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Abstract: Privileged structures could bind to diverse targets with high affinity, thus 

benefiting the discovery of novel bioactive agents. 8-Hydroxyquinoline derivatives 

represented an important type of "privileged structure" possessing a rich diversity of 

biological properties. Numerous encouraging investigations demonstrated that this 

privileged structure should be further exploited for the therapeutic applications in the 

future. In view of its predominance, and on the basis of our research interest involved 

in this scaffold, an updated and detailed account of the pharmacological properties of 

8-hydroxyquinoline derivatives, as well as recent insights from structural biology 

were described. Finally, some outlooks on current issues and future directions in this 

field of research were also provided. 

Keywords: Privileged structure; 8-Hydroxyquinoline; Pharmacological activities; 

Heterocycle; Drug design. 

1. Introduction 

Privileged structures, as defined in the literature, are chemical scaffolds with 
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versatile binding properties, which could afford potent and specific ligands for diverse 

biotargets via proper structural modifications of functional groups.1,2 Furthermore, 

privileged structures typically displayed favorable drug-like properties, which in turn 

provided more high-quality leads and compound libraries. No doubt, the identification 

of novel drug-like lead compounds is the solid base for research efforts aimed at  

discovery of a new drug. Over the past two decades, the application of privileged 

structure concept has emerged as a fertile strategy of overcoming shortcomings and 

improving the reliability of the bioactive compounds in drug discovery.1,2  

 

Figure 1. Overview of broad-ranging pharmacological applications of 8-HQ derivatives. 

In the field of drug discovery and development, there is now a wealth of 

published papers on the identification of biologically important heterocyclic 

“privileged structures” as promising drugs or candidates.3-8 Quinoline has attracted 

considerable attention as an important heterocyclic pharmacophore, which is amply 

explored for broad-ranging biological effects. Among quinoline core compounds, the 

most frequently encountered in medicinal chemistry is the 8-hydroxyquinoline 

(8-HQ), which is one of the most important groups as strong metal ion chelators and 

represents an excellent scaffold with a wide spectrum of pharmacological applications 

such as iron-chelators for neuroprotection, anti-cancer agents, inhibitors of 
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2OG-dependent enzymes, chelators of metalloproteins, anti-HIV agents, antifungal 

agents, antileishmanial agents, anti-schistosomal agents, mycobacterium tuberculosis 

inhibitors, botulinum neurotoxin inhibitors and many others (Figure 1).  

Hitherto, no comprehensive survey has been published to outline the wide 

spectrum of pharmaceutical activities of 8-HQ as a privileged heterocycle unit. Given 

this, fascinated by multifarious bioactivities of this heterocycle, we would like to 

comprehensively outline its pharmacological importance, which will provide insights 

for the further development of novel 8-HQ-based agents. 

2. Broad-ranging pharmacological applications of 8-HQ derivatives 

In this section, a broad range of pharmacological applications of 8-HQ 

derivatives were presented. It is hoped that the content and organization of this section 

will prove useful to the medicinal chemists embarking on the exploitation of 

8-hydroxyquinolines in academia and industry. 

2.1 Neuroprotection agents (As iron-chelators) 

Neurodegenerative disorder diseases, such as Alzheimer's and Parkinson's diseases 

(AD and PD), represent one of the principal unmet medical needs, being the third 

highest cause of death just behind cancer and heart disease.9 It was reported that 

metal-ion dysregulation and oxidative stress were involved in the progressive 

neurological decline (neurodegeneration) associated with neurodegenerative disorder. 
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Figure 2. Structures of metal chelators with potentials for the treatment of neurodegenerative 

diseases. 

