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 2 

Abstract 

Proteochemometric (PCM) modelling is a computational method to model the bioactivity of multiple 

ligands against multiple related protein targets simultaneously. Hence it has been found to be 

particularly useful when exploring the selectivity and promiscuity of ligands on different proteins. In 

this review, we will firstly provide a brief introduction to the main concepts of PCM for readers new to 

the field. The next part focuses on recent technical advances, including the application of support 

vector machines (SVMs) using different kernel functions, random forests, Gaussian processes and 

collaborative filtering. The subsequent section will then describe some novel practical applications of 

PCM in the medicinal chemistry field, including studies on GPCRs, kinases, viral proteins (e.g. from 

HIV) and epigenetic targets such as histone deacetylases. Finally, we will conclude by summarizing 

novel developments in PCM, which we expect to gain further importance in the future. These 

developments include adding three-dimensional protein target information, application of PCM to the 

prediction of binding energies, and application of the concept in the fields of pharmacogenomics and 

toxicogenomics. This review is an update to a related publication in 2011 and it mainly focuses on 

developments in the field since then. 
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Abbreviations 

3D: 3-Dimensional 

CF: Collaborative Filtering 

GP: Gaussian Process 

GPCR: G Protein-Coupled Receptor 

IC50: Half Maximal Inhibitory Concentration 

Kd: Dissociation Constant 

Ki: Inhibition Constant 

PCM: Proteochemometric(s) 

PLS: Partial Least Squares 

QSAR: Quantitative Structure-Activity Relationship 

R&D: Research and Development 

RF: Random Forests 

SVM: Support Vector Machines 

TM: Trans Membrane 
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1 Introduction 

1.1 Available Bioactivity Data is Growing: But Can We Make Sense of It? 

 The cost of developing new drugs has been continuously increasing in recent years and it is now 

estimated to be in the order of $1.8 billion per drug. In addition, price pressure from health care 

providers has been increasing and there is a growing relevance of more targeted medicine. Hence, the 

‘blockbuster model’ of the pharmaceutical industry is being challenged.1,2 However, at the same time 

the amount of bioactivity data available both inside companies as well as in the public domain has 

significantly increased, for example with introduction of ChEMBL and PubChem Bioassay.3,4 This 

trend can be expected to only pick up further speed in the future.3 The question now arises how this 

growing amount of bioactivity data can be used in real-world drug discovery and chemical biology 

projects, both to make drug discovery in commercial settings more efficient, but also to understand on a 

more fundamental level how we can use data in order to design a ligand with desired properties in a 

biological system. 

 Predictive bioactivity methods, such as Quantitative Structure-Activity Relationship (QSAR) 

models, are based upon the compound similarity principle.5,6 However, it has been shown that the 

activity of a compound against a single target is not sufficient to understand its actions in a biological 

system. In fact promiscuity is intrinsic to chemical compounds,7,8 bioactivity against related targets 

frequently needs to be considered for efficacy of e.g. CNS-active drugs and anti-cancer drugs,9,10 and 

promiscuity has been used to anticipate side-effects.11 Hence, only the simultaneous modelling of both 

the chemical and the target domain, across a series of protein targets, permits the meaningful mining of 

the compound-target interaction space.12 

The term chemogenomics comprises techniques capable to capitalize on this huge amount of 

bioactivity data by considering compound and target information, in order to find unknown interactions 

between (new) compounds and their (new) targets.13,14 Proteochemometrics (PCM) modelling describes 

methods where a computational description from the ligand side of the system is combined with a 

description of the biological side being studied and both are related to a particular readout of 

interest.15,16 

In this context, ligands are typically small molecules although biologics also have been explored. 

Conversely, the biological parameters in the model can comprise protein binding sites, but also e.g. 

gene expression levels of particular cell lines. The readout describes the biological effect of a particular 
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 6 

ligand on the protein or cell line of interest (such as an IC50 value of this particular combination of 

compound and biological system). Additionally, PCM relates to personalized medicine as it can predict 

the effect of a ligand on a complex biological system, e.g. cell line, from genotypic information.17 

 

1.2  Synergy between Ligand and Target Space 

 An analysis of the drug-target interaction network demonstrated that a given ligand interacts 

with six protein targets on average at therapeutic concentrations.7 Targets with correlated bioactivity 

profiles might be related or distant from a sequence similarity standpoint. It has been recently shown 

that for class A GPCRs protein classification based on ligand activity differs considerably from the 

classic description of proteins based upon sequence alignments.18,19 Hence, full sequence similarity 

from multiple sequence alignments would not generally correlate with similar ligand affinity. 

Conversely, kinases exhibiting a sequence identity higher than 60% tend to have similar ATP-binding 

sites and hence they tend to be inhibited by similar compounds.20 Similarly, compound binding is more 

conserved between human and rat orthologous proteins with respect to paralogues.21,22 Thus, to better 

understand intra-family and inter-species selectivity both the target and the compound space need to be 

considered simultaneously.  

In ligand space, chemogenomic approaches relying only on ligand data have shown that there is an 

unequal distribution of ligand data. This is due to the fact that some target classes (e.g. GPCRs or 

kinases) have been traditionally regarded as more interesting from a medicinal chemistry standpoint, 

and are thus overrepresented in bioactivity databases.23 Moreover, while some chemogenomic methods 

implicitly consider target information using bioactivity profiles of groups of similar ligands, i.e. the 

interaction between these compounds and a panel of targets, they are outperformed by techniques that 

explicitly consider target information.24,25 In addition, bioactivity profiles for related compounds are 

not always available.  

In target space, techniques were employed which benefit from the structural or sequence 

information available and rely on groups of related targets with the aim to identify possible off-target 

effects and drug specificity for a particular target of interest.25 Based on the inverse similarity principle, 

related proteins are likely to interact with similar compounds. As in the previous case, the 

unavailability of data also constitutes a limitation for target-based chemogenomics.  

  The combination of ligand and target data allows the creation of predictive models that can 

rationalize e.g. viral or cancer cell line selectivity, whereas models exclusively based on ligands cannot 
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 7 

explain the role of the target in selectivity.26 Merging data from ligand and target sources into the frame 

of a single machine learning model allows the prediction of the most suitable pharmacological 

treatment for a given genotype (personalized medicine), which ligand-only and protein-only 

approaches are not able to perform. This is precisely the underlying principle in Proteochemometrics 

(PCM), which employs both ligand and target features simultaneously, and which therefore enables the 

deconvolution of both the target and the chemical spaces in parallel. 15,16  

 

2 Proteochemometric Modelling 

2.1 PCM as a Practical Approach to use Chemogenomics Data 

PCM modelling, is a computational technique which combines both ligand information and 

target information within a single predictive model in order to predict an output variable of interest 

(usually the activity of a molecule in a particular biological assay).15,16 It is this combination of 

orthogonous information that sets PCM apart from both QSAR and chemogenomics.25,27 Generally, the 

term ‘target’ refers to proteins since the majority of PCM models in the literature have been devoted to 

the study of the activity of compounds on protein targets. Yet, target can also refer to a certain protein 

binding pocket (to allow distinction between binding modes, protein conformations, or allosteric / 

orthosteric binding), to a protein complex, or even to a cell line.28,29 Each binding site and each binding 

mode can be regarded (computationally) as a ‘different target’. 

A PCM model is trained on a dataset composed of a series of targets and compounds, where 

ideally compounds have been measured on as many targets as possible (illustrated in Figure 1). The 

simultaneous modelling of the target and the ligand space permits to better understand complex drug-

target interactions (e.g. selectivity)30–33 than would be possible with chemogenomics as the effect of 

target and chemical variability can be evaluated (e.g. protein mutations or the effect of chemical 

substructures on bioactivity). Thus, the aim of PCM is the complete modelling of the compound-target 

interaction space (Figure 1), including also the prediction of the bioactivity of novel compounds on yet 

untested targets.  

 Initial attempts to incorporate description of several proteins and their ligands in a single QSAR 

model involved modelling of the interaction between mutated glucocorticoid receptors and DNA.34,35 

The first full scale PCM study involving different proteins was devoted to the interaction of chimeric 

melanocortin receptors with chimeric peptides at Uppsala University.36 The name 
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 8 

“proteochemometrics” was coined later by the same research group.15 Since then PCM has been 

applied on various diverse datasets (Table 1).37,38 While the current review will focus on recent 

developments in the field, a comprehensive discussion of PCM-related work has been presented in a 

previous review by Van Westen et al. from 2011 to which we would like to refer the reader.16  

2.2 Practical Relevance of PCM 

The novel way that PCM considers the unity of chemical and target space permits to better 

understand and predict the influence of target variability on compound activity. For instance, predicting 

compound activity on a cancer cell line panel can identify selective compounds towards a particular 

cell line.17 Similarly, the influence of viral proteins mutations in compound activity can be quantified.39 

Therefore, PCM opens new avenues: (i) to mine drug affinity databases with the goal to create multi-

target and multispecies models, (ii) to integrate toxicogenomics and phenotypic data in predictive 

models, (iii) to identify designed or natural ligands for orphan receptors (receptor deorphanization), (iv) 

and to design personalized medicine for viral infections or a defined cancer type based on genotypic 

information. The ability of PCM to model these data depends on the structure of the input matrix, as we 

will elaborate on below, and concrete examples referring to the above fields will be presented in the 

subsequent section.  

2.3  Input Data for PCM 

The ligand-target interaction space can be visualized as a matrix containing the activities of all 

possible ligand-target combinations (Figure 1).40 PCM attempts to predict the activity of a ligand on 

any target and vice versa, the activity of any ligand on a given target. The integration of these 

independent compound-target interactions is however possible in PCM due to the combination of 

chemical and target information in a single machine learning model. Figure 2 gives an overview of how 

different sources of data can be integrated for modelling a particular aspect of bioactivity of a given 

ligand in different biological settings. Figure 2A displays how compound and target information relate 

and is combined in a predictive model which permits the extrapolation in either (or both) the chemical 

or target space (to the extent the training data allows). These two input spaces are numerically 

described (Figure 2B) by: compound bioactivity profiles or physicochemical descriptors (top panel, 

ligand space), cross term descriptors, such as interaction fingerprints (middle panel, descriptors 

dependent on both spaces),41,42 (lower panel target space) binding pocket residues or gene expression 

profiles. Figure 2C depicts some examples of practical applications of unifying chemical and biological 
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 9 

sources of information. The top panel represents the observed against the predicted bioactivities 

calculated with a PCM model, illustrating how PCM can be used to predict compound potency. The 

second panel displays deconvolution of the chemical space by interpreting the influence of each 

compound descriptor. This approach can determine which chemical moieties are important for either 

potency or selectivity. The third panel displays interpretation of the target space, which can identify 

residues that are implicated in e.g. drug resistance of a viral protein, amino acid descriptors in this case.  

Thus, compounds can be developed by considering potency and selectivity towards a given target or 

target family. The final panel shows how PCM models can help to determine the best drug regime 

given a patients genotype (personalized medicine). Here, the activity of all drugs would be predicted on 

that genotype and the drug predicted to exhibit the highest activity would be preferentially selected.  

