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Rational design of protein-protein interaction 

inhibitors 

Didier Rognan* 

Protein-protein interactions are at the heart of most physiopathological processes. As such, 

they have attracted considerable attention for designing drugs of the future. Although initially 

considered as high-value but difficult to identify, low molecular weight compounds able to 

selectively and potently modulate protein-protein interactions have recently reached clinical 

trials. Along with high-throughput screening of compound libraries, combining structural and 

computational approaches has boosted this formerly minor area of research into a currently 

tremendous active field. This review highlights the very recent developments in the rational 

design of protein-protein interaction inhibitors.  

 

 

 

 

Introduction 

Drug discovery is a long, costly, multi-step endeavour which 

aims at reducing all possible risks to deliver a novel therapeutic 

solution to previously unmet clinical needs. To reduce chemical 

risks, empirical rules are used to filter the chemical space and 

retain drug-like low molecular weight compounds. Reduction 

of the biological risk is addressed by considering privileged 

target families (e.g., G protein-coupled receptors, kinases) 

whose activation/inhibition by drug-like compounds are likely 

to correct or reverse pathological states. Until recently, mostly 

single macromolecules (proteins, nucleic acids) have been 

considered as potential drug targets. Out of the 68,000 proteins 

currently annotated in UniProt for the human proteome,1 only 

about 300 targets2 have been addressed by current drugs, and 

the large majority of single targets are still awaiting first-in 

class drugs. 

Beside single targets, large scale genomics and proteomics3 

have identified complex networks of targets and pathways 

regulating physiopathological processes in a coordinated 

manner. The current human protein-protein interactome has 

been estimated at between 130,0004 and 650,0005 complexes, 

out of which only a tiny amount is known, and only a very 

few6-8 has been the object of a drug discovery initiative. 

Protein-protein interactions (PPI) therefore describe a totally 

new biological space that attracts more and more attention, with 

already 26 PPI inhibitors9, 10 under clinical development, 

notably in the oncology field.11 Despite PPIs may adopt quite 

different sizes, shapes and electrostatics,12 identifying high-

affinity PPI inhibitors is a considerable challenge for many 

reasons: (i) contrarily to conventional targets, a medicinal 

chemist cannot start inhibitor design from the structure of 

endogenous ligands, (i) PPIs often involve flat surfaces 

delocalized over multiple epitopes, usually lack well-defined 

buried cavities13 typical of conventional targets, and are 

significantly larger (ca. 1000-3000 Å2) than enzyme/receptor 

pockets (300-1000 Å2), (iii) high-throughput screening of 

traditional compound libraries often return no viable hits14 for 

the main reason that PPI inhibitor chemical space is quite 

different from that described by traditional drug-like 

compounds.10 Nonetheless, thank to bioinformatics and 

proteomics-guided prioritization of therapeutically relevant 

protein-protein complexes, more and more PPI inhibitors are 

currently reported. Several excellent reviews6, 7, 9, 11, 15-18 have 

already been published on experimental methods (high 

throughput screening, biochemical and cellular assays, 

fragment-based approaches) suitable to discover PPI inhibitors. 

The present report will only cover computer-aided approaches, 

with a major emphasis on structure-based methods and recent 

discoveries (2012-2014). 

 

Databases 

Preliminary access to experimentally validated data is key to 

launch a drug discovery program on PPI modulators. A 

multitude of databases storing genomics, proteomics and 

structural data are currently available to help the medicinal 

chemist. We will here briefly review these archives, focusing 

mostly on easily interpretable structural data. 
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PPI databases 

Many experimental methods with different throughputs (from 

low to high) have been developed to characterize binary 

interactomes in various species, among which the most 

prominent have been the yeast two-hybrid (Y2H) assays, and 

mass-spectrometry (MS) coupled to co-immunoprecipitation or 

co-affinity purification.19 These experimental data are stored in 

many primary databases (Table 1) that are difficult to mine due 

to their large heterogeneity. Metadatabases have been derived 

thereof to facilitate their analysis, among which the most 

popular are APID and PRIMOS (Table 1). These metadatabases 

covers a wide range of organisms and notably offer the 

possibility to mine experimental PPI data according to disease 

relevance or inter-organism crosstalk, and provide graphic tools 

to visualize complex networks of interacting proteins and 

identifying important protein nodes (hubs). 

 

Table 1. Protein-protein interaction  databases 

Database  Interactions website    Reference 

BIND   32,211 http://bond.unleashedinformatics.com    20 
DIP   78,191 http://dip.doe-mbi.ucla.edu/dip/Main.cgi    21 
HPRD   41,327 http://www.hprd.org/      22 
IntAct 448,986 http://www.ebi.ac.uk/intact/     17 
MIPS      9,835 http://mips.helmholtz-muenchen.de/proj/ppi/    23 
APID 196,700 http://bioinfow.dep.usal.es/apid/index.htm    24 
PRIMOS 384,127 http://primos.fh-hagenberg.at/     19 

 

It is however very difficult, from this huge amount of data, to 

clearly prioritize PPIs for a drug discovery program. Attempts 

to classify the PPIs by structural druggability25 (although 

ligandibility26 is probably a better term) are worth mentioning 

but should be taken with care due to the still insufficient 

number of existing PPI three-dimensional (3D) structures . 

 

Ligand databases 

Initially limited to a limited subset of inhibitors able to disrupt 

few PPIs (e.g. p53/MDM2, Bcl-Xl/Bak, IL-2/IL-2Rα),7, 27 the 

repertoire of PPI inhibitors rises constantly thanks to exciting 

developments in biophysical fragment screening.15, 28 

Three publicly-available databases storing information on PPIs 

and their inhibitors (Table 2) may be used to better describe the 

structural properties of druggable PPIs and the chemical space 

associated with their disruptors. 

 

Table 2. Database of low molecular-weight PPI inhibitors 

Database  Ligands website     Reference 

2P2I        71 http://2p2idb.cnrs-mrs.fr/        12 
iPPI-DB   1,650 http://www.ippidb.cdithem.fr/     10 
TIMBAL   6,896 http://mordred.bioc.cam.ac.uk/timbal    29 

 

The 2P2Idb database12 is a hand-curated repository of protein-

protein complexes of known X-ray structure (X-ray diffraction, 

nuclear magnetic resonance spectroscopy) for which at least 

one low molecular weight orthosteric inhibitor has been co-

crystallized with one of the two protein partners. It currently 

describes 71 inhibitors for 14 PPIs, clustered in two groups 

(Figure 1) with respect to the nature of the interface (protein-

peptide, protein-protein). Companion tools (2P2I inspector,30 

2P2I score,30 2P2I hunter31) are provided to analyse PPIs at a 

structural level, predict their structural druggability and design 

PPI focussed libraries, respectively. 

 
Figure 1. Prototypical examples of class I (left panel) and class II PPIs (right 

panel), exemplified by the Bcl-Xl/Bak (PDB id 1BXL) and Integrase/LEDGF (PDB id 

2B4J) complexes, respectively. Class I PPIs involve the interaction of a globular 

protein with a peptide or a single secondary structure (α-helix, β-strand) of a 

second protein partner. Class II PPis are characterized by the interaction of two 

globular proteins. 