Several 8-HQ derivatives were reported as multifunctional metal-chelators 

(metal-protein attenuating compound, MPAC), acetylcholinesterase (AChE) and 

monoamine oxidase (MAO) inhibitors for the potential treatment of 

neurodegenerative disorders (Figure 2). For instance, compound HLA20 (1), 

displayed strong iron(III) chelating, high antioxidant properties, favorable 

permeability into K562 cells and good selective MAO-B inhibition (IC50 = 110 µM), 

exhibited the hightest protective activities against differentiated P19 cell death 

induced by 6-hydroxydopamine. It was suggested that compound 1 also functions as 

radical scavenger to scavenge hydroxyl radical (OH•) directly.10 

VK28 (2) was a brain permeable iron chelator with neuroprotection against 

6-hydroxydopamine lession in rats.11,12 From prototype VK-28 (2), M30 (3) was 

identified as a novel multifunctional neuroprotective agent with strong iron chelating 
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and brain selective MAO inhibitory effects for PD.13-15 

Clioquinol (4) could cross the blood-brain barrier and sequester metal ions zinc and 

copper from amyloid β (Aβ) and redistribute them into the cell. A pilot phase II 

clinical trial with AD patients has finished through chelation therapy, in which 

patients dispalyed lower plasma levels of Aβ42 and improved cognition. PBT2 (5) is a 

new generation of 8-HQ-drived MPAC with improved cognition (metal-peptide 

attenuating properties) and oral activity. It is in a phase II clinical trial for the 

treatment of AD, and further clinical testing is currently underway.16 

Recently, based on the ‘multitarget-directed ligands’ (MTDLs) strategy,17a,b a set of 

new multifunctional compounds against neurodegenerative diseases by combing 

8-HQ and the pharmacophore elements of other bioactive fragments were designed 

and synthesised. For instance, DPH6 (6) was reported as an irreversible inhibitor of 

MAO A and B, a mixed-type AChE inhibitor, with metal-chelating effects.18 

The bis-lipoyl derivative (LA-HQ-LA, 7) and glutathione derivative (GS(HQ)H, 8), 

endowed with an 8-HQ group exhibited pronounced chelant, antioxidant, and 

neuroprotective effects.19,20 They could protect SHSY-5Y human neuroblastoma cells 

against H2O2- and 6-OHDA-induced damage.19,20 

In particular, GS(HQ)H (8) showed high stability and could smoothly across the 

blood-brain barrier as assessed by in vitro assay. It is likely that this compound could 

selectively remove Zn(II) and Cu(II) from the Aβ peptide without leading to the 

depletion of copper or zinc in vivo.20 

D-369 (9) and D-390 (10) were reported as highly active iron chelators, dopamine 

D2/D3 agonists and antioxidant agents. In vivo activity of a mouse neuroprotection 

model indicated potential usage in symptomatic and neuroprotective treatment of 

PD.21,22 

In addition, the natural product resveratrol (11) displayed the Aβ anti-aggregative and 

cytoprotective activities in human neuroblastoma cell lines. However, the unfavorable 

bioavailability of resveratrol (dietary supplements) greatly limits its applications. The 

hybrid (E)-5-(4-hydroxystyryl)quinoline-8-ol (12) through combination of resveratrol 

(11) and Clioquinol (4) exhibited excellent potency to inhibit self-induced (IC50 = 
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8.50 µM) and Cu(II)-induced Aβ aggregation and to destroy the well-structured Aβ 

fibrils formed by self- and Cu(II)-induced Aβ aggregation (Figure 3). Importantly, 

the metal complexation of 12 could also halt copper redox cycling, then control 

Cu(I/II)-triggered hydroxyl radical production, as observed in a Cu-ascorbate redox 

system assay. Notably, 12 demonstrated extremely low acute toxicity (LD50 > 2000 

mg/kg) and could cross the blood-brain barrier.23 
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Figure 3. Design of the hybrid (E)-5-(4-hydroxystyryl)quinoline-8-ol (12) via the combination of 

resveratrol (11) and Clioquinol (4). 

Collectively, these findings suggested that these 8-HQs could be potential 

neuroprotective agents for the treatment of neurodegenerative diseases, and 8-HQ will 

continue to offer a hugely explorable platform in the discovery of new chemical 

entities with neuroprotective properties for future perspective. 

2.2 Anti-cancer agents 
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Figure 4. Structures of 8-HQ-based anti-cancer agents (part I). 

