

the conformers without intra-molecular hydrogen bonds.
13

 In the 

process of crossing the cell membrane, the molecules experience a 

wide variety of environments (membrane interaction, diffusion, flip-

flop mechanism).
14, 15

 Conformation may vary greatly during the 

membrane passage and thus the use of an average conformation 

would seem reasonable.  

Finally we made some preliminary tests that enabled the 

identification of three outliers: acarbose, digoxin and adefovir. 

Acarbose and digoxin both possess a tri-saccharide chain containing 

multiple hydrogen bond donors and acceptors and are hence outliers 

in terms of these descriptors. Adefovir could have parameterisation 

issues in the GRID force field applied by VS+ (see Experimental 

Section). All three outliers were removed from the study. 

Modeling log Papp (6.5/7.4) 

Experimental log Papp values of the compounds belonging to the 

training set (n = 54) were imported into VS+ as response variables (Y) 

and a relation between Y and the 82 VS+ descriptors (X) was sought 

using the PLS algorithm implemented in the software. A model was 

found (Table 1) and the correlation between calculated vs 

experimental values is shown in Fig. 1 (filled circles). 

 
Activity N Validation LVs R2 Q2 RMSE 
log Papp 
6.5/7.4 

54 LOO 3 0.72 0.50 0.61 
54 RG 3 0.71 0.49 0.62 

log Papp 

7.4/7.4 
54 LOO 3 0.79 0.57 0.56 
54 RG 3 0.78 0.56 0.57 

log 
D7.4 

54 LOO 3 0.70 0.52 0.80 
54 RG 3 0-70 0.50 0.80 

Table 1. PLS statistical results 

(N = number of observations, R2 = cumulative determination coefficient, Q2 
= cross-validated correlation coefficient, LV = number of latent variables, 
RMSE = root mean square error, LOO = Leave One Out, RG = Random 
Group)) 

The validation of the models was firstly performed by means of an 

internal procedure (see experimental section). Satisfactory statistical 

results were obtained (Table 1).  

Following recently published QSAR guidelines
10

 we also performed an 

external validation of the PLS model using the test set. Predictions are 

shown in Fig. 1 (empty circles) and support the statistical stability of 

the model. 

 
Figure 1. Experimental log Papp (6.5/7.4) of the drugs belonging to the training set 

versus the predicted values (filled circles) and experimental log Papp (6.5/7.4) of 

the drugs belonging to the test set versus the predicted values (empty circles). 

Modeling log Papp (7.4/7.4) 

The same procedure described above for log Papp (6.5/7.4) was also 

performed for log Papp (7.4/7.4). The validation of the models was 

performed by means of the internal procedures alone (LOO, RG and 

dataset with a randomized Y order). Satisfactory statistical results 

were obtained (Table 1), slightly better than those obtained when 

modeling log Papp (6.5/7.4). 
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Interpretation of the PLS models by Block Relevance 

(BR) analysis 

A mechanistic interpretation based on the nature of the interaction of 

the solute with the environment, represented by some tailored 

probes, ‘blocks’ is defined by the GRID methodology
16, 17, 18

. Their 

significance is summarized in Fig. 2, as proposed in previous studies
12

.  

 

 
Figure 2. Block definition: the name of the block is in bold, the solute’s property 

described by the block in italics. The color code is maintained throughout the 

study. 

 

The BR analysis results are graphically reported in Fig.3A and Fig.3B. 

 
Figure 3. BR analysis graphical output: A) log Papp (6.5/7.4); B) log Papp (7.4/7.4); 

C) calculated log Doct 7.4. The blocks’ definition is reported in Figure 2.  

Blocks with a positive weighting indicate how much the property 

increases permeability, whereas those with negative weighting (e.g. 

red block) indicate how much the property decreases permeability. 

The presence of positive and negative components for most blocks is 

partly due to noise and partly due to the inter-correlation of 

descriptors.  

Figure 3A (log Papp 6.5/7.4) and 3B (log Papp 7.4/7.4) outline the major 

role (about 35% of the weight of all blocks) played by HBD solute 

properties (red bars) to govern Caco-2 permeability. The role of HBA 

solute groups (blue bars) by contrast is modest (about 15%) and 

similar to all remaining blocks.  

Very little difference was observed between the two data sets in terms 

of the output from BR analysis.  A possible reason for this is the 

dataset does not contain a large number of compounds that we would 

expect to have different charge states at pH 6.5 versus 7.4. 

It is often reported in the literature that permeability can be modeled 

by log D7.4oct, but this analysis would seem to suggest that logD 

alone is a poor surrogate. To investigate further, we calculated log 

D7.4oct for all the drugs, and plotted against log Papp 6.5/7.4, Figure 4. 

 

 
Figure 4. The relationship between log Papp (6.5/7.4); and calculated log Doct 7.4. 

The weak correlation observed suggests that the balance of 

intermolecular forces that govern log D7.4oct and log Papp 6.5/7.4 is 

very different. To confirm this hypothesis we again used BR analysis. 

