<table>
<thead>
<tr>
<th>Journal:</th>
<th>Medicinal Chemistry Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>MD-CAR-07-2014-000327.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Concise Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>25-Sep-2014</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Hoffknecht, Barbara; Ruhr-Universitaet Bochum, Inorganic Chemistry Albada, H.; Ruhr-University, Inorganic Chemistry 1, Bioinorganic Chemistry Sturm, Marina; Ruhr-University, Inorganic Chemistry 1, Bioinorganic Chemistry Prochnow, Pascal; Ruhr University Bochum, Biology of Microorganisms Bandow, Julia E.; Ruhr University Bochum, Biology of Microorganisms Metzler-Nolte, Nils; Ruhr-Universitaet Bochum, Chemistry</td>
</tr>
</tbody>
</table>
Synthesis and Antibacterial Activity of Trivalent Ultrashort Arg-Trp-based Antimicrobial Peptides (AMPs)

Barbara C. Hoffknechta, H. Bauke Albadaa, Marina Sturma, Pascal Prochnowb, Julia E. Bandowb and Nils Metzler-Noltea,*

Multivalent display of identical ultrashort (only 2-3 amino acids long) antimicrobial peptides (AMPs) was used in order to create potential new antimicrobial agents. A series of small synthetic arginine and tryptophan containing peptides was synthesized and covalently bound to two different trivalent scaffold molecules using the copper(1)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The effect of steric preorganization of AMPs on the antibacterial activity was studied using an 1,3,5-tris(azidomethyl)benzene and an 1,3,5-tris(azidomethyl)-2,4,6-triethylbenzene substituted scaffold. The comparison of these two scaffolds showed that preorganisation leads to twice as active compounds. We furthermore obtained a synergistic effect and could show, that the presence of a certain number of amino acids in a close proximity is more important than their relative spatial orientation.

Introduction

Microorganisms, especially bacteria, are known for their enormous ability to adapt to their environment: resistant strains appear rapidly under antibiotic pressure.1 Because of this, antibiotics have a limited lifespan of utility, especially in the hospital environment.2 One way to delay this rapid occurrence of resistance is to develop antibiotics that are less prone to suffer from the development of resistance by bacterial strains. Considering these aspects, host-defense and antimicrobial peptides (AMPs) which target the bacterial membrane specifically have been proclaimed as potential new antibacterial agents.3 AMPs are present in virtually all classes of higher organisms like plants, insects, and animals and fend off a wide range of different pathogens.4 Naturally occurring AMPs are typically amphipathic peptides with a positive net charge and approximately 50% hydrophobic residues and consisting of 12 up to 50 amino acids.3,5 A major disadvantage of natural AMPs is their relatively large size, which leads to high production or isolation cost6 as well as inactivation by proteolytic degradation.7 Because of this, synthetic antimicrobial peptides (synAMPs), have attracted considerable attention, since chemists can modify the peptides in many ways. The broad range of resulting compounds includes peptides which contain D-amino acids,9 lipidated peptides10 and metal-complexes.8 Among synAMPs, those based on arginine (Arg or R) and tryptophan (Trp or W) are of special interest as these peptides are among the smallest peptides which show significant antibacterial activity.3,11 It was shown, that different modifications of this sequence can tune the antibacterial activity of these peptides. For example the addition of metalloene substituents to the N-terminus of the peptide8,12,13 or lipidation of a C- or N-terminal lysine residue can increase the activity.10 We have shown that an L- to D-substitution scan lead to peptides with significantly reduced hemolytic activity.14 Alternative approaches to increase activity of AMPs are peptide dendrimers;15 Alternatively inactive ultrashort lipidated peptides could be turned into antifungal constructs by a trivalent presentation.16 For this trifold display three ultrashort peptides were attached to a scaffold molecule that had three amino-groups. Other examples have emerged recently, and it has been observed in several instances that multivalent representation can increase the activity for different AMPs.15,16 In most of these studies, however, the effect of preorganization on the activity has not been assessed. This is rather unfortunate since the anticipated target of many AMPs, and proven target for these short Arg-Trp based AMPs, is the bacterial membrane. Having the AMPs on one side of a scaffold molecule should result in enhanced activities. For this study of preorganized presentation of three ultrashort synAMPs on the activity of the constructs, we chose two 1,3,5-tri(azidomethyl)benzene scaffolds for copper(1)-catalyzed alkyne-azole cycloaddition (CuAAC): one with only hydrogen-atoms on the 2,4,6 positions (a) and one with ethyl-groups (b) (Fig 1).
active when a free N-terminus is present, therefore we introduced the acetylene moiety at the C-terminus (scheme 2). Although resin-based methods for the direct introduction of C-terminal acetylene moieties are known, we pursued two procedures in which propargylamine was attached to a protected amino acid at the beginning of the synthesis sequence, or as the last step to amidate a protected peptide acid. Using either solution-phase peptide chemistry or a solid-phase resin with a high loading sufficiently large quantities of the acetylene-functionalized peptides could be obtained. First, N-terminally and side-chain-protected arginine and tryptophan residues were coupled to 2-propargylamine using 1 equiv. isobutylchloroformate (ICF) and 1 equiv. N,N-methylmorpholine (NMM) in tetrahydrofuran (THF) (Yields: 47 - 54%). After Fmoc-deprotection (20% Et$_3$NH in dichloromethan (DCM)), alkyne-functionalyzed amino acids 1 and 2 were coupled to either Fmoc-Trp(Boc)-OH or Fmoc-Arg(Pbf)-OH. From these dipeptides, alkyne-functionalyzed peptides 5 and 6 were obtained after Fmoc-removal (Yields after purification: 2.2 - 45%). In view of the troublesome purification of dipeptides 5 and 6 a slightly different procedure was used for the synthesis of the acetylene-functionalized tripeptides. The peptides were synthesized by solid phase peptide synthesis (SPPS), using a tritylchloride resin that yields a C-terminal carboxylic acid after cleavage. The N-terminus was protected with a Boc-group, so that after cleavage the peptide could be coupled to propargylamine in solution using benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) as coupling reagent (scheme 2). Finally, complete deprotection was realized using a mixture of trifluoroacetic acid (TFA) (79%), trisopropylsilane (TIS) (1%), phenol (5%), water (5%), thioanisol (TA) (5%) and 2-mercaptoethanol (2ME) (5%) to yield peptides 7 and 8 (Yields after purification: 38 - 40%).