In 2006, NSC3852 (13) was identified as a histone deacetylase (HDAC) inhibitor with 

cell differentiation and antiproliferative potency against human breast cancer cell lines 
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and antitumor property in mice model containing P388 and L1210 leukemic cells.24 It 

was found that reactive oxygen species (ROS) formation was associated with the 

apoptotic and cell differentiation responses to NSC3852 in MCF-7 cells.24 

8-Hydroxy-2-quinolinecarbaldehyde (14) displayed strong in vitro cytotoxicity 

against multiple cancer cells, including T-47D, Hs578t, SaoS2, K562, MDA231,  

SKHep1 (MTS50: 12.5-25 µg/mL) and Hep3B (MTS50: 6.25±0.034 µg/mL) [25]. The 

results demonstrated that the dosage of 10 mg/kg/day of 14 with intraperitoneal 

injection for 9 days completely suppressed the growth of the Hep3B xenograft tumor, 

and when compared with the control, no histological damage on vital organs was 

observed.25 

Compounds JLK 1472 (15) and JLK 1486 (16) demonstrated high potency on KB3 

cell line with EC50 values of 2.6 nM, 1.3 nM, respectively. But they were proven 

inactive on some cell lines including SF268 and PC3 while highly effective on other 

cell lines. It has tentatively been identified that their biotarget was probably located 

upstream from caspase 3/7. Furthermore, their cytotoxic effect was potentiated by the 

pro-apoptotic effects of TRAIL.26a Then, in 2011, it was reported that, JLK 1486 (16), 

displayed cytostatic (not cytotoxic) effects in experimental gliomas via MyT1 and 

STAT1 activation and, to a lesser extent, PPARγ activation.26b 

It was showed in micro-array analysis that the best performing inhibitor 17 in 8-HQ 

substituted amines series could give covalent protein thiol adducts and induce the 

expression of various stress related genes involved in the cytotoxic and cytostatic 

activities in glioblastoma and carcinoma cells, which represent a novel promising 

anti-cancer candidate with unique mechanisms of action, targeting accessible thiols 

from specific proteins and inducing efficient anti-cancer activities.26c,d 

As underlined in Figure 5, the mechanism of action of compound JLK1486 (16) was 

proposed and verified primarily, which requires two steps, a protonation process 

followed by a nucleophilic attack resulting in the formation of the quinone methide 

intermediate (16b).26c 
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Figure 5. The proposed mechanism of action of compound JLK1486 (16).26c 

In 2012, compound S1 (18) was reported as identified as a chelating agent binding 

ferric iron with a very high affinity (pFe3+=29.5). It also exerted a marked cytostatic 

effect on hepatoma cells at concentrations as low as 0.1 µM.27 

Taken Mannich base 19a as a lead compound, in 2010, a series of 8-HQ-derived 

Mannich bases were prepared and assayed for their growth inhibition with intriguing 

structure-activity relationships (SARs) results in the lab of Shaw AY. All Mannich 

bases demonstrated moderate to low micromolar potency against four carcinoma cell 

lines. SARs results displayed that upon replacement of either sulfonyl moiety with 

methylene or piperazine ring with ethylenediamine group led to an appreciable 

increase in activity. Besides, as 8-hydroxyquinoline was replaced with 

3-hydroxypyridine, phenol and 1-naphthol, a dramatic decrease in potency was 

observed. The structural modifications revealed that 8-hydroxyquinol skeleton 

appeared to be a crucial pharmacophore for inhibition  

Among all the Mannich bases, 19b exhibited the highest potencies against both 

SKHep and CE81T cells with GI50 values of 2.6 and 2.8 µM, respectively, while 19c 