The log D7.4oct values of the training set were imported into VS+ as 

response variables (Y) and a relation between Y and the 82 VS+ 

descriptors (X) was sought using the PLS algorithm as previously 

described. Statistics were good (see table 1) and thus we submitted 

PLS output to BR analysis. The graphical output is shown in Fig. 3C 

and shows how the balance of intermolecular interactions governing 

log Doct 7.4 is completely different from that governing log Papp. (Fig. 

3A and 3B) This supports the finding that lipophilicity is not the 

dominant factor for understanding log Papp. In fact, a large drug size 

(green block) generally causess an increase in log Doct 7.4 (Fig. 3C, 

positive sign) but a decrease in log Papp (Fig. 3A and 3B, negative sign). 

Moreover HBA solute properties (blue bars) are important for logD7.4 

but not for log Papp as previously discussed. 

Conclusions 

This analysis has shown that the most important factors for 

understanding the physicochemical drivers for HT Caco-2 

permeability are hydrogen bond donor properties.  No consideration 

has been given in this analysis to the contribution of active transport 

mechanisms and the effect they may have on Papp.  Clearly such 

factors are of great importance when describing permeability in Caco-

2 cells, and compounds which display significant active efflux will 

inevitably have a low apical to basolateral Papp value which is not fully 
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explained by an analysis of bulk physicochemical properties such as 

this.  These interactions may, in part be accounted for in the analysis, 

but we have not attempted to include sufficient compounds in the 

dataset to model active efflux.  The conclusions should therefore be 

interpreted as a bulk property basis, and not in a purely predictive 

fashion.  Indeed, we would not expect compounds with specific 

interactions to be well predicted by this model.  However, we would 

expect the same principles to apply to the passive aspect of such 

compounds permeability.   

We now intend to extend this analysis to assess the main drivers for 

human intestinal absorption, and to verify (or otherwise) that the 

same descriptors and directionalities are driving this phenomenon as 

Caco-2 permeability. 

Experimental  

All reagents were purchased from Sigma-Aldrich unless otherwise 

stated.  Hanks Balanced Salt Solution (HBSS) buffer was 

supplemented with 25mM HEPES and 4.45 mM glucose and the pH 

adjusted to 7.4.  HBSS buffer was supplemented with 10 mM MES and 

4.45mM glucose, and the pH adjusted to 6.5. 

Caco-2 cells (ATCC) were seeded onto Millicell 96 well plates 

(Millipore, MA, USA) at 1 x 10
5
 cells/cm

2
. The cells were cultured in 

DMEM and media was changed every two or three days for 20 days 

for confluent cell monolayer formation.  Cell culture and assay 

incubations were carried out at 37°C, 5% CO2 with a relative humidity 

of 95%.  On the day of the experiment, the monolayers were prepared 

by rinsing both apical and basolateral surfaces twice with HBSS at the 

desired pH.  Cells were incubated with HBSS at the desired pH in both 

apical and basolateral compartments for 40 minutes to stabilise 

physiological parameters. 

The dosing solutions were prepared by diluting test compound with 

assay buffer to give a final test compound concentration of 10 µM 

(final DMSO concentration of 1 % v/v).  The fluorescent integrity 

marker lucifer yellow was also included in the dosing solution.  

Analytical standards were prepared from test compound DMSO 

dilutions and transferred to buffer, maintaining a 1 % v/v DMSO 

concentration. For assessment of A-B permeability, HBSS was 

removed from the apical compartment and replaced with test 

compound dosing solution.  The apical compartment insert was then 

placed into a companion plate containing fresh buffer (containing 1 % 

v/v DMSO).  At 120 minutes the apical compartment inserts and the 

companion plates were separated and apical and basolateral samples 

diluted for analysis.   

Test compounds were quantified by LC/MS/MS analysis using an 8 

point calibration with appropriate dilution of the samples.   The 

integrity of the monolayer throughout the experiment was checked 

by monitoring lucifer yellow permeation using fluorimetric analysis.  If 

lucifer yellow permeation was found to be above pre-defined 

thresholds, the result was rejected and repeated. 

VS+ models were built by submitting the SMILES codes of the 

compounds to VS+ (version 1.0.7, http://www.moldiscovery.com) 

using default settings and four probes (OH2, DRY N1 and O probes 

that mimic respectively water, hydrophobic, HBA and HBD properties 

of the environment). PCA and PLS tools implemented in VS+ were 

used. BR analysis was performed as described elsewhere.
11, 12, 13 

pKa and log D7.4 calculations were performed with MoKA (v.2.5.4, 

www.moldiscovery.com). 

Processing was done on a two 8 cores Xeon E5 at 3.3GHz CPUs and 

128GB of RAM. 

Notes and references 
a Cyprotex Discovery Limited, 15 Beech Lane, Macclesfield, SK10 2DR, 

UK. 
b CASSMedChem research group, Molecular Biotechnology and Health 

Sciences Dept., University of Turin. 

Electronic Supplementary Information (ESI) available: Full table of 

measured Caco-2 permeability used in the modelling. See 

DOI: 10.1039/c000000x/ 
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