2.4  Target descriptors 

As was touched upon above, PCM is rather flexible and can deal with a multitude of different target 

descriptors. Here, we will summarize some of the more common descriptors and later on in the review 

focus on novel descriptor types, for a full overview of established descriptors please see Van Westen et 

al 2011.16 By far the most common descriptors are alignment dependent sequence descriptors.43 The 

authors refer the reader to a pair of benchmark studies recently published for more information on this 

type of descriptor.44,45 This type of protein descriptor is usually obtained from a concatenation of 

individual amino acid descriptors and requires the individual sequences to be aligned. This can be done 

using full sequence alignment by established tools such as ClustalW and subsequently these alignments 

are converted to position-dependent numerical descriptors, e.g. the Z-scales by Sandberg.46–48.  

When no reliable alignment is possible, target descriptors can be calculated using the whole 

protein sequence without aligning them.49 The usage of only primary sequence descriptors to predict 

protein-protein interactions was shown efficient by Shen et al.50 who were able to train a SVM model 

based on more than 16,000 protein-protein pairs described with conjoint triad feature amino acid 

descriptors. Similarly, analyses of sequence variability among targets exhibiting divergent bioactivity 

profiles, enabled the characterization of binding pocket residues energetically important for ligand 

binding and selectivity for GPCRs and kinases.51,52,53 

If present, structural information from crystallographic structures can be used by selecting 

residues near the ligand binding site (e.g. 5 or 10 Å sphere around the co-crystallized ligand).21,43,44,47 

Subsequently, the corresponding residues for other targets can be obtained from sequence alignment. 

This semi-structural method is less reliable than a full structural superposition and alignment gaps 
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 10 

might appear. However, in practice, the former appears to have better resolution, which might be due to 

the fact that domains not involved in ligand binding are not considered.22,54,55 To date, binding sites in 

PCM models have been derived from single crystallographic structures,22,42,55,56 thus ignoring the 

intrinsically dynamic nature of proteins. However, databases such as Pocketome57 might facilitate the 

introduction of dynamic properties of protein binding sites in PCM models as they contain ensembles 

of conformations for druggable binding sites extracted from co-crystal structures in the Protein Data 

Bank. To the knowledge of the authors, descriptors accounting for the dynamic properties of binding 

site amino acids have not been reported in the literature. Including this dynamic information might lead 

to a better description of protein targets in cases where small molecule binding is dependent on the 

binding site conformation, e.g. kinases. 

Beyond sequence similarity, targets have also been described in different ways to model 

compound bioactivities on multiple targets.58–62 Among others, targets have been characterized by: (i) 

the incorporation of biological tests and inverse virtual screening data; (ii) structural pocket similarity 

analyses; (iii) topology analyses of both compound-target and protein-protein interaction networks; (iv) 

the combination of pharmacophoric and interaction fingerprints; and (v) 3-dimensional alignment-free 

methods of binding sequences.7,63–66 The availability of a plethora of target descriptors enables the 

application of PCM to targets families where, for instance, little structural information is available. The 

advantages brought to the PCM field by each of these descriptor types will be reviewed in sections 4 

and 5. In cases where targets are not proteins, but more complex biological systems, such as cell lines, 

the target space can be described with ‘omics’ data, namely: copy-number variation (CNV) data, gene 

expression levels, exome sequencing data, cell line fingerprints, protein abundance, and miRNA 

expression levels.17,29 

2.5  Ligand descriptors 

 Similarly, from the ligand side a large number of descriptors have been employed in PCM in the 

last decade.67,68 Circular fingerprints are the most commonly applied due to both their consistent good 

performance and interpretability when using the unhashed (keyed) version.69,70 Keyed circular 

fingerprints, in both binary and counts format, where each bit in the descriptor accounts for the number 

of occurrences of a substructure in a given molecule, enable the interpretation of models and the 

identification of chemical substructures implicated in compound potency and selectivity. The 

performance of models trained on hashed and unhashed circular Morgan fingerprints do not vary 

significantly.55 Therefore, we advocate for the customary usage of unhashed fingerprints in order to 
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 11 

enhance the interpretability of PCM models. 

Next to the circular fingerprint, physicochemical descriptors, such as DRAGON or PaDEL,71,72 

have been widely used in recent years (Table 1). Other ligand descriptors, such as atom types, 

topological indices, MACCs keys or ligand shape descriptors, have been also applied in the context of 

PCM.  

In the experience of the authors, the description of compounds with circular Morgan 

fingerprints permits the generation of statistically validated PCM models but on several occasions the 

addition of physicochemical properties to fingerprints has been demonstrated to improve 

performance.54 This was especially true on data sets with a large chemical diversity, e.g. resulting from 

screening a diverse set or resulting from covering a group of targets with diverse ligands.  

2.6  Cross term descriptors 

Thirdly, some PCM studies have defined an additional class of descriptors, called cross-terms, 

by multiplying ligand and target descriptors. These descriptors serve as descriptors for the non-linear 

components in the interaction between ligand and target (e.g. a hydrogen bond that can be formed in 

one target but not another).43,73 Therefore, its application is advisable when using linear modelling 

techniques (such as Partial Least Squares (PLS)). In the case of non-linear techniques, cross-terms are 

not essential as the models should be able to capture this information.22,74 Nonetheless, the experience 

of the authors indicates that they might be nevertheless useful to improve model performance when 

using SVM or GP even though their interpretability might not be straightforward. For further reading 

on different types of descriptors applied in PCM we refer the reader to Van Westen et al.16  

2.7  Validation of PCM models 

Due to the previously mentioned bias in bioactivity data (both from a chemical point of view 

and target point of view) the ligand-target interaction matrix is virtually never complete.23–25 The 

authors have trained PCM models on sparse datasets with a degree of matrix completeness in the 2-3% 

range that demonstrated good performance on the test set.75 The statistical metrics proposed by 

Golbraikh and Tropsha76
 can be used (similar to QSAR) to validate models using observed and 

predicted values on the test set. Recent studies recommend the usage of nested cross-validation (NCV) 

to report model performance.77–80 In NCV, two validation loops are nested: the inner one serves to 

optimize the values of the hyperparameters through traditional k-fold cross-validation, whereas the 

outer loop serves to assess the predictive ability of the model trained on the whole training set. This 
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 12 

procedure is repeated k’ times, each time changing the composition of the training and the test sets. 

Thus, NCV does not provide the best parameter combination, as in each k’ round the best values of the 

hyperparameters might change due to the variance of the different training sets. Still, it provides the 

best estimate of the CV error as it provides an error interval, which can be wide depending on the 

dataset modeled.80  

However, the degree of completeness of the ligand-target interaction matrix is only one 

parameter influencing the predictive ability of a model. The variability on the chemical and the target 

side are the other two factors that need to be considered both in model validation and to assess its 

applicability domain.75 Hence, the authors strongly suggest validating PCM models following a number 

of basic guidelines, which are in line with the recommendations from Park and Marcotte.77 Firstly, 

external validation (e.g. 70-30 validation), a model is trained on 70% percent of the data (training set) 

and the bioactivity for the remaining 30% (test set) is predicted. In this case, all targets and compounds 

are present in both the training and the test set. This method corresponds to a Park and Marcotte C1 

validation and serves to determine if a reliable model can be fit on the data set.  

Secondly, Leave-One-Target-Out (LOTO) validation: all the bioactivity data annotated on a 

target is excluded from the training set. A model is subsequently trained on the training set, which is 

used to predict the bioactivities for the compounds annotated on the hold-out target. This process is 

repeated for each target. This validation scheme corresponds to a Park and Marcotte C2 validation and 

reflects the common situation in prospective validation where there is no information for a given target 

for which we intend to find hits.  

Thirdly, Leave-One-Compound-Out (LOCO) validation: the bioactivity data for a compound on 

all targets is excluded from the training. Similarly to the LOTO validation, the PCM model trained on 

the remaining data is used to predict the bioactivity for the hold-out compound on each target. This data 

availability scenario corresponds to a Park and Marcotte C2 validation and resembles the situation 

where a PCM model is applied to novel chemistry in a e.g. prospective validation screening campaign. 

If the number of compounds in the training dataset is large, compound clusters can be used instead of 

single compounds, thus leading to the Leave-Once-Compound-Cluster-Out validation scenario 

(LOCCO).17  

In addition to these scenarios, the authors suggest to compare the performance of the PCM 

model trained on all data to single-target QSAR models. The goal of this validation is twofold. Firstly a 

direct comparison to QSAR can determine if it is wise to apply PCM to a data set. Secondly, as was 

touched upon above, bias in the data can be the cause of some targets being reliably modeled and some 

targets being poorly modeled (see Section 6).23–25 When calculating validation parameters (such as the 
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correlation coefficient) on the full test set, poorly modeled targets can be masked. In order to notice 

discontinuities, the authors recommend to not only calculate the validation parameters on the full test 

set. In addition, also calculate validation parameters on test set data points that are grouped per target 

and points that are grouped per ligand.45 The values of the statistical metrics calculated per target can 

be directly compared with those obtained with single QSAR models (comparing values calculated on 

the full test set would not be an accurate comparison).  

Ideally, the final validation is one where a target and all compounds that have been tested on 

this (and other targets) are iteratively excluded from the training set. This approach corresponds with a 

Park and Marcotte C3 validation. C3 validation is considered extrapolation rather than interpolation, as 

both parts of the pair (the ligand and the target) have not been seen in the training set by the model.   

Taken together, these validation scenarios enable a thorough and earnest validation of PCM 

models and a comparison to the state of the art. Finally, the authors also suggest to calculate the 

statistical metrics on, at least, the predictions calculated with three models trained on different subsets 

of the complete dataset, and to accompany them with the standard deviation observed over the 

repetitions.75 Similarly, it is advisable to carefully estimate the maximum achievable performance given 

the uncertainty of the data.17,75 

2.8  Review outline 

Table 1 summarizes the main features of the PCM studies published between 2010 and 2013. In 

addition to traditional therapeutic targets (e.g. kinases or GPCRs), which continue to be well 

represented in recent PCM studies, other applications and techniques are gaining ground steadily, 

namely: (i) the modelling of the selectivity of viral protein mutants, mainly HIV; (ii) the inclusion of 

bioactivity information from mammal orthologues;  (iii) the usage of 3-dimensional target information; 

and (iv) toxicogenomics and pharmacogenomics. In this review, we will focus on: (Section 3): (novel) 

machine learning techniques successfully applied in recent PCM studies (Table 2) and other predictive 

modelling contexts such as chemoinformatics; (Section 4): recent application of PCM on established 

protein target classes; (Section 5): novel applications; (Section 6) pitfalls of PCM; (Section 7) future 

perspectives and concluding remarks close the review.  
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3 Machine Learning in PCM 

 Most of the currently used machine learning (PLS, rough set modelling, neural net modelling, 

Naïve Bayesian classifiers, and decision tree algorithms) as well as data preprocessing techniques in 

PCM have been described in recent reviews by Andersson et al.81 and Van Westen et al.16 Moreover, 

feature selection methods and common algorithms have been recently benchmarked, , with the overall 

conclusion that kernel and tree methods, such as SVM or RF, do not benefit fom feature selection, and 

that no particular algorithm-feature selection pair appears to be preferable.82–84 Therefore, only recent 

applications of novel techniques applied to PCM or chemoinformatic modelling will be discussed here, 

namely: Support Vector Machines (SVM), Random Forest (RF), Gaussian Processes (GP) and 

Collective Filtering (CF). A detailed description of the machine learning algorithms described in the 

following subsections is given in Table 2. 