(GI50, 0.7 and 1.9 µM against HeLa and BT483 cells, respectively) and 19d showed 

the most high growth-inhibitory activity on CE81T and SKHep cells (GI50, 2.8 µM 

against CE81T cells). These results demonstrated the sensibility of individual cell 

lines was closely related the structures of these derivatives.28 

In 2014, 8-hydroxyquinoline derivative 20 containing a sugar and a 1,2,3-triazole 
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moiety was reported to show pomising antiproliferative potency and high selectivity 

toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 µg/mL); this compound was 

more potent than the control drug doxorubicin (OVCAR-03, GI50 = 0.43 µg/mL).29 

Human cathepsin B, an enzyme belonging to the peptidase (or protease) families, is 

regarded as a promising therapeutic target for cancers. By combining structure-based 

design and focused library screening, the nitroxoline derivative 21 was identified as a 

new cathepsin B inhibitor, which was active in cell-based in vitro tumor invasion 

models, where it dramatically abolished invasion of MCF-10A neoT cells.30 This 

research will afford valuable insights for further discovery of new anticancer agents 

with improved potency. 
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Figure 6. The structures of oxine derivatives with entirely different mechanism of action. 

The nitroxoline (22) demonstrated antiproliferative activity in endothelial cells, it’s 

action mechanisms included a dual inhibition of sirtuin 1 (SIRT1) and type 2 human 

methionine aminopeptidase (MetAP2). SARs investigation of nitroxoline derivatives 

afforded several substituted oxines (13, 23-25, Figure 6) with potency against 

endothelial cell proliferation and angiogenesis. Minor modifications on 8-HQ core 

resulted in oxine derivatives with entirely different mechanisms of action.31 
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Figure 7. Structures of 8-HQ-based anti-cancer agents (part II). 

The Pim-1 kinase was considered to be an important new target for anti-cancer drug 

discovery for its oncogenic potential. Compounds 2-styrylquinoline 26 and 

quinoline-2-carboxamide 27 were recently reported as novel and potent inhibitors of 

the Pim-1 kinase. The 8-hydroxy-quinoline 7-carboxylic acid skeleton was probably 

required for activity, which was preliminarily confirmed by molecular modeling.32 

  

Figure 8. The crystal structure of a fragment 28 (IC50 = 10000 nM) bound to Pim-1 kinase (PDB 

code: 3VBV, resolution: 2.08 Å). Key H-bond interactions are shown as yellow dashed lines. 

In addition, 8-hydroxyquinoline-2-carboxamide (28) was discoveryed as a fragment 

(IC50 = 10000 nM) bound to Pim-1 kinase via hydrogen bonding and hydrophobic 

interactions. The present co-crystal structure investigation demonstrated the rationale 

of further designing potent and selective Pim-1 kinase inhibitors based on this 

fragment and available structural information (Figure 8).33
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The piperazine-substituted hydroxyquinoline 30, which drived from a 

high-throughput screening (HTS) hit 29, demonstrated selective inhibition of Mcl-1 (a 

target central to intrinsic apoptosis that has been implicated in a cancer) relative to the 

related Bcl-2 family protein Bcl-xL in the fluorescence polarization assay. 

This compound also displayed efficacy in promoting death in a set of cell lines 

derived from diverse malignancies.34 

In 2014, compound 5476423 (31) was identified as a lead with potential 

anti-proliferative effects on gallium-resistant lung cancer through an AXL kinase 

pathway through virtual screening of AXL kinase homology model. When compared 

with gallium acetylacetonate (GaAcAc), the IC50 values from treating 

gallium-resistant cells exhibited that compound 31 had 80 fold increased activity. The 

efficacy of GaAcAc against gallium-resistant cells was increased 2 fold combined to 

compound 31.35 

Obviously, these studies established proof-of-concept that 8-HQ could be employed 

as a favorable heterocyclic scaffold for development of omnifarious anticancer agents. 

2.3 Inhibitors of 2-oxoglutarate (2OG) and iron dependent enzymes 
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Figure 9. Reactions catalyzed by oxygenases and FTO. 