Synthesis of trivalent di- and tripeptides

For the central scaffold molecule of the trivalent peptides two compounds with azido groups were selected: the flexible 1,3,5-tris(azidomethyl)benzene and the preorganized 1,3,5-tris(azidomethyl)-2,4,6-triethylbenzene (scheme 1). In principle, these two compounds should allow us to investigate the effect of flexibility on the activity. For the dipeptides 5 and 6, side-chain protected peptides were used in the Cu(I) catalyzed alkyne-azide cycloaddition. The reaction was carried out in THF, to which CuI (0.3 eq.) and N,N-diisopropylethylamine (DPEA) were added. The reaction mixture was stirred at room temperature for 1 day; when the color of the reaction mixture changed from colorless to intense blue, thus indicating that a significant amount of Cu$_2^+$ had formed, an additional amount of Cu was added to ensure continuation of the reaction and the mixture was stirred at room temperature for an additional day. Afterwards, the mixture was concentrated, the residue dissolved in acetonitrile and water, and the products were purified by HPLC. Lastly the side-chain protection-groups were removed using a mixture of TFA (79%), TIS (1%), phenol (5%), water (5%), thioanisole (5%) ...
and 2-mercaptoethanol (5%). This resulted in pure deprotected peptides 9a, 9b, 10a, and 10b, which were suitable for testing against bacteria (Yields: 54 - 97%).

For the tripeptides slightly different reaction conditions needed to be used. Using the protected tripeptides the desired products could not be obtained under conditions such as CuSO_{4}/Na-acetate/acetonitril or CuI/D_{i}PEA/THF at room temperature or under reflux or (EtO)_{3}PCuI/D_{i}PEA in dimethylformamide (DMF). However using deprotected tripeptides and (EtO)_{3}PCuI/D_{i}PEA in DMF the desired products could eventually be obtained, albeit only after prolonged heating (6 hours) at 60 °C using a microwave. To prevent oxidation or disproportionation of copper(I) tris((1-benzyl-1H-1,2,3-triazolyl)methyl)amine (TBTA)26 was added as stabilizer. During this time, additional Cu(I) catalyst and TBTA were added after 4.5 hrs, and the peptides (4 eq. in total) were added in three steps, i.e. at \(t = 0 \) min (2 eq.), \(t = 3 \) h (1 eq.) and \(t = 4.5 \) h (1 eq.) to force the formation of the trivalent construct to completion. After the microwave treatment the mixture was concentrated and the products were purified by preparative HPLC (Yields: 25 – 36%).