3.1 Support Vector Machines (SVM) 

 Support Vector Machines (SVMs) are a group of non-linear machine learning techniques 

commonly used in computational biology, and in PCM in particular.16,22 SVMs became popular in the 

last decade due to their performance and efficient capacity to deal with large datasets also in high-

dimensional variable spaces, even though interpretability can be challenging.85–87 Furthermore SVMs 

require proper tuning of the so-called hyper parameters, usually determined by an exponential grid 

search. 

 In a recent study from Lapins et al.88 Random Forest (RF), K-Nearest Neighbors (KNN), and 

SVMs were applied to construct a PCM model of Cytochrome P450 (CYP) inhibition. The models 

were trained on 5 CYPs and 17,143 compounds. CYPs were described with transition and composition 

description of amino acids, while compounds were described with structural signature descriptors. 

These PCM models were shown to outperform single target models in terms of Area Under the Curve 

(AUC: PCM: >0.90, QSAR: 0.79-0.89) that were constructed in parallel by Cheng et al.89 Of the 

methods used, RF and SVM were shown to be comparable in terms of accuracies and AUC. The high 

performance of the SVM model in the external validation (AUC: 0.940) evidences the suitability of this 

approach to correctly extrapolate in both the target and compound space.  

 SVMs can use different internal methods (kernels) to derive bioactivity predictions, the most 

dominant being the Radial Basis Function (RBF) kernel.90 Radial basis function kernels have been 

shown to perform well on PCM data.16,22 Recently the VII Pearson function-based Universal Kernel  
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(PUK)91 was also applied to PCM. Wu et al.92 showed that they were able to improve the mapping 

power of their PCM models for 11 histone deacetylases (HDAC’s) by using a PUK kernel. 

Nonetheless, the radial kernel still constitutes a common option when inducting bioactivity models 

given the necessity to tune only one kernel parameter, i.e. σ, which in practice means shorter training 

times. Based on those results, the experienced user should keep in mind that although the radial kernel 

is a robust option with reliable results (in the experience of the authors), a proper kernel choice should 

be made on the basis of the data at hand.93 

 Dual Component SVMs (DC-SVM) are an extension of the classical SVM and have been 

applied by Niijima et al.94 to a kinase dataset spanning the whole kinome. They proposed a dual 

component naïve Bayesian model in which kinase-inhibitor pairs are represented by protein residues 

and ligand fragments that form dual components. Hence the probability of being active is simply 

estimated as the ratio of bioactivity values between active and inactive pairs. This method was further 

extended to SVMs by modifying a Tanimoto kernel to include compound fragments. PCM DC-SVMs 

outperformed ligand based SVMs (QSAR) in internal validation, as accuracies of 90.9% and 86.2% 

were respectively obtained. However the same level of accuracy was not achieved when using external 

datasets, which produced accuracies of 73.9% and 81.3% for DC-SVM and ligand based SVM. 

Therefore, these results do not permit to conclude that DC-SVM outperform SVM although this might 

happen with other datasets. 

 

 A second type of SVMs, Transductive SVMs (TSVMs), have been applied to model 10 small 

(between ~1,000 and ~3,000 datapoints) and unbalanced QSAR datasets from the Directory of Useful 

Decoys (DUD)95 repository displaying a balanced accuracy higher than 30% on some datasets with 

respect to SVM.96 The concept relies on transduction, allowing the modelling of partially labeled data 

which cannot be included using regular SVM. TSVMs could be potentially extended to PCM and have 

been shown to outperform SVMs in some cases.97,98 

 A third flavor of SVMs are Relevance Vector Machines (RVMs).99 The added value of RVM is 

the interpretability of the models, which is a consequence of their Bayesian nature. Each descriptor is 

associated to a coefficient, which determines its relevance for the model. Coefficients associated to low 

relevance descriptors are close to zero, hence the model becomes sparse and therefore permits shorter 

prediction times. Although the predicted variance is not informative in regression studies, class 

probabilities can be efficiently determined in classification.100 RVMs have been demonstrated by binary 

classifiers trained on a subset of the MDDR database.100 Therein, it was demonstrated that RVMs 

performed on par with ‘classic’ SVM, encouraging the authors to conclude that RVM should be added 

Page 15 of 63 Medicinal Chemistry Communications

M
ed

ic
in

al
C

he
m

is
tr

y
C

om
m

un
ic

at
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



 16 

to the current chemoinformatic tools and as such potentially applied to future PCM studies.  

On the basis of the above, SVM constitutes a useful algorithm in which initial drawbacks such as 

interpretability (e.g. the determination of which chemical substructures most contribute to compound 

bioactivity) can be overcome with new developments (e.g. RVM).  

3.2 Random Forests (RF) 

 Random Forest (RF) models are often comparable in performance to SVMs,16 and are also non-

linear. However, contrary to SVMs RFs tend to have relatively short training times and do not require 

extensive parameter tuning.101 Furthermore, in addition to their comparable performance, RFs permit 

an evaluation of both feature contribution and feature importance in PCM models, as shown by de 

Bruyn et al.54 An example of such evaluation is given in the identification of organic anion-transporting 

polypeptide (OATP) inhibitors, where continuous descriptors, both Z-scales (proteins) and 

physiochemical features (compounds), were binned into discrete classes. For each feature (protein and 

ligand) the correlation to activity and importance was calculated for each target class. In that way, 

compound inactivity was correlated with the presence of chemical substructures positively charged at 

pH 7.4, number of atoms < 20, and molecular weight < 300. Conversely, chemical substructures with a 

number of ring bonds between 18 and 32, without atoms with positive charge, and with a LogD value 

between 3.4 and 7.5 were found to favour OATP inhibition.  

 Although RFs have a high interpretability it should be noted that they do not output error 

estimates (as is also the case with SVM), although recent papers suggest the usefulness of the variance 

along the trees of a random forest model to determine its applicability domain.102,103 Error estimates are 

of tremendous importance given the high levels of noise and error annotations in public bioactivity 

databases. Thus, fully informative predictions should be accompanied by individual uncertainties. This 

issue can be remediated by applying Quantile Regression Forests (QRF) which infer quantiles from the 

conditional distribution of the response variable.104 To our knowledge QRFs have not been applied to 

QSAR or PCM yet. A machine learning technique that has been used in PCM with inherent error 

estimation capabilities are Gaussian Processes, as described below. 

3.3 Gaussian Processes (GP) 

 The determination of the applicability domain (AD) of a model (when are model predictions 

reliable or when can a model extrapolate) is one of the major concerns in bioactivity modelling (see 

previous studies105–107 for comprehensive reviews). Major obstacles to the AD determination are the 
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errors and uncertainties contained in bioactivity databases,108–111 which are mainly due to data curation 

and experimental errors,110 as well as the accurate quantification of distances in the descriptor and the 

biological space, which would enable to anticipate prediction errors. Gaussian processes (GP) aim to 

address these concerns by permitting to handle data uncertainty as input into a probabilistic model.  

Figure 3 illustrates the basic idea underlying GP modelling. The prior probability distribution 

(Figure 3A) covers all possible functions candidate to model the data, each of which has a different 

weight determined by the kernel (covariance) parameters. Subsequently, only those functions from the 

prior distribution in agreement with the experimental data are kept (Figure 3B). The mean of this 

function is considered as the best fit to the data. Given that each prediction is a Gaussian distribution, 

different confidence intervals can be defined from its variance (Figure 3B).  

 Gao et al.112 showed that SVMs performed, in general, slightly better than GPs when modelling 

a dataset composed of 128 ligand and 9 human amine GPCRs, although the models trained on the best 

combination of descriptors exhibited Q2 values of 0.744 and 0.742 for GP and SVM respectively. Worth 

of mention, the difference in performance between GP and SVM was not assessed neither statistically   

nor by comparing the results of a series models trained on different resamples of the whole dataset. 

Moreover, the predicted error bars by the GP PCM models were not considered. More recently, Cortes-

Ciriano et al.75 showed the actual potential of GPs by applying both SVMs and GPs implemented with 

a panel of diverse kernels to multispecies PCM datasets, namely: human and rat adenosine receptors, 

mammal GPCRs and Dengue virus proteases. GP and SVM performed comparably as absolute 

differences were statistically insignificant. However, GP provided notable added values via: (i) the 

determination of the model AD, (ii) the probabilistic nature of the predictions, and (iii) the inclusion of 

the experimental uncertainty in the model.  

In the experience of the authors regarding the application of GP in PCM,75 and in agreement with 

Schwaighofer et al.,113 the intervals of confidence (IC) calculated by GP are in accordance with the 

cumulative Gaussian distribution. Therefore, these intervals of confidence provide valuable information 

about individual prediction errors. In practice, knowing the error for each prediction can certainly guide 

decision-making about which compounds should be tested in prospective experimental validation of in 

silico PCM models. Overall, GP appear as an appealing approach for PCM in spite of the longer CPU 

time required for the training, as GP is an algorithm of O(N3) time complexity (i.e., it scales with the 

third power of the size of the dataset).114  
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3.4 Collaborative Filtering (CF) 

 One of the requirements for PCM is that target (protein) features need to be defined explicitly 

(usually by physicochemical characterization of amino acids). While this approach is effective, it 

nevertheless requires a certain level of information about target sequences and structures. An 

alternative approach would be to infer target features from an unsupervised approach and not use them 

as model input a priori. This was done quite recently in multi-target QSAR study of multiple cell lines 

for the hedgehog signalling pathway.115  

 Goa et al.115 incorporated a CF approach between 93 cyclopamine derivatives and four cell lines 

(BxPC-3, NCI-H446, SW1990 and NCI-H157), and showed that collaborative filtering multi-target 

QSAR outperforms normal QSAR for their dataset. The mean Root-Mean Squared Error (RMSE) for 

four cell lines was 0.65 log units for CF while it increased to 0.85 log units for (single target) SVR. The 

collaborative QSAR framework, combined with a feature selection methodology based on collaborative 

filtering and the content-based recommender systems (a system used by Electronic retailers and content 

providers such as Amazon.com),116 enabled the definition of weights for the compound descriptors 

(Drug-like index). When interpreting their models the authors could determine that molecular volume, 

polarity, and the cyclic degree are the most influent compound features for multi-cell line inhibitors for 

this particular pathway (which, from the chemical standpoint, would however be sometimes difficult to 

interpret structurally). Erhan et al.117 also used CF with a large library of compounds against a family 

of 12 related targets screened in AstraZeneca's HTS campaigns. The authors elegantly demonstrated 

how the principles of CF filtering can be used to derive a predictive model with the capability to 

extrapolate on the target side. However, better results were obtained when using target descriptors 

(binding pocket fingerprints of 14 bins in this case, where each bin accounts for a type of interaction - 

ionic, polar, or hydrophobic- in the binding site). Another novelty of this work was the introduction of 

the kernel-based method Jrank (a kernel perceptron algorithm), which was able to outperform the 

multi-task neural network in most cases and it never produced significantly worse models. Indeed, in 6 

out of 7 cases, this kernel outperformed the random retrieval of compounds. Moreover, the authors also 

noted that improvements are still possible since Jrank not always outperformed the single-target 

models. 