 

The iPPI-DB10 is another manually curated database from 

world patents and medicinal chemistry literature, focussing on 

low molecular weight orthosteric inhibitors, disease-related 

protein-protein interfaces and a clear biochemical readout (e.g. 

fluorescence polarisation, enzyme-linked immunosorbent 

assay). The database archives 1,650 PPI inhibitors targeting 13 

families of homologous PPI targets mainly involved in cancer, 

immune disorders and infectious diseases. 

Last, the TIMBAL database29 reports ca. 7,000 inhibitors for 50 

known PPIs. Contrarily to the two other databases, TIMBAL is 

maintained through a predefined list of PPIs and automated 

searches in ChEMBL32 and the Protein Data Bank.33 Contrarily 

to the other databases, TIMBAL also registers short peptides 

with an upper molecular weight limit of 1,200 Da. It should be 

pointed that most of the 15,000 uncurated biological data 

present in TIMBAL arise from a single target family (Integrins) 

and should be considered with care. 

Analysing the content of these databases enables a first 

comparison of PPI inhibitors versus drugs, as well as PPIs 

amenable to disruption versus standard heterodimers. PPI 

surfaces disrupted by inhibitors tend to be smaller, more 

hydrophobic and accessible than standard heterodimers.12 As a 

consequence, low molecular weight PPI inhibitors tend to be 

larger, more hydrophobic and more aromatic-rich than standard 

drugs. Interestingly, many of them (ca. 60%) still comply with 

Lipinski’s rule-of-five,10 revealing some hopes in the 

developabililty of such compounds.  

However, it should be stated that the set of empirical rules 

designed to discriminate druggable from non-druggable PPIs, 

as well as to distinguish PPI inhibitors from conventional drug-
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like compounds still rely on a very limited set of highly 

homologous data (PPIs, inhibitors), and should therefore be 

regarded with caution. Increasing coverage of the PPI repertoire 

by future experimental screens will undoubtedly lead to a better 

definition of PPI biological and chemical spaces. We therefore 

expect in the future the above-mentioned rules to be refined and 

be more descriptive of the true world of PPI inhibitors, notably 

with respect to rational design of PPI focussed libraries.  

 

Rational design of PPI modulators 

Sequence-based approaches   

Whatever the nature of the PPI (type I or type II, see definition 

above), PPI interfaces are often characterized by the presence 

of hotspots,34 in other  words anchor residues that contribute the 

most to the binding free energy of the protein-protein complex. 

The interaction of a single modified amino acid with a single 

anchor residue might be sufficient to disrupt a PPI as elegantly 

demonstrated by Lin et al. in a recent study.35 Capitalizing on 

the presence of a reactive cysteine (C246) at the interface of the 

complex between caspase-7 (CASP7) and the X-linked 

inhibitor of apoptosis protein (XIAP), they designed the N-

iodoacetyl-lysine amino acid derivative 1 (Figure 2) that 

covalently traps C246 and further disrupts the XIAP-CASP7 

complex, therefore triggering CASP7-dependent apoptosis and 

killing MCF-7 breast cancer cells (EC50 = 0.64 µM) previously 

resistant to chemotherapy. 

The easiest way to inhibit a PPI is to start with the amino acid 

sequence of one interacting epitope, notably if the latter is part 

of a regular secondary structure (α-helix, β-strand, β-turn). For 

example, α-helical peptides mimicking the sequence of protein 

transmembrane domains may disrupt PPIs quite efficiently.36, 37 

Due to poor pharmacokinetic profiles, linear peptides are good 

in vitro tools but usually not efficient clinical candidates. 

Chemical modifications are required to stabilize their secondary 

structures in physiological media and prevent early degradation. 

Among the most exciting developments in this area38, 39 is the 

design of stapled peptides.40, 41 Stapled peptides are synthetic 

analogues of α-helical protein epitopes involved in a PPI, and 

in which a covalent hydrocarbon linkage connects adjacent 

turns of the helix. Stapling is known to significantly increase 

the in vivo half-life of the natural peptide (increasing 

proteolytic stability), decrease the entropic cost of binding, and 

even enable cellular uptake.42 Many stapled peptides with 

potent in vivo activities have already been reported.39 One of 

these stapled peptides (ATSP-7041, compound 2, Figure 2) just 

entered clinical development as a dual nM MDM2/MDMX 

inhibitor for p53-dependent cancer therapy.43  

Heterocyclic scaffolds mimicking secondary structures can also 

be obtained by solution-phase synthesis to afford 

peptidomemitic libraries amenable to PPI inhibition. Whitby et 

al. notably reported the design of 8000 member 4-acetamido-3-

alkoxy-benzamide focused library featuring weak p53/MDM2 

inhibitors and potent HIV-1/gp41 inhibition (compound 3, 

Figure 2).44 When the peptide epitope is not structured, 

developing macrocylic analogues is more difficult but still 

feasible as recently demonstrated by Glas et al.38 who 

successfully improved 14-3-3 binding of a 11-mer peptide from 

a bacterial ExoS virulence factor by cross-linking binding 

amino acids with polymethylene linkers, up to an in vitro 40 

nM disruptor of the ExoS/14-3-3 interaction (compound 4, 

Figure 2). Interestingly, the cross-linker was not only chosen to 

rigidify the natural ExoS peptide structure but also to directly 

provide additional hydrophobic interactions to the 14-3-3 

binding site.38   

 
Figure 2. Peptidomimetics as PPI disruptors 

 

Only in exceptional cases is the natural unmodified peptide 

directly usable as PPI inhibitor. One recent example is the 28 

amino acid cell-penetrating peptide (p28) from a bacterial 

azurin redox protein, that binds to the DNA-binding domain of 

the p53 tumor suppressor and inhibit p53 degradation by 

interfering with the Cop1-mediated ubiquitination,45 thereby 

enhancing p53 levels in cancer cells and exhibiting antitumoral 

efficacy in patients with advanced solid tumors.46 

 

Pharmacophore-based approaches 

As defined by the IUPAC,47 a pharmacophore is “an ensemble 

of steric and electronic features that is necessary to ensure the 

optimal supramolecular interactions with a specific biological 

target and to trigger (or block) its biological response.” 
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Although pharmacophores are mainly used to align and 

compare ligands sharing the same target,48 the same concept 

can be easily transferred to PPIs in which one partner is the 

“receptor” and the second one the “ligand”. Pharmacophore 

features (hydrophobic, aromatic, H-bond donor and H-bond 

acceptor, positively and negatively ionisable) can therefore be 

manually or automatically mapped to atoms of the ligand in 

direct interaction with the receptor. The resulting 

pharmacophore can then be used to identify a compound library 

for hits fulfilling the defined query. Several tools (e.g. 

LigandScout,49 DiscoveryStudio,50 PocketQuery51) can be 

directly used to map PPI pharmacophores onto protein-protein 

X-ray structures (Figure 3). 