2-Oxoglutarate (2OG) and iron dependent oxygenases were considered to be 

promising therapeutic biotargets for omnifarious human diseases (Figure 9).36 

5-Carboxy-8-hydroxyquinoline (IOX1, 32) is the most effective broad-spectrum 

inhibitor of 2OG oxygenase subfamilies (including nucleic acid demethylases and 

γ-butyrobetaine hydroxylase), reported to date.37 In 2010, IOX1 was validated as a 
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cell-active inhibitor of 2OG-dependent histone lysine demethylases (KDM) (namely, 

the Jumonji domain containing histone demethylases, JMJD) and inhibitor of fat mass 

and obesity associated protein (FTO, a 2OG-dependent N-methyl nucleic acid 

demethylase that acts on substrates including 3-methylthymidine, 3-methyluracil, and 

6-methyladenine) via quantitative HTS of a collection of diverse compounds.38a,b 

Besides, it was also reported as a ligand of AlkB, which belongs to the Fe 

(II)/2OG-dependent dioxygenase superfamily and oxidatively demethylates the DNA 

substrate.37 Though compound IOX1 suffers from low cell permeability, it has smaller 

and more compact chemical structure, and represents a lead compound for further 

modifications and a good tool compound for studies investigating the roles of 

2OG-dependent enzymes in epigenetic processes. It was envisioned that by rationally 

changing substituents to maximize the key contacts between the ligand and the 

binding site, the potency and the selectivity profiles towards the desired target will be 

improved. 

As shown in Figure 10, co-crystal structure analysis of oxygenases complexed with 

IOX1 displayed the binding modes and pivotal interactions involved in target 

recognition, which will aid the development of more potent and selective 

inhibitors .38a,b 

  

(a)                          (b) 

Page 12 of 31Medicinal Chemistry Communications

M
ed

ic
in

al
C

he
m

is
tr

y
C

om
m

un
ic

at
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



13 
 

  

(c)                                     (d) 

Figure 10. Crystal structures of oxygenases in complex with the IOX1 (32). (a) JMJD2A 

complexed with IOX1 (blue); (PDB code: 3NJY, resolution: 2.60Å).38a (b) the human JMJD3 

jumonji domain with IOX1; (PDB code: 2XXZ, resolution: 1.80Å). (c) the human FTO in 

complex with IOX1 (IC50 = 3.3 µM) (PDB code: 4IE4, resolution: 2.50 Å). (d) AlkB in complex 

with IOX1; (PDB code: 4JHT, resolution: 1.18 Å). Key H-bond interactions are shown as yellow 

dashed lines. 
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Figure 11. Structures of n-octyl ester (33) of IOX1 and ML324 (36). 

As expected, the n-octyl ester (33) of IOX1 demonstrated improved cellular potency 

(30-fold) and enhanced selectivity over the parent IOX1.39 
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Figure 12. Design of dual inhibitor of JmiC and lysine-specific demethylases. 

Currently, small molecule modulators of epigenetic regulation are employed as useful 

tools for probing biochemical mechanisms, and as lead compounds for discovery of 

anti-cancer therapeutic agents.40 In prostate cancer, two different kinds of KDMs, 

KDM1 (lysine-specific demethylase 1, LSD1) and KDM4 (JMJD2), were 

coexpressed and colocalize with the androgen receptor. Inspired by this finding, 

recently, by coupling the skeleton of tranylcypromine 34, a known LSD1 inhibitor, 

with IOX1 (23), a 2-OG competitive JmjC inhibitor, hybrid 35 was designed as a 

pan-histone demethylase inhibitor simultaneously targeting Jumonji C and 

lysine-specific demethylases, and displayed high anticancer activities in LNCaP 

prostate and HCT116 colon cancer cells (Figure 12).41 

This needs to be stressed that inhibitors of the epigenetic-related targets are also 

showing great promise as antiviral agents. Through a quantitative HTS and 

subsequent structural optimization campaign, compound ML324 (36) was identified 

as a JMJD2E inhibitor (submicromolar inhibitory) with excellent cell permeability 

and in vitro absorption, distribution, metabolism and excretion (ADME) properties. In 

addition, ML324 showed potent antiviral effects against both human cytomegalovirus 