 The overview presented above shows that PCM heavily draws on recent developments in the 

machine-learning field. However, given that the methods used are only the means to an end, we will in 

the following also summarize PCM applications in the medicinal chemistry and chemical biology 

fields, to different target classes as well as different types of biological readout. 
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4 PCM Applied to Protein Target Families 
 
 As was touched upon above, PCM has been applied to a very diverse selection of protein 

targets. Here we will focus on a small selection of targets relevant for drug discovery, namely G 

Protein-Coupled Receptors (GPCRs), kinases, epigenetic markers, viral enzymes, and human cancer 

cell lines. 

4.1 G Protein-Coupled Receptors  

 Early PCM virtual screening studies by Bock and Gough to identify ligands of orphan GPCRs 

(oGPCRs) used physiochemical properties of the amino acids of the entire primary sequence of 

GPCRs, such as accessible surface area or surface tension, rather than binding site residues. The 

authors screened 1.9 million ligand-oGPCRs combinations and were able to identify 4,357 highly 

active ligands of oGPCRs. The method, based on SVM, outputs a ranked list of putative oGPCRs 

ligands. In practice, the most relevant feature of their predictive pipeline is the description of GPCRs 

with only physicochemical descriptors, thus avoiding the usage of exact 3-dimensional information of 

the receptors.38 Subsequently, Jacob et al.118 demonstrated that the usage of bioactivity data from 4051 

GPCR-ligand combinations (80 human GPCRs from classes A, B and C, and 2,446 ligands) extracted 

from the GLIDA GPCR ligand database119 in PCM models improves the performance over single 

receptor models, leading to more reliable predictions. The authors used Tanimoto 2D and 

pharmacophore 3D kernels to describe the ligands, and 5 kernels to describe the GPCRs, namely: 

Dirac, multitask, hierarchy, binding pocket and poly binding pocket. The best combination thereof was 

shown to be 2D Tanimoto on the compound side and the binding pocket kernel for the GPCRs, as they 

reported an accuracy of 78.1% when predicting ligands for orphan receptors. These findings were 

further capitalized upon in the papers of Frimurer et al.,120 and Weil and Rognan.121 Both papers 

devised features for the 7TM core ligand-binding site and cavity fingerprints to improve the structure 

guided drug discovery approaches and provide a general Class A GPCR similarity metric.120,121 The 

former approach introduced an in silico pipeline to relate 7TM GPCRs based upon the physicochemical 

properties of the ligand binding site, taken from the crystal structure of the bovine rhodopsin. The 

pipeline is composed of five steps, which are: (i) sequence alignment of the TM domain of the GPCRs 

of interest, (ii) selection of the residues in the core binding site important for ligand binding, (iii) 

definition of binding site signatures and generation of physicochemical descriptors for them, and (iv) 

use these descriptors to rank, cluster or compare 7TM GPCRs. The authors applied this pipeline to 
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identify ligands for the rhodopsin-like receptor, CRTH2, which by that time only had one annotated 

ligand besides prostaglandin D2, namely indomethacin. The screening of a library of 1.2 million 

compounds yielded 600 candidate hit compounds. 10% thereof were confirmed as ligands in a CRTH2 

receptor-binding assay, with a IC50 cut-off value to consider a compound as active of 10µM. On the 

other hand, Weil and Rognan121 introduced a new type of protein−ligand fingerprint (PLFP), which 

encodes pharmacophoric properties of ligands and their binding cavities. These fingerprints were 

applied to two GPCRs datasets, namely: (i) 168,536 GPCR-ligand combinations (160,286 inactive and 

8,250 active combinations), and (ii) 234,137 GPCR-ligand combinations (202,019 inactive and 32,118 

active combinations). The total number of GPCRs considered was 160. The authors reported a cross-

validated classification accuracy higher than 0.9 when using SVM, though the most predictive models 

on external datasets were not those presenting the highest accuracy values in cross-validation.122 

   Overall, PCM models trained on GPCRs binding site amino acid descriptors have proven to be 

a powerful approach to identify the GPCRs targets for a given compound, and to predict ligands for 

orphan GPCRs. The increasing availability of bioactivity data on GPCRs of interest and orthologous 

sequences,75 as well as the development of novel methodologies to assess GPCRs similarity, is likely to 

increase the application of PCM on this target family in drug discovery campaigns.  

4.2 Kinases 

 Another important protein family in drug discovery subjected to PCM studies is the kinase 

superfamily which comprises more than 500 different human proteins.123 The role of kinases in cell 

signalling and their involvement in more than 400 human diseases have rendered this protein family an 

attractive target.124,125 Kinases generally contain a conserved kinase domain that binds ATP in their 

active site, though some contain more than one kinase domain. Inhibitors targeting this conserved 

binding site are known as Type I inhibitors. The activation loop of kinases, necessary for the transfer of 

a phosphate group, exhibits two different conformations, namely DFG-in and DFG-out (where DFG 

stands for the catalytic triad, Asp-Phe-Gly). Type II inhibitors bind to both the conserved ATP-binding 

site and to an adjacent pocket present in the DFG-out conformation.  These compounds are more 

selective and thus attractive as drug candidates. Given the ability of PCM to model bioactivities against 

related targets, it is very well suited to model the affinity of small molecule inhibitors to the kinase 

family.16 Different PCM models have been reported to analyze drug selectivity and predict bioactivity 

profiles against kinases.66,126  
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In a recent study by Cao et al.,126 the full kinase sequence space was described by alignment-

independent ‘Composition, Transition and Distribution’ (CTD) features,127 along with topological 

features of compounds. The dataset comprised a total number of kinase-compound interactions of 

54,012, with data from 22,229 compounds and 372 kinases. The best RF model exhibited a 

classification accuracy in five-fold cross-validation of 93.7%, and a sensitivity of 92.26%. Moreover, 

this high predictive power was maintained in the four validation levels suggested by Park and 

Marcotte,77 as the following accuracies and sensitivities (respectively and in percentage units) were 

obtained: (i) L1: 93.15 and 91.23; (ii) L2: 89.53 and 88.24; (iii) L3: 90.71 and 89.48; and (iv) 87.30 and 

85.82. Hence the statistically soundness of this PCM model enabled the classification of compound-

kinase pairs as interacting, using a 100nM concentration as cut-off, or non-interacting. The high 

predictive ability of the models should be considered nevertheless with caution as the degree of 

completeness of the bioactivity matrix used in the training was only 0.65%. Therefore, these PCM 

models should be iteratively updated as more bioactivity values become available. Interestingly, 

kinases similar in the sequence space exhibited high dissimilarity when assessing their similarity with 

the inhibitors bioactivities. This was assessed using 120 kinases with more than 15 bioactivity 

annotations, 14,400 datapoints in total. Thus, these data highlights the adequacy of considering 

chemical and target space to optimize kinase inhibitors.  

While high affinity is generally desired for drugs (except possibly in case of multicomponent 

therapeutics),128  selectivity is equally important when targeting a protein family with highly similar 

binding sites, such as in this case kinases. Subramanian et al.66 applied PCM models to a kinase dataset 

comprising 50 different proteins in the DFG-in conformation to better understand both the residue and 

compound features which determined whether the ATP-binding site of kinases are involved in 

compound binding. The resulting PLS models, which included cross-terms (see section 2.3), 

demonstrated the added value of PCM over ligand based approaches, as statistically satisfactory QSAR 

models were reported for only 44% of the targets. More importantly, the models could be visually 

interpreted, thus enhancing the practical usefulness of PCM for the optimization of compound 

selectivity. (Further details on the study are given in section 4.4, as models targets were encoded with 

3-dimensional information.) 

The distinction between Type I and Type II inhibitors has been proved to be amenable to PCM by 

Mendez-Lucio et al.129 In order to distinguish between Type I and Type II inhibitors, the authors trained 

a PCM model on a dataset consisting of 463 data points from the interaction matrix defined by 50 

known Kinase type I (ATP-competitive) inhibitors against 12 different sequences of ABL1 (five of 

them in both the phosphorylated and non-phosphorylated state.130 The model exhibited sound 
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predictive ability, assessed by cross-validation, with RMSE and Q2 values of 0.420 and 0.887 

respectively. In addition, the model allowed the full interpretation of both compound (inhibitor) and 

protein (kinase) features. Hence, along with the prediction of pKd, a PCM model can provide 

information about the effect of both compound structural features and protein amino acid residues.131–

133 The importance of a given compound substructure, or a given amino acid residue, can be evaluated 

by the calculation of the difference in bioactivity between the predicted value for a compound with and 

without that substructure.75 Figure 4 displays how this information can be presented in practice and 

shows the average (over the whole data set) effect of presence of a number of features on the pKd of 

inhibitor – kinase pairs.  

As shown by these recent PCM studies on the kinase superfamily, PCM can support new 

concepts for kinase inhibition implicating the simultaneous interaction of kinase inhibitors with several 

targets leading to multi-target kinase chemotherapy.129,134 Therefore, PCM constitutes a suitable 

technique to help in the design of kinase inhibitors with respect to their potency and selectivity (Figure 

4).129 

4.3 Histone modification and DNA methylation 

 Epigenetic markers have been identified as emerging therapeutic targets in various malignancies 

and diseases by correlating phenotypes and differential expression patterns.135 Key protein families 

involved in these processes are readers (Bromodomains), writers (DNA modifying enzymes, histone 

acetylases, methyltransferases) and erasers (histone deacetylases).136 Most of the bromodomain 

epigenetic targets have the ability to selectively modulate the gene expression pattern and contribute to 

post-translational modifications, chromatin binding, inflammation, oncogenesis,137 moreover there is a 

clear linkage to some diseases, e.g. multiple myeloma.138–140 Vidler et al.141 studied the druggability of 

the different members of the bromodomain family focusing on amino acid signatures in the 

bromodomain acetyl-lysine binding site, which resulted in a bromodomain family classification more 

correlated with the binding of small molecules in comparison with a whole-sequence similarity 

classification. Numerous successful chemical probes like JQ1 have also been identified as 

bromodomain inhibitors by the Structural Genomics Consortium (SGC).142 However, the bromodomain 

family still has unexplored therapeutic potential. To date there are no PCM studies performed on this 

family. 