 
Figure 3. Example of a PPI pharmacophore mapped onto interacting atoms of 

human LEDGF (yellow ribbons) bound to HIV-1 integrase (red ribbons, PDB ID 

2B4J). The PPI pharmacophore is composed of 2 h-bond donors (magenta balls), 

two H-bond acceptors (green balls), one hydrophobic feature (cyan ball) and 6 

exclusion volumes (gray balls) 

 
 

Using a manual PPI pharmacophore defined from the X-ray 

structure of the Annexin A2/S100A10 complex, a pro-

angiogenic complex), Reddy et al.52 derived a simple 

pharmacophore (2 hydrophobes, 2 H-bond donors, 2 H-bond 

acceptors) using the Unity program,53 and screened a library of 

700,000 compounds to select 586 hits which were further 

docked to the Annexin A2 binding site to retain only 190 

candidates with both a good docking and pharmacophore 

fitness score (Table 3). Out of the 190 tested compounds, 7 hits 

blocked the interaction between S100A10 and the annexin A2 

N-terminus in a competitive fluorescent binding assay, with the 

most potent PPI inhibitor (compound 5, Figure 4) exhibiting an 

IC50 of 24 µM.52 

Geppert et al.54 reported the rational discovery of a low 

molecular weight inhibitor of the complex between interferon-α 

(IFN-α) and its receptor (IFNAR2). Fortunately, the PPI 

interface was small enough (ca. 800 Å2) to be targeted by a 

small heterocyclic compound. After identifying major hotspots 

at the IFN-α surface, a fuzzy receptor-based pharmacophore 

was determined using the VirtualLigand approach,55 which 

assigns pharmacophoric features to Gaussian densities. 

Screening a collection of 556,000 commercially available 

compounds retained six virtual hits, out of which two were 

weak IFN-α inhibitors, but one (compound 6, Figure 4)  was 

confirmed by NMR and surface plasmon resonance (SPR) to 

bind to IFN-α with a dissociation constant (Kd) of 4 µM and to 

inhibit IFN-α responses in various cell assays. The novel 

inhibitor may be useful to reduce IFN-α titers in autoimmune 

disorders. 

 

Table 3.  Protein-protein pharmacophore searches to identify PPI inhibitors 

Target   Library Tested Hits Ref. 
   size  

Annexin A2/S100A10  700,000 190 7 52 
INFAR2/IFN-α  556,000     6 3 54 
p53/MDM2    21,287   15 6 56 
Nrf2/Keap1    21,199   17 1 57 
PKCε/RACK2  330,000   19 1 58 
 
 

 
Figure 4. PPI inhibitors identified by pharmacophore-based virtual screening. 

 

Due to the inherent complexity of PPI pharmacophores (many 

features covering a large surface), combining several 

pharmacophores into a consensus model may help to retrieve 

essential features and simplify pharmacophore queries. Xue et 

al. applied this approach to the identification of p53-MDM2 

inhibitors.56 The p53-MDM2 complex has become a 

prototypical PPI for its biological background (this interaction 

plays an important role in regulating the transcriptional activity 

of tumour cells) and the many high affinity low molecular-

weight inhibitors of this PPI identified by various screening 

approaches.59 Starting from a set of 15 MDM2-peptide X-ray 
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structures, a common features structure-based pharmacophore 

(2 H-bond donors, one H-bond acceptor, 2 aromatic rings, one 

hydrophobe) was first identified. In addition, a receptor-ligand 

pharmacophore (five hydrophobes, one aromatic, one H-bond 

donor) was generated from a separate set of 10 MDM2-non 

peptide complexes. Merging both pharmacophores and 

retaining the most common features led to an ensemble 

pharmacophore definition (two aromatic rings, two 

hydrophobes, one H-bond donor) talking in to account both 

peptide and non-peptide binding. This pharmacophore was used 

to screen a collection of 21,287 commercially available 

compounds, and led to a hit list of 15 compounds out of which 

6 were confirmed as p53-MDM2 inhibitors using an in vitro 

fluorescence polarization assay.56 The most potent inhibitor 

(compound 7, Figure 4) is a 180 nM MDM2 inhibitor. Despite 

a good selectivity in a MTT tumour cell proliferation assay 

(p53+/+ vs. p53-/- cells), compound 7 was a weak inhibitor (IC50 

= 85 µM) of tumour cell growth, because of poor 

pharmacokinetic properties. 

 

Along the same lines, two X-ray structures were used to derive 

inhibitors of the PPI between Keap1 and Nrf2, a complex 

involved in the response to oxidative stress.57 The two PPI 

pharmacophores were merged into a single query consisting of 

one H-bond donor, two H-bond acceptors and three negative 

ionisable centers. To afford some fuzziness in the search, up to 

two features were allowed to be missed by virtual hits. Since 

the Keap1-binding epitope of Nrf2 is composed of several 

acidic residues, only compounds bearing a negative charge 

were searched among a full commercial library of 251,774 

compounds. The remaining 21,199 hit list was matched to the 

pharmacophore, and led after confirmation with docking and 

MM-PBSA scoring, to a list of 17 potential hits which were 

tested for Keap1-Nrf2 inhibition using an in vitro fluorescence 

polarization assay. A single compound (compound 9, Figure 3) 

was confirmed in vitro as a moderately potent Keap1-Nrf2 

inhibitor with an EC50 if 9.8 µM.57 Interestingly, the inhibitor 

activated Nrf2 transcriptional activity. 

 

When both protein partners involved in the PPI have not been 

co-crystallized, it is still possible to rationally discover PPI 

inhibitors, starting from the sole X-ray structure of one of the 

two proteins. This approach was followed by Rechfeld et al. in 

the discovery of PKCε-RACK2 inhibitors.58 Starting from the 

X-ray structure of the PKCε octameric epitope binding to 

RACK2 (a receptor for activated protein kinase C), a simple 

peptide-based pharmacophore model (3 H-bond donor/acceptor, 

one hydrophobe) was defined and used to screen a collection of 

330,000 compounds. Out of 19 virtual hits, a thienoquinoline 

was found to disrupt the PPI in vitro and served as a query for a 

secondary screen for chemically similar analogues, to led to 

compound 8 (Figure 4) as a micromolar potent PKCε-RACK2 

inhibitor (IC50=5.9µM) which also inhibited PKCε downstream 

signalling, HeLa cancer cell migration and invasion.58 

 

Last, pharmacophore searches may be used to prioritize 

privileged scaffolds for synthesizing PPI-focused libraries. For 

example, Fry et al. reported a rational approach to PPI library 

design targeting α-helical binding epitopes.60 Starting from the 

known X-ray structure of a α-helical p53 epitope binding to 

MDM2, a three point pharmacophore, featuring the three 

important hydrophobic side chains (Phe19, Trp23, Leu26) of 

the p53 peptide, was designed and used to find heterocylic 

scaffolds among the CSD database61 of small molecule X-ray 

structures. Several small-sized libraries (ca. 100 members) were 

synthetized from each hit and tested for general inhibition of 

PPIs involving a α-helical epitope (e.g. MDM2, BCL2, BCL-

XL, MCL1). Although no potent hit could be discovered, the 

average hit rate was far superior (4%) to what should be 

expected from a random screen. Moreover, many starting hits 

exhibited good ligand efficiencies,60 and are therefore 

interesting starting points for hit to lead optimization. 