(HCMV) and herpes simplex virus (HSV) infection by inhibiting viral IE gene 

expression. In a mouse ganglia explant model of latently infected mice, ML324 can 

block the formation of HSV plaques and suppress HSV-1 reactivation.42 

As a transcription factor under hypoxia, hypoxia-inducible factor-1 (HIF-1) was the 

master regulator of the cellular hypoxia response, which could activate a variety of 
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genes including those involved in glucose metabolisms, angiogenesis, cell 

proliferation and cell survival.43 Among the isoforms, HIF-1α was a vital regulator of 

hypoxia responses in solid tumors, and its activity is indispensable for tumors to adapt 

to hypoxia conditions and recover from damages caused by hypoxic insult. The 

HIF-1α subunit was regulated by 2-OG- and Fe(II)-dependent hydroxylases, such as 

Factor Inhibiting HIF-1 (FIH-1). FIH-1 could hydroxylate Asn803 of HIF-1α and 

block its binding with co-activating factors. Quinol derivatives including IOX1 and 

Clioquinol, displayed inhibition against the hydroxylation effect of FIH-1.  

The co-crystal structures of FIH-1 with IOX1, Clioquinol and 8-HQ (37) were 

determined respectively, giving an update on the molecular aspects at the basis of 

rational drug design. As shown in Figures 13,14, these three compounds bind to the 

active site of FIH-1 via chelating the Fe/Zn ion, then blocking the binding of a 

co-substrate, 2OG.44 Contrary to the existing FIH-1 inhibitors with negative charges, 

these 8-HQ derivatives are neutral in charge and can afford a scaffold for further 

development as FIH-1 selective inhibitors.44  

  

            (a)                            (b) 

Figure 13. Crystal structure of FIH-1α in complex with IOX1 (green) (a) PDB code: 4BIO, 

resolution: 2.45Å;37 (b) PDB code: 3OD4, resolution: 2.20Å. 
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(a)                     (b) 

Figure 14. FIH-1α in complex with (a) 8-HQ (pink) (PDB code: 3KCY, resolution: 2.59Å), (b) 

Clioquinol (white) (PDB code: 3KCX, resolution: 2.60Å).44 

2.4 Chelators of metalloproteins (with miscellaneous therapeutic applications) 

Metalloproteins afford an important class of biotargets currently receiving increased 

attention. The ability to bind with multiple metalloproteins is a main argument for 

using 8-HQ as a privileged structure in drug discovery. Recently, by screening of a 

metalloprotein-focused chelator fragment library, substituted 8-HQs at either the 5- or 

7-positions were identified as active MMP-2 inhibitors (38a-d, 39a-d), with low 

micromolar IC50 values (Figure 15).45
 

N
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HN
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38a: R = H;
38b: R = F;
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R

39a: R = H;
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39c: R = Ph

N

OHNHS

O
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Figure 15. Structures of 8-HQ containing MMP-2 inhibitors. 

In 2012, 8-HQ (37) and its 5-substituted derivatives were reported as competitive and 

selective inhibitors of an aminopeptidase from Aeromonas proteolytica (AAP, a 

dinuclear Zn2+ hydrolase) with Ki value of 0.16-29 µM at pH 8.0. The hydroxide at 

the 8-position and the nitrogen at the 1-position of 8-HQ were considered to be crucial 

for the inhibition of AAP. Co-crystal structure of AAP complexed with 8-HQ 

demonstrated that 8-HQ was able to interact with AAP in the metal-chelating mode, in 

which the nitrogen atom of 8-HQ coordinates to one Zn(II) ion and the hydroxide 
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anion bridges two Zn(II) ions in the active site of AAP (Figure 16).46 

 

Figure 16. The X-ray co-crystal structure of AAP-8-HQ complex (PDB code: 3VH9, resolution: 

1.29Å). 