Recently, Wu and co-workers utilized structural similarity between three classes of HDACs and 

generated a predictive model for a novel candidate anti-tumour drug.92 They implemented various 
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descriptors (physicochemical properties) and similarity descriptors (sequence and structure) of 

compounds and targets in the PCM model and successfully identified the class-selective inhibitors for 

class-I and class-II HDACs. The best model exhibited high predictive ability, as the authors reported a 

Q2 value on the external set of 0.754. Overall, the increasing importance of epigenetic targets in drug 

discovery as well as the availability of large-scale resources of epigenetic targets and its 

modulators,143,144 will facilitate the application of PCM to this target family. 

4.4 Viral Mutants  

Previous sections highlighted the ability of PCM to model bioactivities of several human protein 

superfamilies, yet PCM based approaches are not bound to human protein targets. PCM has also been 

applied in a number of studies to predict activity profiles of ligands against different viral protein 

variants.26 In the field of HIV, van Westen et al.26 used 451 compounds tested against 14 HIV reverse 

transcriptase sequences to train a model that was able to predict the bioactivity of 317 new compound-

mutant pairs. Interestingly, when the prediction was validated prospectively with ‘wet lab’ experiments 

it was found that the prediction error (RMSE of 0.62 log units) was comparable to experimental 

uncertainty of the assay (0.50 log units). In a similar setting, Huang et al.41 showed that the inclusion of 

Protein-Ligand Interaction Fingerprints (PLIFs) of viral residues and ligand structures as cross-terms 

improved model predictive power over models lacking them. PCM models were trained on 92 

compounds and 47 HIV-1 protease variants with about 160 Ki values. The best PCM model exhibited a 

Q2 value of 0.827 on the external set.   

 Next to these applications, PCM has been used to model the sensitivity of viral mutants to 

antiretroviral drugs, which could potentially guide HIV treatment.145 Resistance testing and prediction 

using these models is achieved by incorporating genotypic (protein) and drug (chemical) data and 

subsequently linking them to phenotypic data (resistance). PCM then allows the prediction of optimal 

treatment regimens. The advantage of PCM over established sequence-based approaches is that 

interpretation of a single model allows the combined elucidation of residues responsible for the change 

in efficacy and the complementary chemical features affected.146–149 For instance, Van Westen et al.145 

trained PCM models based on a large clinical dataset composed of circa 300,000 datapoints combining 

both phenotypic and genotypic data. The application of PCM enabled the integration of the similarity 

of marketed drugs together with protein sequence similarity. The best model exhibited a fold change 

error of 0.76 log units, which constitutes an improvement of 0.15 log units with respect to previously 

reported models trained on only protein sequence similarity (0.91 log fold change error). In addition, 
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the authors identified novel mutations of both HIV reverse transcriptase and HIV protease conferring 

drug resistance, underlining the ability of PCM models not only to model bioactivity information, but 

to also learn about features relevant for activity from both the ligand and the protein target side. 

 Similarly, drug susceptibility profiles were predicted based on PCM. In that way, two models 

have been reported for the prediction of: (i) the susceptibility (bioactivity profile) of a given HIV 

protease genotype to seven commonly used protease inhibitors;146 and (ii) the susceptibility of HIV 

reverse transcriptase to eight nucleoside/nucleotide reverse transcriptase inhibitors.149 PCM models 

were trained on 4,792 HIV protease-inhibitor combinations, being the Q2 value on the external set for 

the best model 0.87. These models have been made publically available via web-services available at 

http://www.hivdrc.org/services, allowing free use of these algorithms.150  

While the ligands of most PCM studies discussed here were small molecules, protease peptide 

substrates are also amenable to PCM. This has been demonstrated recently by Prusis et al.151,152 to 

study the enzyme kinetics parameters for designed small peptide substrates on four dengue virus NS3 

proteases using PCM modelling. It was found that the PCM models for Km and Kcat were significantly 

different. Therefore, by optimizing peptide amino acid properties important for Km activity it was 

possible to improve peptide affinity to protease, while losing their catalytic activity, hence obtain 

peptides, which were dengue protease inhibitors.  

These studies by Prusis et al. and Van Westen et al. are some of the few reports in which 

predictions have been validated prospectively, demonstrating the predictive power of PCM in different 

scenarios. 
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5 Novel Techniques and Applications in PCM 

5.1 Novel target similarity measure 

In the context of GPCRs, studies developing better similarity metrics have helped to determine 

key binding residues within the GPCR trans-membrane (TM) helical bundle,51,63,120 aided intra family 

similarity determination using cavity fingerprints,153 and fueled high-throughput homology models that 

supported cavity detection programs.65,153–155 PCM approaches including these features have also 

helped in off-target predictions, retrieval of new lead compounds, and target prediction for GPCR-

focused combinatorial chemolibraries.156,157  

The binding site focused techniques used in above described studies allowed for the identification 

of orthosteric and allosteric sites on the same target for different ligand families. In this line, Gao et 

al.
93 showed the higher predictive ability of models trained on trans-membrane identity descriptors (Q2 

=0.74) over z-scales (Q2 =0.72) when modelling the inhibition constant of 9 human aminergic GPCRs 

and 128 ligands, (310 ligand-target combinations). Similarly, Shiraishi et al.158 revealed specific 

chemical substructures binding to relevant TM pocket residues, which is not only relevant to mutational 

analysis but also serves as a complementary approach to Structure-Based Drug Discovery (SBDD).62,158 

TM identity descriptors and TM kernels behave more discriminatingly than z-scales for GPCRs and 

allow identification and interpretation of GPCR residues associated with binding of ligands (of a 

particular chemotype). Therefore, the identification of chemical moieties and residues involved in 

ligand binding enables the development and optimization of GPCRs inhibitors with respect to both 

potency and selectivity. 

 

5.2 Including 3D Information of Protein Targets in PCM 

The binding of a ligand to a protein is a complex process, governed on the structural level by the 

3-dimensional (3-D) composition of the protein binding site, the 3-D conformation of the ligands 

approaching, and the complementarity of their pharmacophoric features. Hence it is expected that 

inclusion of spatial information from the protein binding sites would improve the predictive power of 

PCM. Unfortunately, this approach is frequently limited by the lack of high quality 3-D structures, poor 

understanding of ligand-induced conformational changes, and inaccurate superimposition of protein 

structures The latter can be (partly) overcome by the use of alignment-free protein descriptors,65,81 but 

usually at the cost of lower resolution, loss of target-related information and poor interpretability. 
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 Jacob et al.118 found no improvement through the use of 3-D information. In this study an 

analysis of 2,446 ligands interacting with 80 human GPCRs was performed using a linear vector 

representing conserved amino acids in the binding pockets. While the binding pocket kernel implicitly 

encodes 3-D information, the spatial arrangements were derived from the comparison to only two 

template proteins. Overall, the 3-D kernels (~77% prediction accuracy) did not show improvements 

compared to lower dimensional protein descriptions (~77% prediction accuracy with a protein 

similarity kernel). Likewise Wassermann et al.159 found little improvement using 3-D information in 

their analysis of interactions of 12 proteases with 1359 ligands using the TopMatch similarity score160, 

which used  all amino acids within 8 Å around the catalytic residues to describe the target proteins. 

This 3-D description did not perform better (~61% recovery rate) than the sequence (~57%) and protein 

class-based (~62%) kernels used in this publication. 

Conversely, early work by Strömbergsson et al.161 used local protein substructures, encoded as 

motifs of 5 amino acid stretches, which are closer than 6.5 Å to each other. This local substructure 

method showed for a set of 104 enzymes an improvement over the use of global SCOP (Structural 

Classification of Proteins) folds and the RMSE values on the external validation set decreased from 

2.06 to 1.44 pKi units. Additionally, it was found that local substructures close to the ligand binding 

sites were assigned more importance in the models than more distant ones, which is intuitively 

understandable. Similarly, Meslamani and Rognan did find an improvement by using 3-D 

information.60 581 diverse proteins were described by the 3-D cavity descriptor FuzCav,65 which is a 

vector of 4,834 integers reporting counts of pharmacophoric feature triplets mapped to Cα-atoms of 

binding site-lining residues. The use of cavity 3-D kernels showed a clear advantage (F-measure 0.66) 

over sequence-based descriptions (F-measure 0.54) in predicting target-ligand pairings for a large 

external test set (>14,000 ligands, 531 targets), especially in local models. This difference seems to be 

even more pronounced for datasets with limited ligand data (<50 ligands). Likewise, a recent study by 

Subramanian et al.66 described the superimposed binding sites of 50 (unique) kinases by molecular 

interaction fields derived from knowledge-based potentials and Schrödinger’s WaterMaps.162,163 Also in 

this example a significant improvement for 3-D methods (r2 0.66, q2 0.44) compared to sequence-based 

methods (r2 0.50, q2 0.34) was reported. Additionally, this combination of methods allows interpretation 

and easy visualization of PCM results within the context of ligands and binding pockets.  

Earlier studies have not clearly shown the advantages of 3D PCM over solely sequence-based 

approaches, whereas more recent studies show that including 3D information appears to improve 
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performance. The particular data set used (e.g. number of ligands), and the quality of the data provided, 

likely determines if there is a possible gain in this type of description. However, the constantly 

increasing number of protein structures, more robust alignment-free methods (e.g. Nisius and Gohlke164 

or Andersson et al.81), and introduction of protein descriptors with easier interpretability (e.g. Desaphy 

et al.
165), might help the interpretation and the visualization of PCM models in the future.  

  

5.3 PCM in Predicting Ligand Binding Free Energy 

 The application of PCM to docking might not be directly obvious. Yet, the concepts used in 

PCM, quantitatively relating ligand- and protein-side descriptors to affinity/activity, very much 

resemble empirical scoring functions. While scoring functions explicitely take 3D information into 

account they serve a very similar. Molecular docking has led to the discovery of active compounds,166  

yet it suffers from several well described limitations, among which is the relatively low performance in 

prediction of interaction energies.167,168 In contrast, PCM models can predict the difference in Gibbs 

free energy (∆G = -RT ln Kd) between the initial state, where the protein and the compound do not 

interact, and the final ligand-target complex. Therefore, the principles of PCM can be applied to 

develop PCM-based scoring functions. 

 Kramer et al.169 demonstrate this concept by building a structure-based PCM scoring function. 

Their method inducts a bagged stepwise multiple linear regression model with a subset of 1,387 

protein-ligand complexes extracted from the PDBbind09-CN database.170 Subsequently a new 

compound-target interaction descriptor based upon distance-binned Crippen-like atom type pairs was 

introduced. The best model outperformed commercially available scoring functions assessed on the 

PDBbind09 database and was able to explain 48% of the variance of the external set, providing a 

RMSE equal to 1.44. Although similar methods had been previously proposed,171–175 this was the first 

study where a sufficiently large validation was accomplished to ascertain the model’s predictive power. 

Additionally, the implementation of bagged stepwise multiple linear regression (MLR) and PLS 

enabled the evaluation of the importance of ligand and target descriptors for the PCM model.  