 

Despite its apparent simplicity, PPI-based pharmacophore 

search is a fast, cost-effective and simple in silico approach to 

discover the very first inhibitors of a particular PPI. Of course, 

all successful examples mentioned above imply that the PPI is 

of manageable size and does not involve a too large and 

complex binding epitope. Beside the existence of a X-ray or 

NMR structure of the protein-protein(peptide) complex, it is 

therefore equally important to properly select PPIs amenable to 

pharmacophore-based searches, notably with respect to the 

complexity of the query (5-6 features) and its 

hydrophobic/hydrophilic balance. 

 

Docking-based approaches 

At first sight, protein-ligand docking should be considered as 

the most intuitive and logical computational tool to predict 

likely ligands of any target of known 3D structure.62 

Unfortunately, severe drawbacks associated with the scoring of 

protein-ligand interactions render that tool usually suitable for 

positioning a ligand into a binding site, but rarely to predict 

binding free energies or to precisely rank ligands by decreasing 

affinity.63 Moreover, the ability of docking algorithms to anchor 

ligands to flat PPI surfaces has long remained elusive. In a 

benchmark study, Krüger et al. used two popular docking tools 

(AutoDock, Glide) to reproduce the known X-ray structure of 

PPI inhibitors to their target.64 Surprisingly, the performance of 

these standard docking programs with respect to the positioning 

of the ligand (rmsd to the X-ray structure) was only moderately 

affected by switching from conventional targets to PPIs. 

Although PPI inhibitors with more than 10 rotatable bonds 

were found more difficult to properly dock, a good pose was 

generated in ca. 54% of the 80 PPI inhibitors considered. 

Docking to PPIs providing at least one charge residue was 

favoured over those purely hydrophobic.64 There are therefore 

no particular reasons to discard docking-based approaches from 

rational PPI inhibitor discovery scenarios. Many of the 

following success stories support this assumption.  
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We will not here review the many recent reports describing 

docking as a mean to predict the binding mode of a PPI 

inhibitor discovered by an experimental screening method.59, 65-

68 The next section will only focus on inhibitors discovered by a 

docking-based virtual screening campaign (Table 4). 

 

Table 4.  Protein-protein inhibitors discovered by docking-based screening 

Target      Library    Tested Hits Ref. 
      size    

TLR4/MD-2      50,000          14   3 69 
uPA-uPAR 5,000,000          50   3 70 
IL-6/gp130               9            2   2 71 
Keap1-Nrf2    153,611          65   9 72 
CRYAB/VEGF    139,735          40   4 73 
NRP-1/VEGF-    429,623     1,317 56 74 
PPxY/Nedd4 4,800,000        20   1 75 
p53/MDM2       87,430      295   1 76 

 

Despite an apparent unsuitable large and concave cavity, the 

MD-2-binding site at the surface of the Toll-like receptor 4 

(TLR4) was selected for pharmacophore-constrained FlexX77 

docking of a library of 49,600 compounds pre-filtered for 3D 

shape similarity to an existing TLR4 antagonist.69 40 virtual 

hits were selected for in vitro TLR4 binding and functional 

antagonism, and 3 of them could be confirmed experimentally. 

The most potent antagonist (compound 10, Figure 5) blocked 

TLR4 in a gene receptor assay with an IC50 of 16.6 µM and 

inhibited pro-inflammatory cytokine release (e.g. TNF-α) from 

human peripheral blood mononuclear cells upon LPS 

activation. Due to unfavourable aqueous solubility, the 

compound could not be tested in vivo but represent a good 

starting hit for developing small molecule TLR4 antagonists for 

the treatment of neuropathic pain and sepsis. 

To account for the conformational flexibility of proteins, 

Khanna at al. reported a cascade docking-based virtual 

screening for discovering inhibitors of the interaction between 

urokinase-type plasminogen activator (uPA) and the urokinase 

receptor (uPAR).70 Two X-ray structure of the uPAR were first 

used to docking a collection of 5 million commercially 

available compounds using AutoDock4.78 10,000 top-ranked 

virtual hits were further docked, still with AutoDock, to 50 

molecular dynamics snapshots of the uPAR structure, leading 

to 500 top-ranked compounds which, in a third step, were 

docked using a different program (Glide) on the 50 receptor 

conformers. After clustering the top 250 compounds by 

chemical similarity, the highest scoring compounds from each 

of the top 50 clusters were finally selected, purchased and 

evaluated in vitro in a fluorescence polarization assay. Among 

the three validated hits, the most potent inhibitor (Compound 

11, Figure 5) binds to uPRA with a submicromolar affinity 

(Kd=310 nM) and inhibits the uPA-uPAR interaction with an 

IC50 of 10 µM.70 The hit blocked invasion of breast cancer cells 

but not their migration or adhesion. A close analogue of 

compound 11 was recently shown to be efficient in an in vivo 

breast cancer metastasis assay.79 

 

 
Figure 5. PPI inhibitors identified by docking-based virtual screening. 

 

Docking is not limited to the study of single protein-ligand 

interactions. In an elegant study, Li et al. reports a 

computational method enabling the simultaneous docking of 

multiple fragments to a single binding site, by analogy to 

experimental fragment screening.71 When applied to the PPI 

between IL-6 and gp130, simultaneous docking of two 

fragment pools (6 and 3 fragments, respectively) targeting two 

different hotspots at the PPI, two theoretical ligands could be 

reconstructed after tethering the best fragments at each hotspot. 

Searching for known drugs80 which are chemically similar to 

the two virtual hits suggested than two estrogen receptor 

modulators (raloxifene, bazedoxifene) may bind to the 

gp130/IL-6 PPI. Effective binding of both drugs to gp130 was 

confirmed experimentally, as well as inhibition of IL-6 induced 

STAT3 phosphorylation in various cancer cell lines defective in 

estrogen receptor expression. Bazedoxifene (compound 12, 

Figure 5) was the most efficient (IC50= 25 µM) in inhibiting the 

ER-independent IL6-induced breast cancer cell proliferation, 

thereby offering some repositioning potential in the treatment 

of IL-6/gp130/STAT3 dependent tumours.71 
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The Nrf2-Keap1complex, previously investigated using a 

pharmacophore-based approach (see previous section) was also 

used for docking 300,000 commercially available compounds 

with the program Glide. Among the chemically diverse 65 top-

ranking hits, 9 compounds were confirmed to be PPI inhibitors, 

the most potent disruptor (compound 13, Figure 5) exhibiting a 

KD of 2.9 µM in a fluorescence anisotropy-based assay.  

 

A major hurdle in PPI inhibitor development is the frequently 

objected high molecular weight and unflavoured 

pharmacokinetic properties. Chen et al. strikingly contradicted 

this dogma by reporting a very low molecular weight inhibitor 

of the αB-crystallin (CRYAB)/VEGF-A interaction.
73 CRYAB 

is a protein overexpressed in triple-negative breast cancer cells 

that acts as a chaperone to several proteins including the pro-

angiogenic vascular endothelial growth factor (VEGF). 