In sum, these two sections (section 2.4 and 2.5) introduced multiple cases of 

metal-chelating-related bioactivities of 8-HQs, suggesting that this heterocycle motif 

may be further exploited to seek novel therapeutic usages in the future. It should be 

pointed out that the propensity of 8-HQs to bind with multiple metalloproteins can 

underline their high promiscuity, which will result in unfavorable off-targets 

interactions. Therefore, considerable attention in the future should be focused on the 

optimization of 8-HQs into highly specific agents with minimum unwanted off-target 

activities. 

2.5 Anti-HIV agents 

   Improving treatments for HIV infections still remain a challenge, especially new 

chemical entities are greatly needed to overcome the emergence of drug resistant viral 

mutants and enrich the current paradigm. As shown in Figure 17, several groups have 

already reported on the identification of 8-HQ analogues as excellent antiviral agents 

for targeting HIV-1 integrase (IN) (compounds 40,41)47,48 and IN-LEDGF/p75 

interaction (compounds 42,43).49 We envisioned that with its broad-spectrum potential 

and flexibility of functionalization, 8-HQ will still function as an important scaffold in 

the discovery of HIV inhibitors in the future. 
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Figure 17. 8-HQs with anti-HIV activities. 

2.6 Antifungal agents 

8-HQ derivatives 44-46 exhibited antifungal potency in vitro comparable to or higher 

than that of the clinically used fluconazole (Figure 18).50 These compounds are being 

carried forward as promising leads for the treatment of fungal infection. 

N
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44 45 46

 

Figure 18. 8-HQs as antifungal agents. 

2.7 Antileishmanial agents 

N

OH

OH O

H
N

OH

Perspicamide A (47)

N

OH

O O

H
N

48

O

O

IC50 = 3.75 µM, SI = 25.27  

Figure 19. Discovery of 8-HQ derivative 48 as antileishmanial agent. 

In 2005, the quinoline-2-carboxylic acid derivative perspicamide A (47) was 

originally isolated from the Australian ascidian Botrylloides persipicuum, which has 

received increased attention as quinoline-2-carboxylic acid is a common moiety in 

numerous drug-like molecules.51 Recently, its analogue, 48 displayed potent inhibition 
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against Leishmania donovani with IC50 value of 3.75 µM and a selectivity index (SI) 

of 25.27, which was markedly increased compared to the approved drug Miltefosine 

(IC50 12.4 µM; SI 4.1) (Figure 19).52  

2.8 Anti-schistosomal agents 

In 2013, the 8-hydroxyquinoline-5-sufonyl 1,4-diazepine 49 was identified as a potent 

anti-schistosomal agent (Figure 20), which can significantly reduce oviposition of 

adult worms and totally diminish egg deposition in vitro. Molecular docking study 

displayed that this compound could exert its inhibitory property by binding with 

thioredoxin glutathione reductase (TGR), a vital protein for schistosome survival.53  

N

OH

S
N

NN

O

O

49

N

OH

O OH

50

N

OH

NH

Cl

O

IC50 = 0.8 µM

51

 

Figure 20. 8-HQ derivatives as anti-schistosomal agent, Mycobacterium tuberculosis inhibitor and 

Botulinum neurotoxin inhibitor, respectively.  

2.7 Mycobacterium tuberculosis inhibitors 

Class II fructose 1,6-bisphosphate aldolase (FBA) was regarded as a well-validated 

biotarget for the design of novel antibiotics against pathogenic bacteria including 

Mycobacterium tuberculosis, which is the causative agent for tuberculosis (TB). Very 

recently, via the enzymatic and structure-guided screening, 8-HQ carboxylic acid (50) 

was identified as a potent inhibitor of the class II FBA present in M. tuberculosis 

(MtFBA), with an IC50 of 10 µM, and possessed anti-TB properties (Figure 20). 

Compound 50 also showed inhibitory properties for other class II FBAs, 

including methicillin-resistant Staphylococcus aureus. As opposed to the existing 

inhibitors, Compound 50 functioned in a noncompetitive manner, exhibited no 

inhibitory effects toward class I FBAs in human and rabbit. Moreover, the complex 

crystal structure of 50 with MtFBA was determined (Figure 21), which would afford 
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more sophisticated, evidenced-based development of MtFBA inhibitors with 

improved target specificity.54 

 

Figure 21. The crystal structure of 50 (green) bound to M. tuberculosis's class IIa FBA (PDB code: 

4LV4, resolution: 2.08 Å). Key H-bond interactions are shown as yellow dashed lines. 