Similarly, a subsequent study reported the development of a scoring function based upon the 

CSAR-NRC HiQ benchmark dataset (http://csardock.org).176 The best model exhibited acceptable 

statistics with a cross-validated R2 = 0.55 and RMSE=1.49.176 Finally, Chaitaya et al.177 were able to 

predict for the first time ligand binding free energies where the enthalpic and entropic contributions for 

a given binding event were deconvoluted. Therein, the authors demonstrated the importance of 
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including ligand descriptors (QIKPROP and LIGPARSE calculated in Schrödinger suite)178 to the 

models in addition to 3-dimensional ligand-protein interaction descriptors. 

 As demonstrated above, PCM overlaps with methods that are originally coming from the 

structure-based field due to PCM describing in principle any method to relate ligand features and 

protein/’target’ features on a large scale to an output variable of interest. Another source of 

complementary information is the information from divergent and convergent homologous sequences. 

This allows PCM models to extrapolate the bioactivity of ligands to the same protein target in different 

species as shown below.  

5.4 PCM as an Approach to Extrapolate Bioactivity Data Between Species 

 Given that PCM considers bioactivity data from related targets, these related targets can also 

include similar targets from different species. Given a group of related targets, a distinction can be 

made from an evolutionary standpoint between gene pairs originated from intra-species gene 

duplication events (paralogy, within species) or from speciation events (orthology, across species).179 

Since orthologous genes will tend to maintain the original function, binding modes will also tend to be 

more conserved than in paralogues, where the original protein function is less conserved.  

 This has also been shown to be true for affinities of ligands binding to these orthologues by 

analyzing bioactivity data, such as in a recent study by Krueger et al.21 the authors demonstrate that the 

same small molecule exhibits similar binding affinities when acting on orthologues (though some 

exceptions were found, e.g. Histamine H3 receptor). Moreover, the authors verified that larger 

differences in binding affinity are observed for paralogues with respect to orthologues by analyzing the 

differences in binding for a total number of 20,309 compounds on 516 human targets, with 651 being 

the final number of orthologous pairs. These observations aid in optimizing ligands for their interaction 

with conserved residues across a given protein family, thus making them more desirable lead 

compounds (thus avoiding their interaction with unrelated targets).180  

 In the field of PCM, Lapinsh et al.37 demonstrated for the first time the capability of PCM to 

successfully combine the pKi values of 23 organic compounds on 17 human (paralogues) and 4 rat 

(orthologues) amine GPCRs. The authors were able to deconvolute the binding site interactions into 

two types, namely: those involved in specificity and those involved in affinity. Therefore, compound 

design can be envisioned from the viewpoint of affinity or specificity.  Similarly, the contribution of 

TM regions involved in the interactions of amine GPCRs and compounds to compound affinity was 

also quantified. For example, TM regions 2, 3, 4, 6 and 7 are responsible for low overall affinity in β2 
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receptors; however, the same regions are positive contributors to overall high affinity in α1a receptors. 

Van Westen et al.22 built on this by including in a PCM model bioactivity data from four human and rat 

adenosine receptors (A1, A2A, A2B and A3). The authors screened a commercial chemolibrary composed 

of 791,162 compounds with the most predictive PCM model obtained, which exhibited Q2 and RMSE 

values of 0.73 and 0.61 pKi units, respectively. Prospective experimental validation led to the discovery 

of new high-affinity inhibitors, among which a compound with a pKi value of 8.1 on the A1 receptor. 

Finally, the authors have applied PCM to model the pIC50 value of 3,228 distinct compounds on 11 

mammalian cyclooxygenases (COX) using ensemble PCM.55 The final ensemble PCM model, trained 

on the cross-validation predictions of a panel of 282 RF, SVM and Gradient Boosting Machine (GBM) 

models, each trained with different values of the hyperparameters, led to predictions on the test set with 

RMSE and R02 values of 0.71 and 0.65, respectively. Additionally, the description of compounds with 

unhashed Morgan fingerprints permitted a chemically meaningful model interpretation, which 

highlighted chemical moieties responsible for selectivity towards COX-2 in agreement with the 

literature.55 

 The ability of PCM to embrace multispecies information using only sequence descriptors allows 

the creation of models capable to predict compound activity on targets with little available data points 

on the human orthologue. The existing large body of bioactivity data collected on organisms other than 

human (e.g. rat and mouse) provides a good resource. This data was derived from the traditional usage 

of rodent tissues as a source of proteins for biochemical and pharmacological assays. Moreover, the 

difference in bioactivity between a compound acting on its human target with respect to its orthologue 

in another species (e.g. the CCR1 antagonist BX471) hampers the utilization of animal models to study 

human diseases at a molecular level.181 Thus, PCM can help not only to reduce the number of 

experiments required to complete the compound-target interaction matrix,29 but also appears as a 

practical tool to understand complex diseases in scenarios where current experimental settings are 

insufficient (e.g. undeveloped enzymatic assays for a given protein). Similarly, PCM might be applied 

as a supporting tool in allometric scaling to predict the behavior of clinical candidate drugs in 

humans.182,183 Nonetheless, the extrapolation capabilities of PCM models are subjected to the 

completeness of the bioactivity matrix (Figure 1). In practice, even though high performance can be 

attained with a matrix completeness level below 3%, the variability of the chemical space plays a key 

role in determining the extrapolation capability of a PCM model on the chemical side.75 Therefore, a 

balance has to be found between the coverage of chemical and target space, and the degree of 

completeness of the bioactivity matrix. 
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5.5 PCM Applied to Pharmacogenomics and Toxicogenomics Data 

 The biological space in a PCM model can be further extended from single proteins to whole cell 

lines. A step forward in this regard is the inclusion of cell line descriptors in a PCM model in order to 

model cell line sensitivity to cancer drugs or toxic compounds. Given that individual cell lines have 

been shown to demonstrate diverse profiles with respect to drug sensitivity, the variability on the cell 

line side, which constitutes now the target side of PCM, can be exploited to concomitantly predict both 

drug potency and cell line selectivity.17 Additionally, PCM can also facilitate the interpretation of 

differential gene expression or mechanism of toxicity of compounds,88  as will be shown below.  

The availability of pharmacogenomics and toxicogenomics data has enabled predictive modelling 

of cancer cell line sensitivity. These models consider as the dependent variable the response of a whole 

cell to a given drug, such as in the form of EC50 values, which determines the concentration at which a 

chemical exerts half of its maximal effect. Therefore, the ‘target’ component in the PCM model is no 

longer a single protein, described in terms of binding site properties, but by more complex (usually 

genomic) features such as oncogene mutations, cell karyotypes or gene expression levels.  

In the context of human cell lines, the work on the NCI-60 cell line panel, which covers cells 

from 9 different cancer types, has helped to find novel molecular determinants of drugs sensitivity, as 

well as to develop drugs targeting concrete tumor types (disease-oriented); e.g. 9-Cl-2- 

methylellipticinium acetate for central nervous system tumours.184 However, the number of cancer cell 

lines with drug sensitivity data has vastly increased with the release in 2012 of two major cancer cell 

line panels, namely: The Cancer Cell Line Encyclopedia (CCLE) consisting of 947 cancer cell lines185 

and the Genomics of Drug Sensitivity in Cancer (GDSC) consisting of 727 cancer cell lines.186 The 

setup of both cell line collections, sharing a total number of 471 cell lines, enabled large scale 

pharmacological profiling thereof. In that way, Barretina et al.185 measured the chemotherapeutic effect 

of 24 drugs on the CCLE panel, while Garnett et al.,186 tested 130 chemical compounds on the GDSC 

cell line collection.  In both cases, the cell lines were further characterized genomically, by measuring 

gene expression data, chromosomal copy numbers, oncogene mutations, and microsatellite instability. 

Recently, Basu et al.187 measured the sensitivity of 242 cell lines form the CCLE panel to an Informer 

Set composed of 354 diverse molecules, including 54 clinical candidates and 35 FDA-approved drugs. 

The sensitivity data is publicly available at the Cancer Therapeutics Response Portal (CTRP).188 

The availability of public bioactivity profiles for compounds in combination with detailed 

genetic information of the cell lines constitutes a scenario where ML can be applied for predictive cell 

line sensitivity modelling. In this area, Menden et al.29 exploited cell line drug sensitivity information 
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from the GDSC and incorporated genomic features in combination with chemical descriptors in non 

parametric models, i.e. neural networks and random forests. These models allowed the authors to 

determine the missing drug response (IC50) values in the original cell-line compound matrix. The best 

model predicted the sensitivity on the external (blind) test with a correlation between observed and 

predicted of 0.64, while a value of 0.61 was obtained when predicting the response on a tissue unseen 

by the model in the training phase. Recently, the authors have integrated PCM random forest models 

with conformal prediction for the large-scale prediction of cancer cell line sensitivity with error 

bars.17,189 Compounds were described with Morgan fingerprints, whereas a total of 16 cell line profiling 

datasets were benchmarked for their predictive signal. Gene expression data constantly led to the 

highest predictive power. Interestingly, the authors found statistically significant differences in 

predictive power between PCM models trained on cell line identity fingerprints (inductive transfer 

knowledge between cell lines)190 and cell line profiling data, suggesting that the explicit inclusion of 

cell line information improves the prediction of cell line sensitivity. Of practical relevance, the 

predicted bioactivities enabled the prediction of growth inhibition patterns on the NCI60 panel and the 

identification of genomic markers of drug sensitivity. 

  The cancer cell line collections described above still remain to be fully exploited. While they 

constitute a great opportunity for PCM to integrate both drug sensitivity and genomics data in single 

models, this data integration still remains challenging due to the disagreement of drug sensitivity 

measurements between the CCLE and the GDSC.191,192 Overall, the principles of PCM, namely the 

combination of chemical and cell line (target) information in single machine learning models, are 

suited to integrate and exploit the increasing availability of drug sensitivity measurements on cancer 

cell line panels. The application of PCM in pharmacogenomics is a recent sub-field of which the 

authors are certain it will grow in the near future. Moreover, in silico drug sensitivity prediction is a 

cost-efficient method capable to relate large-scale pharmacogenomics data, which is likely to foster the 

identification of chemotherapeutic lead compounds in both the academic and pharmaceutical cancer 

drug discovery pipeline.  

5.6 Other Potential PCM Applications 

As reviewed above PCM has been applied in a wide range of drug discovery settings, yet more 

applications remain unexplored. The prediction of compound toxicity on cell lines 

(toxicogenomics),193–196 beyond the aforesaid cancer cell line collections, is also amenable to PCM. 

Recently, Kaggle,197 a crowd-sourcing platform, hosted two competitions in the field of 
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chemoinformatic modelling. Two pharmaceutical companies, Boehringer Ingelheim and Merck, 

provided Structure-Activity Relationship datasets to the community in order to find the most predictive 

machine learning algorithms. The Merck challenge consisted of 15 datasets, each of which containing 

the bioactivities of a series of molecules on a different target. The winners of the competition applied 

Restricted Boltzmann machines (deep learning).198 Interestingly, the winning team noted that the 

similarity between the datasets (targets) could be exploited by inducting a single neural network with 

all datasets, which output a layer with fifteen different units (neurons). On the other hand, Boehringer 

Ingelheim provided a dataset with 1,776 compound descriptors. The response variable was binary, 0 

corresponded to a compound not eliciting the expected activity whereas 1 corresponded to a compound 

showing activity. In this case, the highest predictive ability was obtained with model ensembles  

(random forests, gradient boosting machines, and k-nearest neighbors). In a similar vein, the modelling 

challenge DREAM8 was proposed to the scientific community to model the toxicity of 106 compounds 

on 884 lymphoblastoid cell lines, which were characterized by SNP genotypes and gene transcript 

levels quantified by RNA Sequencing.199–201   

 

 As described in this review, a large variety of protein targets have been modelled using PCM. 