Disrupting the interaction between CRYAB and VEGF-A is 

therefore a potential approach to cancer cell proliferation and 

invasion. The VEGF-binding site on the surface of the CRYAB 

X-ray structure was therefore targeted by docking 140,000 

compounds from the NCI database using the Dock6.5 program 

(UCSF). Despite a very modest molecular weight (161.16 Da), 

one compound (compound 14, Figure 5) was identified as an in 

vitro disruptor of the CRYAB/VEGF-A interface with an IC50 

of ca. 20µM. Intraperitoneal injection of compound 14 (200 

mg/kg) remarkably supresses tumour growth in vivo in human 

breast cancer xenograft models. VEGF-A is an important 

angiogenic factor that interacts with many other partners, 

notably the family of neuropilin receptors (NRP-1, NRP-2) 

whose inhibition leads to cancer cell apoptosis. The PPI 

between the C-terminal end of VEGF-A165 and the tandem b1 

and b2 domains of NRP-1 was targeted for docking 430,000 

molecules with a consensus docking  approach relying on two 

docking programs (Surflex-Dock81 and ICM82). A consensus 

list of 1,317 top-scoring compounds was retained for their in 

vitro anti-proliferative activity and binding to NRP-1 using a 

chemiluminescent assay.74 56 molecules (hit rate of 4.2 %) 

antagonized the NRP-1/VEGF-A interaction by at least 30% at 

the concentration of 10 µM. The best hit (compound 15, Figure 

5) is the first non-peptide NRP-1/VEGF-A antagonist (IC50 = 

34 µM) and displays remarkable anti-proliferative effects (IC50 

= 0.2 µM) on breast cancer cells. Administered at the dose of 

50 mg/kg in NOG-xenografted mice, compound 15 strongly 

inhibit tumour growth inhibition by inducing cell apoptosis, 

without any effect on pro-angiogenic kinases. 

Although most of the above reported therapeutical indications 

remain in the oncology field, PPI inhibitors have clear potential 

in other areas, notably infectious diseases as recently 

demonstrated by Han et al.75 who reported the structure-based 

discovery of antiviral compounds inhibiting viral-host 

interactions. The PPI target is the complex between the 

conserved L-domain PPxY sequence of several viral matrix 

proteins (e.g. Ebola, Marburg, Lassa fever, VSV) and the 

ubiquitin ligase Nedd4 protein. Docking ca. 5 million 

compounds (ZINC database)83 on the Nedd4 X-ray structure 

with the AutoDock4 program, yielded to the evaluation of 20 

compounds, out of which one molecule was confimed as a true 

inhibitor of the PPI in a cellular assay. Acquiring close analogs 

of the initial hit led to two more potent inhibitors (compounds 

16 and 17, Figure 5) as submicromolar inhibitors of the PPxY-

Nedd4 interaction in vitro.75 Both compounds exhibit 

antibudding activity against Ebola, Lassa fever, Marburg and 

VSV viruses, thereby decreasing viral titers, without apparent 

cytotoxicity on HEK293T cells. 

Natural compounds are also a major source of potentially 

interesting PPI inhibitors. By docking a library of commercially 

available compounds to the p53 binding site, Vogel et al. 

recently reported lithocholic acid (compound 18, Figure 5), a 

secondary bile acid, as a weak binder (KD of 15 µM) to MDM4 

and MDM2 proteins with a slight preference for MDM4.76 The 

natural compound was further shown to inhibit p53-MDM4 

interactions and promote apoptosis in a p53-dependent manner 

by inducting caspase3/7.  

 

 

Conclusions 

We should acknowledge that peptides usually remain a good 

starting point to derive PPI inhibitors. Given the increasing 

number of high resolution X-ray structures of biologically 

relevant protein-protein complexes, the number of potentially 

increasing PPIs is likely to significantly rise in the next years. 

Provided that molecular rules exist to prioritize the most 

interesting anchoring residues at the interface, continuous 

protein epitopes can be easily converted into linear peptides for 

quick experimental validation. Recent progress in peptide 

stabilisation by chemical stapling next opens an immense field 

for deriving either pharmacological tools or drug candidates. 

Numerous successes in identifying non-peptide PPI inhibitors 

also exist. The present review has only considered inhibitors 

mostly discovered by a rational structure-based virtual 

screening approach. Despite the few cases described herein (15 

in total), examples are pretty much indicative of results than 

can be reasonably achieved. Comparing properties of PPIs 

(Figure 6A, B) and their inhibitors (Figure 6C) with previously 

reported larger PPI data,64 some trends could be verified. 

Considering success as the availability of low micromolar non-

peptide inhibitors, successfully targeted PPIs present a higher 

proportion of charged residues with respect to conventional 

targets (sc-PDB data).84 Unsurprisingly, PPI inhibitors bind to 

smaller cavities (200-350 Å3) than that presented by 

conventional targets (450-800 Å3 range). Consequently, PPI 

inhibitors present a high proportion of aromatic rings, amide 

moieties and charged groups (Figures 4, 5) that hampers their 

druggability potential, as estimated here by the QED metric85 

(Figure 6C). We notice a significant proportion of negatively 

charged compounds, suggesting that a strong electrostatic 

interaction with the target is often mandatory to reach 

detectable affinity to PPI-participating cavities. 
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Figure 6. Properties of PPIs and their inhibitors: A) Cavity properties expressed in 

percentage according to the cavity detection VolSite program
86

 (Hydro, 

hydrophobic; Aro, aromatic; H-bond, H-bond accepting/donating properties; 

Neg: Negatively charged; Pos, positively charged, Du: fully accessible; B) Cavity 

volumes targeted by PPI inhibitors (this review) and conventional ligands (sc-PDB 

data
84

). The box delimits the 25
th

 and 75
th

 percentiles, the whiskers delimit the 

5
th

 and 95
th

 percentiles. The median and mean values are indicated by a 

horizontal line and an empty square in the box.; C) Quantitative estimate of 

Drugagbility (QED)
85

 of the inhibitors. QED values for true drug-like compounds 

should be over 0.5 (red broken line) 

 

However, the current survey also indicates that there is no 

absolute dogma with respect to PPI inhibitor identification. 

Very low molecular weight compounds (compounds 1, 6 and 

14) have been successfully identified as PPI disruptors. 

Beside interfacial inhibitors, there exist promising alternative 

ways of inhibiting PPIs. For example, PPI stabilizers87, 88 (e.g. 

paclitaxel, rapmycine, forskolin) bind to rim exposed pockets at 

or very close to the interface, and also lead to the functional 

inactivation of the protein-protein complex. Such stabilizers are 

frequent in the nature, and this area still has not been fully 

exploited up to now. Likewise, the allosteric inhibition of PPIs, 

at pockets remote from the interface, clearly deserves some 

consideration. Such pockets have been shown to be frequent at 

the close vicinity of two proteins chains in close interaction,89 

and represent, at least for some of them, more ligandable 

pockets than those presented by PPIs.  

Although dominated by a continent of flat and featureless 

interfaces, the PPI world is also populated by very different 

islands in terms of shape and electrostatics that should not been 

discarded. Many factors are likely to increase our knowledge of 

PPIs and their inhibitors among which: (i) the increasing 

number of biologically relevant and crystallized protein-protein 

complexes, (ii) the development of label-free experimental 

screening techniques, (iii) the significant contribution of 

molecular simulations to detect transient interfaces. Medicinal 

chemistry will be key actors to transform moderately potent PPI 

inhibitor hits into clinical candidates with desired 

pharmacokinetic properties. 