To investigate the hypothesis that trivalent constructs of AMPs were more active than monovalent molecules, one of the alkyne-functionalized tripeptides was also clicked to azidomethylbenzene as a control compound. The reaction was carried out in the microwave under the same reaction conditions as used for the trivalent scaffold, which leads to compound 13 with a yield of 54% after purification (scheme 4).
Antibacterial activity

The antibacterial activity of the clicked compounds was assessed by determining their minimal inhibitory concentration (MIC) in a microdilution assay as described previously. This value represents the lowest concentration of compound that is needed to inhibit growth of the bacteria. For this, two Gram-negative and three Gram-positive bacterial strains were used (Table 1). A molecule is usually designated as antimicrobial, if the MIC value is in the low micromolar range. In general, the investigated compounds are more active against Gram-positive than against Gram-negative bacteria, although in four cases, 9b, 11a, 11b, and 12a the difference in activity against Gram-positive and Gram-negative are negligible. Since the monovalent compound 13 shows no activity against gram-negative bacteria, and is poorly active against Gram-positive bacteria, it can be concluded, that trivalency increases the antibacterial activity significantly. Against Gram-positive bacteria all compounds show good to high activity. Especially the monovalent compound 13 (entry 9) to the trivalent peptides on a scaffold (entries 7 and 8). Trivalency increases the activity 5-10 fold when trivalent compounds 12a and 12b are compared with monovalent control compound 13.

Conclusions

The synthesis of trivalent, preorganized RW containing AMPs by utilizing the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction is described. Eight different trivalent AMPs were synthesized in high purity and acceptable yields, using two different benzene scaffolds: one that is highly flexible and one that has reduced flexibility. Nine new compounds were tested for their antimicrobial activity. They were moderately active against gram-negative bacteria but some showed good activity against Gram-positive bacteria. The results of the MIC tests show, that both the total number of arginine and tryptophan residues and their relative spatial assembly are relevant parameters for activity. Importantly, we show that both of the trivalent scaffolds can be used to generate very active antibacterial conjugates that are based on otherwise inactive ultrashort peptides (only 2-3 amino acids long). The trivalent constructs based on the less flexible scaffold 1,3,5-trisazidomethyl-2,4,6-triethylbenzene showed a higher activity than the compounds consisting of the more flexible scaffold, at least against the Gram-positive bacteria. Together with the existing methods to modulate AMPs, these and other dendrimer scaffolds form a molecular toolkit that can be used to prepare AMP conjugates that are very active against bacteria, and may find clinical applications.

Table 1 Minimal inhibitory concentrations (µM) of the trivalent peptide compounds 9, 10, 11, and 12 and the monovalent peptide compound 13. Also MIC-values for the H-(RW)-NH₂ sequence that we studied earlier are shown (these were obtained using identical conditions; ‘n.a.’ means ‘not active’ (MIC > 100 µM). For the calculations of the MIC values in µM, molecular weights of the peptides together with one TFA-counterion for each basic amino acid residue were used.

<table>
<thead>
<tr>
<th>compound</th>
<th>sequence</th>
<th>MIC (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram-negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. coli DSM30083</td>
</tr>
<tr>
<td>1</td>
<td>9a</td>
<td>RW</td>
</tr>
<tr>
<td>2</td>
<td>9b</td>
<td>RW</td>
</tr>
<tr>
<td>3</td>
<td>10a</td>
<td>WR</td>
</tr>
<tr>
<td>4</td>
<td>10b</td>
<td>WR</td>
</tr>
<tr>
<td>5</td>
<td>11a</td>
<td>WRW</td>
</tr>
<tr>
<td>6</td>
<td>11b</td>
<td>WRW</td>
</tr>
<tr>
<td>7</td>
<td>12a</td>
<td>RWR</td>
</tr>
<tr>
<td>8</td>
<td>12b</td>
<td>RWR</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>RWR</td>
</tr>
<tr>
<td>10</td>
<td>(RW)₃</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Ciprofloxacin</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Does not seem to be the one decisive factor for activity: For example, the more lipophilic compound 11a is actually less active than the more hydrophilic one 12a.

A non-linear effect could be observed comparing the monovalent compound 13 (entry 9) to the trivalent peptides on a scaffold (entries 7 and 8). Trivalency increases the activity 5-10 fold when trivalent compounds 12a and 12b are compared with monovalent control compound 13.
Acknowledgements

This work was financially supported by “Innovative Antibiotics from NRW,” a grant from the state of North Rhine-Westphalia (NRW), Germany, and the European Union, European Regional Development Fund, “Investing in Your Future,” to N. M.-N. and J.E.B. This work is also supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

Notes and references

*Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany

Faculty of Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany

† Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b000000x/

‡ Experimental procedures (preparation of new compounds) and characterizing data can be found in the Electronic Supplementary Information.