Beyond the modelling of the activity of compounds on targets of diverse nature, the interaction 

between nucleic acids and proteins is also amenable to PCM modelling. In this context, Bellucci et al. 

predicted protein-RNA interaction based upon the physicochemical properties of both the polypeptide 

and the nucleotide chains.202 However, to date few studies have been published in this area.50,202  

6 PCM Limitations 
 

The usefulness of PCM in computational drug design has been extensively proven in silico (see 

section 2.7) and in prospective experimental validation. Nevertheless, there are a number of limitations 

that should not be overlooked. Publicly available bioactivity databases contain a non-negligible degree 

of experimental uncertainty,108–111 which should be certainly included in the modelling phase, as 

recently proposed by Cortes-Ciriano et al.75
 Similarly, intervals of confidence for individual predictions 

should be reported, which can be calculated with algorithm-dependent approaches, e.g. Gaussian 

Processes,75 or with algorithm-independent techniques, such as conformal prediction.17,189  

In addition to being informative for biologists, these confidence intervals constitute a valuable 

source of information about the applicability domain (AD) of a given model.75 The AD is defined as the 

amount of ligand and target space to which a given model can be reliably applied. Thus, in addition to 
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the model validation schemes presented above, an estimation of model AD should accompany any 

reported model in order to be of practical usefulness.  

Another limitation which is often inherently related to bioactivity data is that of data skewness. 

Some datasets mostly report active203 or inactive molecules,204 and thus compound-target combinations 

untested experimentally are normally considered as inactive or active interactions, respectively. 

Moreover, public data in general tend to favor a relatively small number of proteins classes that have 

been extensively explored (e.g. GPCRs and Kinases).23–25,205 As such, for some targets the available 

data might not be sufficient for PCM projects given that imbalanced datasets can lead to models with 

high negative or false positive rates. Nevertheless, the modelling of cell line sensitivity has shown that 

PCM displays high interpolation power, as the accuracy of prediction reached a plateau when 20% of 

the whole compound- cell line matrix was included in the training set.29  

Beyond the quality of the data, the descriptor choice still constitutes a field of active research, 

specially with respect to protein descriptors, which development will deeply influence the success of 

PCM in the coming years.45 A recent paper by Brown et al.190 suggested that PCM mostly relies on 

inductive transfer knowledge and that protein descriptors mostly act as labels and do not account for 

structural differences among them. However, we have recently shown that both amino acid descriptors 

and cell line profiling datasets account for structural information of eukaryotic, mammal and bacterial 

DHFR, and cancer cell lines, where the difference in performance on the test set between inductive 

transfer and PCM models was statistically significant.17,56  

PCM requires the concatenation of ligand and target descriptors, and sometimes also cross-terms, 

which substantially increases the dimensionality of the input space with respect to QSAR. Although 

this higher dimensionality might lead to overfitting in PCM,206 in practice, PCM has been shown to 

exhibit higher predictive power on the test set than QSAR.22,26,75 

7 Conclusions 

 PCM is becoming a mature technique that allows the simultaneous use of both the chemical and 

the biological spaces in predictive bioactivity modelling. Both retrospective validation and prospective 

validation have underscored the advantages of PCM over ligand-based methods. However, it is the 

extensive expertise developed in the fields of QSAR and chemoinformatics on which PCM can build. 

Nowadays, a wide choice of properly benchmarked ligand and protein descriptors is available as well 

as different linear and nonlinear modelling algorithms. Nonetheless, conceptually diverse machine 

learning algorithms (e.g. GP), the inclusion of three-dimensional information of both ligands and 
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targets, and the use of pharmacogenomics data are still under exploration. 

 Overall, the ability of PCM to become a customary technique in both the public and the private 

domain in the following years will certainly rest on its capability to capitalize on biological data of 

diverse nature, including personalized ‘omics’ data (personalized medicine), in combination with 

structural data of ligands, be those small molecules, antibodies or peptides.
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Figure 1. Ligand - Target Interaction Space. The interaction between ligands (chemical compounds) and targets (biological 

macromolecules) can be envisioned as a matrix, where rows are indexed by target ids and columns by compound ids. Each matrix cell 

contains the binding affinity of a given compound on a given target, indicated by the following colors: blue means low affinity and yellow 

means high affinity. Traditional bioinformatics techniques have dealt with the similarity between targets, normally based upon sequence 

similarity. On the other hand, ligand based (QSAR) models have studied series of compounds acting on a given target. By contrast to both of 

them, PCM relates the chemical-target interaction space by describing targets and compounds with numerical descriptors permitting to 

predict activities of a given compound on a given target. 
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Figure 2. A systematic overview of proteochemometric modelling. (A) shows the similarity between ligands and drug targets and the 

utilization of both types of information in PCM. (B) is the representation of different types of input features of ligand and target space 

(shared bioactivity profiles of ligands, binding pocket residues, gene expression in cell lines, mutational stability, etc) which could be 

employed in a PCM model depending on the type of output variable. The third block (C) shows the various possible applications of PCM 

models including measurement of drug efficacy and susceptibility, effect of mutations on activity and compound/target feature selection. 
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Figure 3. Illustrative example of GP theory in a two-dimensional problem. (A) The prior probability distribution embraces all possible 

functions which can potentially model the dataset. A subset of six prototypical functions is depicted. Normally, the mean of the distribution is 

set to zero (black dashed line). (B) The inclusion of bioactivity information (red dots) accompanied by its experimental uncertainty (blue 

error bars) updates the prior distribution into the posterior probability distribution. In the posterior probability distribution, only those 

functions in agreement with the experimental data are kept. The uncertainty (pink area) notably increases in those areas with little 

experimental information available. The mean of the posterior distribution (black dashed line) is considered the best fit to the data. A 

prototypical function from the posterior is shown in blue. For a new compound-target combination, the bioactivity is predicted as a Gaussian 

distribution, in which the mean is the best prediction and its variance the uncertainty. A radial-kernelled GP with σ = 1 was employed to 

generate the figure. The python infpy package helped to produce the plots.207 
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Figure 4. The effect of presence of compound and amino acid features on bioactivity. (A) Bar plot showing the features of Kinase type I 

inhibitors and amino acids that affect the pKd value. For this model, the electronic properties related to amino acid 315 and 317 have large 

impact on pKd (shown as green bars), because of their relevance to enzyme-ligand interactions. (B) Kinase inhibitors containing the 

highlighted compound features responsible for change in pKd value. The presence of ECFP4_7, ECFP4_34, ECFP4_57 and ECFP4_124 

increase the activity, whereas ECFP4_24, ECFP4_41 and ECFP4_120 decrease it.130 
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9 Tables 

Table 1. An overview of recent PCM applications applied to a variety of datasets and the inferences made.  

Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

PDBbind170 

(1,300) 

1300 protein-

ligand complexes 

Atom-type  

based 

Atom-type 

based 
Kd, Ki RF Y- sc, OoBV, EV No 

Increasing the training 

set size improves the 

model’s predictability 

Ballester et al, 

2010 208 

ProLINT 

database209 

(3,595) 

62 kinases 

Structural 

fragments and 2D 

autocorrelation 

vectors 

Sequence-based 

structural 

fragments and 

amino acid 

sequence 

autocorrelation 

IC50 SVM 3-fold CV, EV No 

SVM based on 

autocorrelation 

descriptors perform 

better than fragment-

based approaches 

Fernandez et al, 

2010 210 

PDBbind170 

(1,255) 
Diverse Proteins 

Property-encoded 

shape distributions 

Property-

encoded shape 

distributions 

Kd, Ki SVM 5-fold CV, EV No 

Training set enrichment 

and expansion 

enhances prediction 

accuracy 

Das et al, 2010 

175 

Stanford HIV 

Drug Resistance 

database211 

(4,495) 

728 Reverse 

transcriptases 

Dragon 

descriptors71 
Z-scales48 IC50 PLS 7-fold CV, EV No 

Receptor-ligand and 

receptor-receptor cross-

terms improved model 

performance 

Junaid et al, 

2010 149 
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Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

Immune Epitope 

Database212 

(31,992) 

12 HLA-DRB1 

proteins 
Z-scales48 Z-scales48 IC50 PLS 7-fold CV, EV No 

Identified protein 

residues and peptide 

positions for binding 

predictions 

Dimitrov et al, 

2010 213 

Karaman et al 

dataset214 

(12,046) 

317 human kinases 
Dragon 

descriptors71 

Z-scales,48 

Amino-acid 

composition, 

sequence order 

and CTD 

Kd 
PLS, SVM, 

KNN, DT 
Double CV No 

SVM outperforms all 

machine learning 

approaches 

Lapins, et al, 

2010 215 

CSAR-NRC 

HiQ176 

346 protein-ligand 

complexes 
Atom counts Atom counts Kd MLR 

RS 

 
No 

Distance dependent 

atom descriptors make 

the regression models 

more robust. 

Kramer et al, 

2011 176 

Gold standard set (1,933)
313 diseases 

(OMIM)216 

Diverse Drug-Drug 

similarity measures 

Disease- 

Disease 

similarity 

measure 

Classifier 

score 

Logistic 

regression 

classifier 

10-fold CV, EV No 

Possibilities to include 

patient- specific gene 

expression profiles 

make the models 

suitable for 

pharmacogenomics 

studies 

Gottlieb et al, 

2011 217 
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Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

Sc-PDB218 

(2,882) 
581 targets 

Hashed 

fingerprints 

Protein 

sequence and 3-

D structure 

based 

Actives / 

inactives 
SVM 5-fold CV, EV No 

Structure-based 

approaches perform 

better than sequence-

based approaches 

Meslamani et al, 

2011 60 

GLIDA 

database119 

(5,207) and 

GVK kinase 

database 

(15,616) 

317 GPCRs and 

143 kinases 

Dragon 

descriptors71 

Protein 

sequence and 

Feature-based 

Ki, IC50, EC50 SVM 5-fold 

9 compounds for 

ADRB2 

5 inhibitors for 

EGFR 

Highly active 

compounds predicted 

by SVM not identified 

by 

ligand-based / 

structure-based 

approaches 

Yabuuchi et al, 

2011 62 

Tibotec BVBA 

(4,024) 
14 HIV RT 

Circular 

fingerprints 

Hashed 

fingerprints 
EC50 SVM 

Y-Sc, E CV, 

LosoV 

317 novel 

predictions were 

experimentally 

verified 

Viral mutants PCM 

models can assist the 

development drugs for 

HIV infection 

Van Westen et 

al, 2011 26 

Bioinfo-DB61 

(3,36,678) 
Oxytocin receptor 

MACCS structural 

keys 

Fingerprints 

based on the 

properties of 

amino acids in 

active site 

Actives / 

inactives 
RF 10-fold CV, EV 

Biological 

evaluation of 37 

compounds 

(2 hits) 

PCM models yield 

better hits than the 

conventional virtual 

screening procedures. 