 

 

* Laboratory for Therapeutical Innovation, UMR7200 CNRS-Université 

de Strasbourg, MEDALIS Drug Discovery Center, 67400 Illkirch, 

France. E-mail: rognan@unistra.fr 
 

References 
 
1.

 http://www.uniprot.org/uniprot/?query=organism%3A
9606+AND+keyword:%22Complete+proteome+[KW-0181]%22 
(accessed 17/07/2014). 

2. J. P. Overington, B. Al-Lazikani and A. L. Hopkins, Nat Rev 
Drug Discov, 2006, 5, 993-996. 

3. P. Legrain and J. C. Rain, J Proteomics, 2014. 
4. K. Venkatesan, J. F. Rual, A. Vazquez, U. Stelzl, I. Lemmens, T. 

Hirozane-Kishikawa, T. Hao, M. Zenkner, X. Xin, K. I. Goh, M. 
A. Yildirim, N. Simonis, K. Heinzmann, F. Gebreab, J. M. 
Sahalie, S. Cevik, C. Simon, A. S. de Smet, E. Dann, A. Smolyar, 
A. Vinayagam, H. Yu, D. Szeto, H. Borick, A. Dricot, N. 
Klitgord, R. R. Murray, C. Lin, M. Lalowski, J. Timm, K. Rau, C. 
Boone, P. Braun, M. E. Cusick, F. P. Roth, D. E. Hill, J. 
Tavernier, E. E. Wanker, A. L. Barabasi and M. Vidal, Nat 
Methods, 2009, 6, 83-90. 

5. M. P. Stumpf, T. Thorne, E. de Silva, R. Stewart, H. J. An, M. 
Lappe and C. Wiuf, Proc Natl Acad Sci U S A, 2008, 105, 6959-
6964. 

6. A. Whitty and G. Kumaravel, Nat Chem Biol, 2006, 2, 112-118. 
7. J. A. Wells and C. L. McClendon, Nature, 2007, 450, 1001-1009. 
8. A. G. Cochran, Chem Biol, 2000, 7, R85-94. 
9. A. Mullard, Nat Rev Drug Discov, 2012, 11, 173-175. 
10. C. M. Labbe, G. Laconde, M. A. Kuenemann, B. O. Villoutreix 

and O. Sperandio, Drug Discov Today, 2013, 18, 958-968. 
11. A. A. Ivanov, F. R. Khuri and H. Fu, Trends Pharmacol Sci, 

2013, 34, 393-400. 
12. R. Bourgeas, M. J. Basse, X. Morelli and P. Roche, PLoS One, 

2010, 5, e9598. 
13. M. R. Arkin, M. Randal, W. L. DeLano, J. Hyde, T. N. Luong, J. 

D. Oslob, D. R. Raphael, L. Taylor, J. Wang, R. S. McDowell, J. 
A. Wells and A. C. Braisted, Proc Natl Acad Sci U S A, 2003, 
100, 1603-1608. 

14. M. R. Arkin and J. A. Wells, Nat Rev Drug Discov, 2004, 3, 301-
317. 

15. A. P. Higueruelo, A. Schreyer, G. R. Bickerton, W. R. Pitt, C. R. 
Groom and T. L. Blundell, Chem Biol Drug Des, 2009, 74, 457-
467. 

16. X. Morelli, R. Bourgeas and P. Roche, Curr Opin Chem Biol, 
2011, 15, 475-481. 

Page 8 of 11Medicinal Chemistry Communications

M
ed

ic
in

al
C

he
m

is
tr

y
C

om
m

un
ic

at
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 9  

17. S. Orchard, M. Ammari, B. Aranda, L. Breuza, L. Briganti, F. 
Broackes-Carter, N. H. Campbell, G. Chavali, C. Chen, N. del-
Toro, M. Duesbury, M. Dumousseau, E. Galeota, U. Hinz, M. 
Iannuccelli, S. Jagannathan, R. Jimenez, J. Khadake, A. Lagreid, 
L. Licata, R. C. Lovering, B. Meldal, A. N. Melidoni, M. 
Milagros, D. Peluso, L. Perfetto, P. Porras, A. Raghunath, S. 
Ricard-Blum, B. Roechert, A. Stutz, M. Tognolli, K. van Roey, G. 
Cesareni and H. Hermjakob, Nucleic Acids Res, 2014, 42, D358-
363. 

18. B. O. Villoutreix, M. A. Kuenemann, J.-L. Poyet, H. Bruzzoni-
Giovanelli, C. Labbé, D. Lagorce, O. Sperandio and M. A. 
Miteva, Molecular Informatics, 2014, 33, 414-437. 

19. R. Rid, W. Strasser, D. Siegl, C. Frech, M. Kommenda, T. Kern, 
H. Hintner, J. W. Bauer and K. Onder, Assay Drug Dev Technol, 
2013, 11, 333-346. 

20. C. Alfarano, C. E. Andrade, K. Anthony, N. Bahroos, M. Bajec, 
K. Bantoft, D. Betel, B. Bobechko, K. Boutilier, E. Burgess, K. 
Buzadzija, R. Cavero, C. D'Abreo, I. Donaldson, D. Dorairajoo, 
M. J. Dumontier, M. R. Dumontier, V. Earles, R. Farrall, H. 
Feldman, E. Garderman, Y. Gong, R. Gonzaga, V. Grytsan, E. 
Gryz, V. Gu, E. Haldorsen, A. Halupa, R. Haw, A. Hrvojic, L. 
Hurrell, R. Isserlin, F. Jack, F. Juma, A. Khan, T. Kon, S. 
Konopinsky, V. Le, E. Lee, S. Ling, M. Magidin, J. Moniakis, J. 
Montojo, S. Moore, B. Muskat, I. Ng, J. P. Paraiso, B. Parker, G. 
Pintilie, R. Pirone, J. J. Salama, S. Sgro, T. Shan, Y. Shu, J. Siew, 
D. Skinner, K. Snyder, R. Stasiuk, D. Strumpf, B. Tuekam, S. 
Tao, Z. Wang, M. White, R. Willis, C. Wolting, S. Wong, A. 
Wrong, C. Xin, R. Yao, B. Yates, S. Zhang, K. Zheng, T. Pawson, 
B. F. Ouellette and C. W. Hogue, Nucleic Acids Res, 2005, 33, 
D418-424. 

21. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie 
and D. Eisenberg, Nucleic Acids Res, 2004, 32, D449-451. 

22. T. S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, 
S. Kumar, S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen, 
A. Venugopal, L. Balakrishnan, A. Marimuthu, S. Banerjee, D. S. 
Somanathan, A. Sebastian, S. Rani, S. Ray, C. J. Harrys Kishore, 
S. Kanth, M. Ahmed, M. K. Kashyap, R. Mohmood, Y. L. 
Ramachandra, V. Krishna, B. A. Rahiman, S. Mohan, P. 
Ranganathan, S. Ramabadran, R. Chaerkady and A. Pandey, 
Nucleic Acids Res, 2009, 37, D767-772. 