2.8 Botulinum neurotoxin inhibitors 

Botulinum neurotoxins (BoNT) were considered to be the most active toxins known 

and a severe bioterrorist threat. In 2014, compound 51 (Figure 20) was reported as a 

potent BoNT inhibitor with favorable in vitro potencies (IC50 = 0.8 µM) and favorable 

ADME properties (excellent solubility at low pH) through the screening of 

commercially available and synthesized library.55 

2.9 Miscellaneous activities 
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Figure 22. Other 8-HQ-containing compounds with potential applications. 
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Besides the contents described above, as shown in Figure 22, novel 8-HQ-containing 

2,3-diaminopropionic acid 52 was validated as a glyoxal/methylglyoxal scavenger and 

as an AGE inhibitor.56 8-HQs 53-56 could induce the proliferation of rat mesenchymal 

stem cells (rMSCs).57 In 2014, some 5,7-bis(alkylaminosulfonyl)-8HQs (57-60) were 

reported as highly effective radioprotective agents with low cytotoxicity for MOLT-4 

cells.58 8-HQs 61-63 were identified as chemosensors or fluorescent sensors for their 

interesting electro-optical properties.59-61  

3. Conclusions and perspectives 

Undoubtedly, the 8-HQ core structure fits the definition of a "privileged 

structure" in medicinal chemistry, because it forms the centerpiece of small molecule 

chemical entities with a wide range of pharmacological properties, which have been 

presented in this review. 8-HQ was introduced into drug discovery programs for some 

different reasons. For instances, it was used as an essential part of the pharmacophore 

(usually as metal chelating moiety) favorably contributing to ligand binding. Besides, 

8-HQ moiety was shown to function as a flat, aromatic linker to orient the 

pharmacophore elements into the proper geometry for binding, as well as modulating 

the physicochemical properties by placing them in the periphery of the molecule.  

8-Hydroxyquinoline

N

OH

Target-oriented synthesis (TOS) Diversity-oriented synthesis (DOS)

Isomeric forms and bioisosters

of 8-hydroxyquinoline

Scaffold refining

 

Figure 23. Graphical representation of the prospects of further exploitation of 8-HQ scaffold. 
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The prospects of 8-HQ will be represented from the following aspects (Figure 23): 

First, 8-HQ structure provides a versatile platform on which multiple functional 

substituents groups can be placed at various sites of core chemical skeleton, allowing 

medicinal chemistsus to utilize structure-based drug design or target-oriented 

synthesis (TOS) techniques to exquisitely tailor a molecule directly to its specific 

target, thereby to avoid or control unfavorable off-targets interactions. Consequently, 

novel derivatives towards a given target with improved potency, selectivity and 

minimum off-target activities will be obtained. Second, through design and synthesis 

of libraries around a given privileged structure to exploit unchartered territories in 

chemical and biological space, a higher hit rate and the identification of biologically 

relevant hits can be expected, thus we envision that there exists a great potential in 

chemical approaches such as multicomponent reactions (MCRs), diversity-oriented 

synthesis (DOS) methodologies and more efficient, expeditious straight-forward 

synthetic methods,62,63 to further extend versatility of this scaffold in various 

medicinal areas. Lastly but also importantly, the "privileged structure"-guided 

scaffold repurposing is a useful strategy to identify structurally novel 8-HQ-related 

chemotypes with intellectual properties by switching the central core structure with its 

isomeric forms, bioisosters or structurally pertinent skeletons (towards or from 8-HQ) 

combined with decorating substituent groups.8 It should be firmly convinced that the 

exploitation of 8-HQ scaffold remains an intriguing scientific endeavour, which will 

lead to the discovery of more clinically-relevant agents. 
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