Weill, et al, 

2011 61 
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Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

PDBbind refined 

set (1,387) 

23 protein families 

(1,387 proteins) 
Atom-type based 

Atom-type 

based, Distance-

dependent 

protein ligand 

atom type pairs 

Kd MLR, PLS 5-fold CV, LCO No 

Inclusion of descriptors 

from PCM models 

predict free energies 

more accurately than 

docking programs 

Kramer et al, 

2011 169 

Stanford HIV 

Drug Resistance 

Database (4,794 

protease and 

4,495 RT 

sequence-

inhibitor 

combinations) 

828 HIV-1 protease 

variants 

GRIND alignment 

independent 

descriptors219 

Z-scales48 
Inhibitor 

concentration 
PLS 

Double loop CV, 

Y-Sc and EV 
No 

Intra-protease cross-

terms improve model 

performance 

Spjuth et al, 

2011 150 

Kinase SARfari3 

(85,908) 

342 human kinase 

domains 

Extended 

Connectivity 

Fingerprints 

(ECFP-6)70 

Fingerprints 

based on amino 

acid residues 

and 

physiochemical 

properties 

IC50, Kd, Ki 
DCSVM and 

DCNB 
RS, EV No 

DCSVMs provide 

better activity 

prediction 

Niijima et al, 

2012 94 
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Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

BindingDB220 

(1,275) 
5 HDAC isoforms 

Physical properties 

and topological 

indices of 

compounds 

Sequence 

similarity, 

structure 

similarity, 

geometry 

descriptors 

IC50 SVR 10-fold CV, EV No 

SVR models with PUK 

kernels have stronger 

mapping capabilities 

Wu et al, 2012 92 

Docked 

complexes 

(2,335 PDB 

structures &  

3,671 FDA 

drugs) 

2,335 human 

targets 

Ligand shape 

descriptors 

Binding site 

shape 

descriptors 

Ligand 

contact point 

score 

PCA DTV, EV 

VEGFR2  

inhibition by 

Mebendazole and 

Cadherin 11 

inhibition  by 

Celecoxib were 

verified. 

TFMS PCM approach 

can assist in drug 

repositioning studies 

Dakshanamurthy 

et al, 2012 221 

Literature (160 

protein-ligand 

complexes) 

47 HIV-1 proteases 

Physical 

properties, 

topological indices 

of compounds 

Z-scales48 Ki SVR 10-fold CV, EV No 

Protein-ligand 

interaction fingerprints 

improved models over 

cross terms 

Huang et al, 

2012 41 

CHEMBL 23 

(10,999) 

8 Human and Rat 

adenosine 

receptors 

Circular 

fingerprints 

Hashed 

fingerprints 
Ki SVM Y-Sc, EV, DTV 

6 novel 

compounds were 

experimentally 

identified 

Addition of orthologue 

information increased 

model quality 

Van Westen et 

al, 2012 22 
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Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

CHEMBL 83 

(81,689; 43,965) 

136 GPCRs and 

176 kinases 
MACCS keys 

Sequence 

descriptors 
Ki, IC50 SVM 5-fold CV, EV No 

Feature selection 

improved the 

predictive accuracy of 

the models 

Cheng et al, 

2012 222 

GVK 

Biosciences 

database223 

((628,120) 

238 Class A 

GPCRs 

Chemical kernels 

based on ECFP-6 

fingerprints and 

Dragon descriptors 

Protein kernels 

based on full 

length, TM and 

loop sequences 

Agonists / 

antagonists 
SVM RS, DT, EV No 

Protein kernels based 

on TM sequences 

showed higher 

prediction accuracy 

Shiraishi et al, 

2013 158 

GDSC dataset224 

(38,930) 

639 cancer cell 

lines 

PaDEL 

descriptors72 

CNV, sequence 

variation and 

Microsatellite 

instability status 

IC50 RF and NNs 8-fold CV, EV No 

PCM based on existing 

drugs allows drug 

repositioning and 

pharmacogenomics 

studies 

Menden et al, 

2013 29 

Peptide library  

(180) 
4 proteases 

Binary and 

physiochemical 

descriptors 

Binary 

descriptors 
Ki PLS 5-fold CV No 

Inclusion of intra-

peptide cross-terms 

improved model 

performance 

Prusis et al, 

2013 151 

Kinase SARfari 

(54,012) 
372 kinases 

Topological 

fingerprints 

Amino-acid 

composition 

and CTD 

IC50, Kd, Ki RF and NB 
OOB, 5-fold CV, 

EV 
No 

Random forests 

outperform Näive 

Bayes. 

Cao, et al, 2013 

126 
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Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

Virco (300, 000) 

HIV mutants 

(10,700 NNRTI, 

10,500 NRTI, 

27000 PI) 

Circular 

fingerprints 
Z-scales48 IC50 SVM 

Y-Sc, 5-fold CV, 

EV 
No 

Phenotypic resistance 

for novel mutants can 

be predicted via PCM 

Van Westen et 

al, 2013 145 

GPCRDB225 

(310) 

9 human amine 

GPCRs 

Physical properties 

and topological 

indices of 

compounds 

Z-scales48 and 

TM identity 

descriptors 

Ki SVR and GP 10-fold CV, EV No 

SVR is superior to GP. 

TM identity descriptors 

perform better than Z-

scales descriptors 

Gao et al, 2013 

112 

PubChem 

BioAssay 

dataset4 (63,391) 

5 CYP  450 

isoforms 

Molecular 

signatures 
CTD AC50 

KNN, SVM and 

RF 
CV, EV No 

Non-linear methods 

(SVM and RF) perform 

better. 

Lapins et al, 

2013 88 

Binding and 

PDSP KI 

database220 

(13,079) 

 

514 human targets 
Topological 

fingerprints 

Amino-acid 

composition 

and CTD 

Ki RF and NB 
OOB, 5-fold CV, 

EV 
No 

Random forests 

outperform KNN, 

SVM, NB and BPN 

Cao et al, 2013 

226 

In vitro OATP 

modulation data 

(2,000) 

OATP1B1 and 

OATP1B3 

Circular 

fingerprints 

Z-scales48 and 

feature-based 

ProtFP 

Ki RF OOB, EV 

Agreement 

between 

experiment  and 

prediction 

4class models are 

superior to 2-class 

models and provide 

information about 

selectivity 

Bruyn et al, 

201354 
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Dataset 

(datapoints) 

Receptor 

Ligand 

Descriptors 

Target 

Descriptor 

Bioactivity 

type 

Machine 

Learning 

Technique 

In silico Model 

Validation 

Prospective 

Validation? 

Remarks, Inferences Reference 

Karaman et al214, 

Davis et al227 

and Metz et al228 

datasets 

50 kinases 

Mold2,229 Open 

Babel230 and 

volsurf231 

descriptors 

Knowledge-

based fields123 

and 

watermap124 

derived fields 

Kd /Ki PLS 
7-fold CV, EV , 

LOTO, Y-Sc 
No 

Field-based models are 

superior to sequence-

based models 

Subramanian et 

al, 201366 

 

The wide applicability of PCM is evidenced by the increased coverage of drug targets in the studies of the last three years.  Although 

traditional drug targets, such as GPCRs or kinases, are still widely represented, new applications (e.g. the modelling of viral genotypes or 

pharmacogenomics) are gaining ground steadily. BPN - Back Propagation Networks, BS – Bootstrapping Validation, CTD - Composition 

and transition of amino acid properties, CV – Cross-Validation, DCNB - Dual Component Naive Bayes, DCSVM - Dual Component Support 

Vector Machines, DT – Decision Trees, DTV – Decoy Test Validation, ENR – Elastic Net Regression, EV – External Validation, GP – 

Gaussian Processes, KNN – k-Nearest Neighbors, LCO – Leave-Cluster-Out Validation, LOTO – Leave-One-Target-Out Validation, NB - 

Naïve-Bayes, NN – Neural Network, MLR – Multiple Linear Regression, OOB – Out-Of-Bag Validation, PCA – Principal Component 

Analysis,  PLS – Partial Least Squares,  Random Forest – RF, RS – Random Splitting, SVM - Support Vector Machines,  SVR – Support 

Vector Regression, Y-Sc – Y-Scrambling. 
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Table 2. Selection of machine learning prediction methods used for PCM. 
 
Machine Learning Method Short Description Advantages Disadvantages Reference 

Support Vector Machine 
(SVM) 

Maps the input space into a higher 
dimensional space where a hyper-

plane is defined by ‘support vectors’, 
lying at the interface between classes 

-Medium training time 
-PUK kernel uses an approximation of linear, 

polynomial and RBF kernels 

-Optimize bandwidth hyper-parameter 
-No consideration of experimental error. 

-No error bars for the predictions 

Gao et al, 2013112 
Hur et al, 200887 
Genton, 200190 

Van Westen et al, 201222 

Dual-component SVM (DC-
SVM) 

Amino acid residues and compound 
fragments are treated as two 

components 
-Accurate prediction of active versus inactive 

-Huge kernel matrix 
-Reduced efficiency due to size 

Niijima et al, 201294 

Transductive SVM (TSVM) 
Semi-supervised text mining 

technique 
-Effective with unbalanced datasets 
-Smoothen the decision boundaries 

-Difficult to implement without proper tuning 
Kondratovich et al, 01396 

Wang et al, 200597 
Collobert et al, 200698 

Relevant Vector Machine 
(RVM) 

Probabilistic counterpart of SVM 
-Contains sparse descriptors 

-Fast prediction 
-Easy retrieval of important descriptors 

-Non informative predicted variance 
Tipping, 200199 

Lowe et al, 2011100 

Random Forest (RF) 
-Constructs multiple decision trees 
with random selection of variables 

-Computationally less expensive than SVM 
-Short training time 

-High interpretability 
-Requires relatively large amounts of memory De Bruyn et al, 201354 

Gaussian Processes (GP) 
- Non-parametric Bayesian technique 
-Gives each prediction as Gaussian 

distribution 

-Measureable interval of confidence (IC) 
- Consideration of experimental uncertainty 

-Long training time Schwaighofer et al, 2007113 

Matrix Factorization 
(CF) 

- Calculates activities as dot product 
of compound and target features 

-Multi-task learning 

-Missing values are predicted efficiently 
-Inferred features could be used as descriptors in 

the activity model 
-Estimates relatedness between targets 

-Interpretability 
- Performance on sparse data 

Gao et al115 
Erhan et al.117 

 
New algorithms have been introduced in PCM focusing on: (i) increasing interpretability; (ii) reducing training times; (iii) providing 

individual intervals of confidence for the predictions; and (iv) considering the experimental uncertainty in the modelling.  
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