23. P. Pagel, S. Kovac, M. Oesterheld, B. Brauner, I. Dunger-
Kaltenbach, G. Frishman, C. Montrone, P. Mark, V. Stumpflen, 
H. W. Mewes, A. Ruepp and D. Frishman, Bioinformatics, 2005, 
21, 832-834. 

24. C. Prieto and J. De Las Rivas, Nucleic Acids Res, 2006, 34, 
W298-302. 

25. N. Sugaya, S. Kanai and T. Furuya, Database (Oxford), 2012, 
2012, bas034. 

26. F. N. Edfeldt, R. H. Folmer and A. L. Breeze, Drug Discov 
Today, 2011, 16, 284-287. 

27. D. C. Fry, Curr Protein Pept Sci, 2008, 9, 240-247. 
28. D. Joseph-McCarthy, A. J. Campbell, G. Kern and D. Moustakas, 

J Chem Inf Model, 2014, 54, 693-704. 
29. A. P. Higueruelo, H. Jubb and T. L. Blundell, Database (Oxford), 

2013, 2013, bat039. 
30. M. J. Basse, S. Betzi, R. Bourgeas, S. Bouzidi, B. Chetrit, V. 

Hamon, X. Morelli and P. Roche, Nucleic Acids Res, 2013, 41, 
D824-827. 

31. V. Hamon, R. Bourgeas, P. Ducrot, I. Theret, L. Xuereb, M. J. 
Basse, J. M. Brunel, S. Combes, X. Morelli and P. Roche, J R Soc 
Interface, 2014, 11, 20130860. 

32. A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. 
Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani 
and J. P. Overington, Nucleic Acids Res, 2012, 40, D1100-1107. 

33. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. 
Weissig, I. N. Shindyalov and P. E. Bourne, Nucleic Acids Res, 
2000, 28, 235-242. 

34. T. Clackson and J. A. Wells, Science, 1995, 267, 383-386. 
35. Y. F. Lin, T. C. Lai, C. K. Chang, C. L. Chen, M. S. Huang, C. J. 

Yang, H. G. Liu, J. J. Dong, Y. A. Chou, K. H. Teng, S. H. Chen, 
W. T. Tian, Y. H. Jan, M. Hsiao and P. H. Liang, J Clin Invest, 
2013, 123, 3861-3875. 

36. M. A. Bonache, B. Balsera, B. Lopez-Mendez, O. Millet, D. 
Brancaccio, I. Gomez-Monterrey, A. Carotenuto, L. M. Pavone, 
M. Reille-Seroussi, N. Gagey-Eilstein, M. Vidal, R. de la Torre-
Martinez, A. Fernandez-Carvajal, A. Ferrer-Montiel, M. T. 
Garcia-Lopez, M. Martin-Martinez, M. J. de Vega and R. 
Gonzalez-Muniz, ACS Comb Sci, 2014. 

37. Z. Mi, X. Wang, Y. He, X. Li, J. Ding, H. Liu, J. Zhou and S. 
Cen, Biopolymers, 2014, 102, 280-287. 

38. A. Glas, D. Bier, G. Hahne, C. Rademacher, C. Ottmann and T. 
N. Grossmann, Angew Chem Int Ed Engl, 2014, 53, 2489-2493. 

39. V. Azzarito, K. Long, N. S. Murphy and A. J. Wilson, Nat Chem, 
2013, 5, 161-173. 

40. L. D. Walensky, A. L. Kung, I. Escher, T. J. Malia, S. Barbuto, R. 
D. Wright, G. Wagner, G. L. Verdine and S. J. Korsmeyer, 
Science, 2004, 305, 1466-1470. 

41. C. J. Brown, S. T. Quah, J. Jong, A. M. Goh, P. C. Chiam, K. H. 
Khoo, M. L. Choong, M. A. Lee, L. Yurlova, K. Zolghadr, T. L. 
Joseph, C. S. Verma and D. P. Lane, ACS Chem Biol, 2013, 8, 
506-512. 

42. F. Bernal, A. F. Tyler, S. J. Korsmeyer, L. D. Walensky and G. L. 
Verdine, J Am Chem Soc, 2007, 129, 2456-2457. 

43. Y. S. Chang, B. Graves, V. Guerlavais, C. Tovar, K. Packman, K. 
H. To, K. A. Olson, K. Kesavan, P. Gangurde, A. Mukherjee, T. 
Baker, K. Darlak, C. Elkin, Z. Filipovic, F. Z. Qureshi, H. Cai, P. 
Berry, E. Feyfant, X. E. Shi, J. Horstick, D. A. Annis, A. M. 
Manning, N. Fotouhi, H. Nash, L. T. Vassilev and T. K. Sawyer, 
Proc Natl Acad Sci U S A, 2013, 110, E3445-3454. 

44. L. R. Whitby and D. L. Boger, Acc Chem Res, 2012, 45, 1698-
1709. 

45. T. Yamada, K. Christov, A. Shilkaitis, L. Bratescu, A. Green, S. 
Santini, A. R. Bizzarri, S. Cannistraro, T. K. Gupta and C. W. 
Beattie, Br J Cancer, 2013, 108, 2495-2504. 

46. M. A. Warso, J. M. Richards, D. Mehta, K. Christov, C. 
Schaeffer, L. Rae Bressler, T. Yamada, D. Majumdar, S. A. 
Kennedy, C. W. Beattie and T. K. Das Gupta, Br J Cancer, 2013, 
108, 1061-1070. 

47. C. G. Wermuth, C. R. Ganellin, P. Lindberg and L. A. Mitscher, 
Pure Appl. Chem., 1998, 70, 1129-1143. 

48. A. R. Leach, V. J. Gillet, R. A. Lewis and R. Taylor, J Med Chem, 
2010, 53, 539-558. 

49. G. Wolber and T. Langer, J Chem Inf Model, 2005, 45, 160-169. 
50. J. Meslamani, J. Li, J. Sutter, A. Stevens, H. O. Bertrand and D. 

Rognan, J Chem Inf Model, 2012, 52, 943-955. 
51. D. R. Koes and C. J. Camacho, Nucleic Acids Res, 2012, 40, 

W387-392. 
52. T. R. Reddy, C. Li, P. M. Fischer and L. V. Dekker, 

ChemMedChem, 2012, 7, 1435-1446. 
53. TRIPOS: St-Louis, MO 63144-2319, U.S.A. . 
54. T. Geppert, S. Bauer, J. A. Hiss, E. Conrad, M. Reutlinger, P. 

Schneider, M. Weisel, B. Pfeiffer, K. H. Altmann, Z. Waibler and 
G. Schneider, Angew Chem Int Ed Engl, 2012, 51, 258-261. 

55. M. Lower, T. Geppert, P. Schneider, B. Hoy, S. Wessler and G. 
Schneider, PLoS One, 2011, 6, e17986. 

56. X. Xue, J. L. Wei, L. L. Xu, M. Y. Xi, X. L. Xu, F. Liu, X. K. 
Guo, L. Wang, X. J. Zhang, M. Y. Zhang, M. C. Lu, H. P. Sun 
and Q. D. You, J Chem Inf Model, 2013, 53, 2715-2729. 

57. H. P. Sun, Z. Y. Jiang, M. Y. Zhang, M. C. Lu, T. T. Yang, Y. 
Pan, H. Z. Huang, X. J. Zhang and Q. D. You, MedChemComm, 
2014, 5, 93-98. 

58. F. Rechfeld, P. Gruber, J. Kirchmair, M. Boehler, N. Hauser, G. 
Hechenberger, D. Garczarczyk, G. B. Lapa, M. N. 
Preobrazhenskaya, P. Goekjian, T. Langer and J. Hofmann, J Med 
Chem, 2014, 57, 3235-3246. 

59. Z. Y. Jiang, M. C. Lu, L. L. Xu, T. T. Yang, M. Y. Xi, X. L. Xu, 
X. K. Guo, X. J. Zhang, Q. D. You and H. P. Sun, J Med Chem, 
2014, 57, 2736-2745. 

60. D. Fry, K. S. Huang, P. Di Lello, P. Mohr, K. Muller, S. S. So, T. 
Harada, M. Stahl, B. Vu and H. Mauser, ChemMedChem, 2013, 8, 
726-732. 

61. F. H. Allen, Acta Crystallogr B, 2002, 58, 380-388. 
62. N. Moitessier, P. Englebienne, D. Lee, J. Lawandi and C. R. 

Corbeil, Br J Pharmacol, 2008, 153 Suppl 1, S7-26. 

Page 9 of 11 Medicinal Chemistry Communications

M
ed

ic
in

al
C

he
m

is
tr

y
C

om
m

un
ic

at
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Journal Name 

10 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

63. K. L. Damm-Ganamet, R. D. Smith, J. B. Dunbar, Jr., J. A. 
Stuckey and H. A. Carlson, J Chem Inf Model, 2013, 53, 1853-
1870. 

64. D. M. Kruger, G. Jessen and H. Gohlke, J Chem Inf Model, 2012, 
52, 2807-2811. 

65. J. R. Courter, N. Madani, J. Sodroski, A. Schon, E. Freire, P. D. 
Kwong, W. A. Hendrickson, I. M. Chaiken, J. M. LaLonde and A. 
B. Smith, 3rd, Acc Chem Res, 2014, 47, 1228-1237. 

66. S. He, T. J. Senter, J. Pollock, C. Han, S. K. Upadhyay, T. 
Purohit, R. D. Gogliotti, C. W. Lindsley, T. Cierpicki, S. R. 
Stauffer and J. Grembecka, J Med Chem, 2014, 57, 1543-1556. 

67. M. Mori, G. Vignaroli, Y. Cau, J. Dinic, R. Hill, M. Rossi, D. 
Colecchia, M. Pesic, W. Link, M. Chiariello, C. Ottmann and M. 
Botta, ChemMedChem, 2014, 9, 973-983. 

68. F. A. Abulwerdi, C. Liao, A. S. Mady, J. Gavin, C. Shen, T. 
Cierpicki, J. A. Stuckey, H. D. Showalter and Z. Nikolovska-
Coleska, J Med Chem, 2014, 57, 4111-4133. 

69. U. Svajger, B. Brus, S. Turk, M. Sova, V. Hodnik, G. Anderluh 
and S. Gobec, Eur J Med Chem, 2013, 70, 393-399. 

70. M. Khanna, F. Wang, I. Jo, W. E. Knabe, S. M. Wilson, L. Li, K. 
Bum-Erdene, J. Li, W. S. G, R. Khanna and S. O. Meroueh, ACS 
Chem Biol, 2011, 6, 1232-1243. 

71. H. Li, H. Xiao, L. Lin, D. Jou, V. Kumari, J. Lin and C. Li, J Med 
Chem, 2014, 57, 632-641. 

72. C. Zhuang, S. Narayanapillai, W. Zhang, Y. Y. Sham and C. 
Xing, J Med Chem, 2014, 57, 1121-1126. 

73. Z. Chen, Q. Ruan, S. Han, L. Xi, W. Jiang, H. Jiang, D. A. Ostrov 
and J. Cai, Breast Cancer Res Treat, 2014, 145, 45-59. 

74. L. Borriello, M. Montes, Y. Lepelletier, B. Leforban, W. Q. Liu, 
L. Demange, B. Delhomme, S. Pavoni, R. Jarray, J. L. Boucher, 
S. Dufour, O. Hermine, C. Garbay, R. Hadj-Slimane and F. 
Raynaud, Cancer Lett, 2014, 349, 120-127. 

75. Z. Han, J. Lu, Y. Liu, B. Davis, M. S. Lee, M. A. Olson, G. 
Ruthel, B. D. Freedman, M. J. Schnell, J. E. Wrobel, A. B. Reitz 
and R. N. Harty, J Virol, 2014, 88, 7294-7306. 

76. S. M. Vogel, M. R. Bauer, A. C. Joerger, R. Wilcken, T. Brandt, 
D. B. Veprintsev, T. J. Rutherford, A. R. Fersht and F. M. 
Boeckler, Proc Natl Acad Sci U S A, 2012, 109, 16906-16910. 

77. M. Rarey, B. Kramer, T. Lengauer and G. Klebe, J Mol Biol, 
1996, 261, 470-489. 

78. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. 
Hart, R. K. Belew and A. J. Olson, J Comput Chem, 1998, 19, 
1639-1662. 

79. T. Mani, F. Wang, W. E. Knabe, A. L. Sinn, M. Khanna, I. Jo, G. 
E. Sandusky, G. W. Sledge, Jr., D. R. Jones, R. Khanna, K. E. 
Pollok and S. O. Meroueh, Bioorg Med Chem, 2013, 21, 2145-
2155. 

80. C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. 
Banco, C. Mak, V. Neveu, Y. Djoumbou, R. Eisner, A. C. Guo 
and D. S. Wishart, Nucleic Acids Res, 2011, 39, D1035-1041. 

81. A. N. Jain, J Comput Aided Mol Des, 2007, 21, 281-306. 
82. M. A. Neves, M. Totrov and R. Abagyan, J Comput Aided Mol 

Des, 2012, 26, 675-686. 
83. J. J. Irwin and B. K. Shoichet, J Chem Inf Model, 2005, 45, 177-

182. 
84. J. Meslamani, D. Rognan and E. Kellenberger, Bioinformatics, 

2011, 27, 1324-1326. 
85. G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan and A. L. 

Hopkins, Nat Chem, 2012, 4, 90-98. 
86. J. Desaphy, K. Azdimousa, E. Kellenberger and D. Rognan, J 

Chem Inf Model, 2012, 52, 2287-2299. 
87. P. Thiel, M. Kaiser and C. Ottmann, Angew Chem Int Ed Engl, 

2012, 51, 2012-2018. 
88. P. Block, N. Weskamp, A. Wolf and G. Klebe, Proteins, 2007, 68, 

170-186. 
89. M. Gao and J. Skolnick, Proc Natl Acad Sci U S A, 2012, 109, 

3784-3789. 

 

Page 10 of 11Medicinal Chemistry Communications

M
ed

ic
in

al
C

he
m

is
tr

y
C

om
m

un
ic

at
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



Rational design of protein-protein interaction inhibitors 
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Low molecular weight compound competing for the binding of the p53 tumor suppressor to the 

MDM2 oncoprotein.  
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